kalker/kalk/src/inverter.rs

668 lines
22 KiB
Rust

use crate::ast::Identifier;
use crate::ast::{Expr, Stmt};
use crate::errors::KalkError;
use crate::lexer::TokenKind;
use crate::prelude;
use crate::symbol_table::SymbolTable;
use lazy_static::lazy_static;
use std::collections::HashMap;
lazy_static! {
pub static ref INVERSE_UNARY_FUNCS: HashMap<&'static str, &'static str> = {
let mut m = HashMap::new();
m.insert("cos", "acos");
m.insert("csc", "acsc");
m.insert("csch", "csch");
m.insert("cosh", "acosh");
m.insert("cot", "acot");
m.insert("coth", "acoth");
m.insert("sec", "asec");
m.insert("sech", "asech");
m.insert("sin", "asin");
m.insert("sinh", "asinh");
m.insert("tan", "atan");
m.insert("tanh", "atanh");
m.insert("acos", "cos");
m.insert("acsc", "csc");
m.insert("acsch", "csch");
m.insert("acosh", "cosh");
m.insert("acot", "cot");
m.insert("acoth", "coth");
m.insert("asec", "sec");
m.insert("asech", "sech");
m.insert("asin", "sin");
m.insert("asinh", "sinh");
m.insert("atan", "tan");
m.insert("atanh", "tanh");
m
};
}
impl Expr {
pub fn invert(
&self,
symbol_table: &mut SymbolTable,
unknown_var: &str,
) -> Result<Self, KalkError> {
let target_expr = Expr::Var(Identifier::from_full_name(unknown_var));
let result = invert(target_expr, symbol_table, self, unknown_var);
Ok(result?.0)
}
pub fn invert_to_target(
&self,
symbol_table: &mut SymbolTable,
target_expr: Expr,
unknown_var: &str,
) -> Result<Self, KalkError> {
let x = invert(target_expr, symbol_table, self, unknown_var)?;
Ok(x.0)
}
}
fn invert(
target_expr: Expr,
symbol_table: &mut SymbolTable,
expr: &Expr,
unknown_var: &str,
) -> Result<(Expr, Expr), KalkError> {
match expr {
Expr::Binary(left, op, right) => {
invert_binary(target_expr, symbol_table, left, op, right, unknown_var)
}
Expr::Unary(op, expr) => invert_unary(target_expr, op, expr),
Expr::Unit(identifier, expr) => {
invert_unit(target_expr, symbol_table, identifier, expr, unknown_var)
}
Expr::Var(identifier) => invert_var(target_expr, symbol_table, identifier, unknown_var),
Expr::Group(expr) => Ok((target_expr, *expr.clone())),
Expr::FnCall(identifier, arguments) => invert_fn_call(
target_expr,
symbol_table,
identifier,
arguments,
unknown_var,
),
Expr::Literal(_) => Ok((target_expr, expr.clone())),
Expr::Piecewise(_) => Err(KalkError::UnableToInvert(String::from("Piecewise"))),
Expr::Vector(_) => Err(KalkError::UnableToInvert(String::from("Vector"))),
Expr::Matrix(_) => Err(KalkError::UnableToInvert(String::from("Matrix"))),
Expr::Indexer(_, _) => Err(KalkError::UnableToInvert(String::from("Inverter"))),
Expr::Comprehension(_, _, _) => {
Err(KalkError::UnableToInvert(String::from("Comprehension")))
}
Expr::Equation(_, _, _) => Err(KalkError::UnableToInvert(String::from("Equation"))),
}
}
fn invert_binary(
target_expr: Expr,
symbol_table: &mut SymbolTable,
left: &Expr,
op: &TokenKind,
right: &Expr,
unknown_var: &str,
) -> Result<(Expr, Expr), KalkError> {
let op_inv = match op {
TokenKind::Plus => TokenKind::Minus,
TokenKind::Minus => {
// Eg. a-(b+c)
// Multiply "-1" into the group, resulting in it becoming a normal expression. Then invert it normally.
if let Expr::Group(inside_group) = right {
return invert_binary(
target_expr,
symbol_table,
left,
&TokenKind::Plus,
&multiply_into(&Expr::Literal(-1f64), inside_group)?,
unknown_var,
);
}
TokenKind::Plus
}
TokenKind::Star => {
// If the left expression is a group, multiply the right expression into it, dissolving the group.
// It can then be inverted normally.
if let Expr::Group(inside_group) = left {
return invert(
target_expr,
symbol_table,
&multiply_into(right, inside_group)?,
unknown_var,
);
}
// Same as above but left/right switched.
if let Expr::Group(inside_group) = right {
return invert(
target_expr,
symbol_table,
&multiply_into(left, inside_group)?,
unknown_var,
);
}
TokenKind::Slash
}
TokenKind::Slash => {
// Eg. (a+b)/c
// Just dissolve the group. Nothing more needs to be done mathematically.
if let Expr::Group(inside_group) = left {
return invert(
target_expr,
symbol_table,
&Expr::Binary(inside_group.clone(), *op, Box::new(right.clone())),
unknown_var,
);
}
// Eg. a/(b+c)
// Same as above.
if let Expr::Group(inside_group) = right {
return invert(
target_expr,
symbol_table,
&Expr::Binary(Box::new(left.clone()), *op, inside_group.clone()),
unknown_var,
);
}
TokenKind::Star
}
TokenKind::Power => {
return if contains_var(symbol_table, left, unknown_var) {
invert(
Expr::FnCall(
Identifier::from_full_name("root"),
vec![target_expr, right.clone()],
),
symbol_table,
right,
unknown_var,
)
} else {
invert(
Expr::FnCall(
Identifier::from_full_name("log"),
vec![target_expr, left.clone()],
),
symbol_table,
right,
unknown_var,
)
};
}
_ => return Err(KalkError::UnableToInvert(String::new())),
};
// If the left expression contains the unit, invert the right one instead,
// since the unit should not be moved.
if contains_var(symbol_table, left, unknown_var) {
// But if the right expression *also* contains the unit,
// throw an error, since it can't handle this yet.
if contains_var(symbol_table, right, unknown_var) {
return Err(KalkError::UnableToInvert(String::from(
"Expressions with several instances of an unknown variable (this might be supported in the future). Try simplifying the expression.",
)));
}
return invert(
Expr::Binary(Box::new(target_expr), op_inv, Box::new(right.clone())),
symbol_table,
left,
unknown_var,
);
}
// Otherwise, invert the left side.
let final_target_expr = Expr::Binary(Box::new(target_expr), op_inv, Box::new(left.clone()));
invert(
// Eg. 2-a
// If the operator is minus (and the left expression is being inverted),
// make the target expression negative to keep balance.
if let TokenKind::Minus = op {
Expr::Unary(TokenKind::Minus, Box::new(final_target_expr))
} else {
final_target_expr
},
symbol_table,
right, // Then invert the right expression.
unknown_var,
)
}
fn invert_unary(target_expr: Expr, op: &TokenKind, expr: &Expr) -> Result<(Expr, Expr), KalkError> {
match op {
TokenKind::Minus => Ok((
// Make the target expression negative
Expr::Unary(TokenKind::Minus, Box::new(target_expr)),
expr.clone(), // And then continue inverting the inner-expression.
)),
_ => Err(KalkError::UnableToInvert(String::new())),
}
}
fn invert_unit(
target_expr: Expr,
symbol_table: &mut SymbolTable,
identifier: &str,
expr: &Expr,
unknown_var: &str,
) -> Result<(Expr, Expr), KalkError> {
let x = Expr::Binary(
Box::new(target_expr),
TokenKind::ToKeyword,
Box::new(Expr::Var(Identifier::from_full_name(identifier))),
);
invert(x, symbol_table, expr, unknown_var)
}
fn invert_var(
target_expr: Expr,
symbol_table: &mut SymbolTable,
identifier: &Identifier,
unknown_var: &str,
) -> Result<(Expr, Expr), KalkError> {
if identifier.full_name == unknown_var {
Ok((target_expr, Expr::Var(identifier.clone())))
} else if let Some(Stmt::VarDecl(_, var_expr)) =
symbol_table.get_var(&identifier.full_name).cloned()
{
invert(target_expr, symbol_table, &var_expr, unknown_var)
} else {
Ok((target_expr, Expr::Var(identifier.clone())))
}
}
fn invert_fn_call(
target_expr: Expr,
symbol_table: &mut SymbolTable,
identifier: &Identifier,
arguments: &[Expr],
unknown_var: &str,
) -> Result<(Expr, Expr), KalkError> {
// If prelude function
match arguments.len() {
1 => {
if prelude::UNARY_FUNCS.contains_key(identifier.full_name.as_ref() as &str) {
if let Some(fn_inv) = INVERSE_UNARY_FUNCS.get(identifier.full_name.as_ref() as &str)
{
return invert(
Expr::FnCall(Identifier::from_full_name(fn_inv), vec![target_expr]),
symbol_table,
&arguments[0],
unknown_var,
);
} else {
match identifier.full_name.as_ref() {
"sqrt" => {
return invert(
Expr::Binary(
Box::new(target_expr),
TokenKind::Power,
Box::new(Expr::Literal(2f64)),
),
symbol_table,
&arguments[0],
unknown_var,
);
}
_ => {
return Err(KalkError::UnableToInvert(format!(
"Function '{}'",
identifier.full_name
)));
}
}
}
}
}
2 => {
if prelude::BINARY_FUNCS.contains_key(identifier.full_name.as_ref() as &str) {
return Err(KalkError::UnableToInvert(format!(
"Function '{}'",
identifier.full_name
)));
}
}
_ => (),
}
// Get the function definition from the symbol table.
let (parameters, body) = if let Some(Stmt::FnDecl(_, parameters, body)) =
symbol_table.get_fn(&identifier.full_name).cloned()
{
(parameters, body)
} else {
return Err(KalkError::UndefinedFn(identifier.full_name.clone()));
};
// Make sure the input is valid.
if parameters.len() != arguments.len() {
return Err(KalkError::IncorrectAmountOfArguments(
parameters.len(),
identifier.full_name.clone(),
arguments.len(),
));
}
// Make the parameters usable as variables inside the function.
let mut parameters_iter = parameters.iter();
for argument in arguments {
symbol_table.insert(Stmt::VarDecl(
Identifier::from_full_name(&parameters_iter.next().unwrap().to_string()),
Box::new(argument.clone()),
));
}
// Invert everything in the function body.
invert(target_expr, symbol_table, &body, unknown_var)
}
pub fn contains_var(symbol_table: &SymbolTable, expr: &Expr, var_name: &str) -> bool {
// Recursively scan the expression for the variable.
match expr {
Expr::Binary(left, _, right) => {
contains_var(symbol_table, left, var_name)
|| contains_var(symbol_table, right, var_name)
}
Expr::Unary(_, expr) => contains_var(symbol_table, expr, var_name),
Expr::Unit(_, expr) => contains_var(symbol_table, expr, var_name),
Expr::Var(identifier) => {
identifier.full_name == var_name
|| if let Some(Stmt::VarDecl(_, var_expr)) =
symbol_table.get_var(&identifier.full_name)
{
contains_var(symbol_table, var_expr, var_name)
} else {
false
}
}
Expr::Group(expr) => contains_var(symbol_table, expr, var_name),
Expr::FnCall(_, args) => {
for arg in args {
if contains_var(symbol_table, arg, var_name) {
return true;
}
}
false
}
Expr::Literal(_) => false,
Expr::Piecewise(_) => true, // Let it try to invert this. It will just display the error message.
Expr::Vector(items) => items
.iter()
.any(|x| contains_var(symbol_table, x, var_name)),
Expr::Matrix(rows) => rows
.iter()
.any(|row| row.iter().any(|x| contains_var(symbol_table, x, var_name))),
Expr::Indexer(_, _) => false,
Expr::Comprehension(_, _, _) => false,
Expr::Equation(_, _, _) => false,
}
}
/// Multiply an expression into a group.
fn multiply_into(expr: &Expr, base_expr: &Expr) -> Result<Expr, KalkError> {
match base_expr {
Expr::Binary(left, op, right) => match op {
// If + or -, multiply the expression with each term.
TokenKind::Plus | TokenKind::Minus => Ok(Expr::Binary(
Box::new(multiply_into(expr, left)?),
*op,
Box::new(multiply_into(expr, right)?),
)),
// If * or /, only multiply with the first factor.
TokenKind::Star | TokenKind::Slash => Ok(Expr::Binary(
Box::new(multiply_into(expr, left)?),
*op,
right.clone(),
)),
_ => Err(KalkError::UnableToInvert(String::new())),
},
// If it's a literal, just multiply them together.
Expr::Literal(_) | Expr::Var(_) => Ok(Expr::Binary(
Box::new(expr.clone()),
TokenKind::Star,
Box::new(base_expr.clone()),
)),
Expr::Group(_) => Err(KalkError::UnableToInvert(String::from(
"Parenthesis multiplied with parenthesis (this should be possible in the future).",
))),
_ => Err(KalkError::UnableToInvert(String::new())),
}
}
#[allow(unused_imports, dead_code)] // Getting warnings for some reason
#[cfg(test)]
mod tests {
use crate::ast::Expr;
use crate::ast::Identifier;
use crate::lexer::TokenKind::*;
use crate::parser::DECL_UNIT;
use crate::symbol_table::SymbolTable;
use crate::test_helpers::*;
use wasm_bindgen_test::*;
fn decl_unit() -> Box<Expr> {
Box::new(Expr::Var(Identifier::from_full_name(
crate::parser::DECL_UNIT,
)))
}
#[test]
#[wasm_bindgen_test]
fn test_binary() {
let ladd = binary(decl_unit(), Plus, literal(1f64));
let lsub = binary(decl_unit(), Minus, literal(1f64));
let lmul = binary(decl_unit(), Star, literal(1f64));
let ldiv = binary(decl_unit(), Slash, literal(1f64));
let radd = binary(literal(1f64), Plus, decl_unit());
let rsub = binary(literal(1f64), Minus, decl_unit());
let rmul = binary(literal(1f64), Star, decl_unit());
let rdiv = binary(literal(1f64), Slash, decl_unit());
let mut symbol_table = SymbolTable::new();
assert_eq!(
ladd.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(decl_unit(), Minus, literal(1f64))
);
assert_eq!(
lsub.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(decl_unit(), Plus, literal(1f64))
);
assert_eq!(
lmul.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(decl_unit(), Slash, literal(1f64))
);
assert_eq!(
ldiv.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(decl_unit(), Star, literal(1f64))
);
assert_eq!(
radd.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(decl_unit(), Minus, literal(1f64))
);
assert_eq!(
rsub.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*unary(Minus, binary(decl_unit(), Plus, literal(1f64)))
);
assert_eq!(
rmul.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(decl_unit(), Slash, literal(1f64))
);
assert_eq!(
rdiv.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(decl_unit(), Star, literal(1f64))
);
}
#[test]
#[wasm_bindgen_test]
fn test_unary() {
let neg = unary(Minus, decl_unit());
let mut symbol_table = SymbolTable::new();
assert_eq!(neg.invert(&mut symbol_table, DECL_UNIT).unwrap(), *neg);
}
#[test]
#[wasm_bindgen_test]
fn test_fn_call() {
let call_with_literal = binary(fn_call("f", vec![*literal(2f64)]), Plus, decl_unit());
let call_with_decl_unit = fn_call("f", vec![*decl_unit()]);
let call_with_decl_unit_and_literal =
fn_call("f", vec![*binary(decl_unit(), Plus, literal(2f64))]);
let decl = fn_decl(
"f",
vec![String::from("x")],
binary(var("x"), Plus, literal(1f64)),
);
let mut symbol_table = SymbolTable::new();
symbol_table.insert(decl);
assert_eq!(
call_with_literal
.invert(&mut symbol_table, DECL_UNIT)
.unwrap(),
*binary(decl_unit(), Minus, fn_call("f", vec![*literal(2f64)])),
);
assert_eq!(
call_with_decl_unit
.invert(&mut symbol_table, DECL_UNIT)
.unwrap(),
*binary(decl_unit(), Minus, literal(1f64))
);
assert_eq!(
call_with_decl_unit_and_literal
.invert(&mut symbol_table, DECL_UNIT)
.unwrap(),
*binary(
binary(decl_unit(), Minus, literal(1f64)),
Minus,
literal(2f64)
)
);
}
#[test]
#[wasm_bindgen_test]
fn test_group() {
let group_x = binary(
group(binary(decl_unit(), Plus, literal(3f64))),
Star,
literal(2f64),
);
let group_unary_minus = binary(
literal(2f64),
Minus,
group(binary(decl_unit(), Plus, literal(3f64))),
);
let x_group_add = binary(
literal(2f64),
Star,
group(binary(decl_unit(), Plus, literal(3f64))),
);
let x_group_sub = binary(
literal(2f64),
Star,
group(binary(decl_unit(), Minus, literal(3f64))),
);
let x_group_mul = binary(
literal(2f64),
Star,
group(binary(decl_unit(), Star, literal(3f64))),
);
let x_group_div = binary(
literal(2f64),
Star,
group(binary(decl_unit(), Slash, literal(3f64))),
);
let mut symbol_table = SymbolTable::new();
assert_eq!(
group_x.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(
binary(
decl_unit(),
Minus,
binary(literal(2f64), Star, literal(3f64))
),
Slash,
literal(2f64)
)
);
assert_eq!(
group_unary_minus
.invert(&mut symbol_table, DECL_UNIT)
.unwrap(),
*binary(
binary(
binary(decl_unit(), Minus, literal(2f64)),
Minus,
binary(literal(-1f64), Star, literal(3f64))
),
Slash,
literal(-1f64)
)
);
assert_eq!(
x_group_add.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(
binary(
decl_unit(),
Minus,
binary(literal(2f64), Star, literal(3f64))
),
Slash,
literal(2f64)
)
);
assert_eq!(
x_group_sub.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(
binary(
decl_unit(),
Plus,
binary(literal(2f64), Star, literal(3f64))
),
Slash,
literal(2f64)
)
);
assert_eq!(
x_group_mul.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(
binary(decl_unit(), Slash, literal(3f64)),
Slash,
literal(2f64)
)
);
assert_eq!(
x_group_div.invert(&mut symbol_table, DECL_UNIT).unwrap(),
*binary(
binary(decl_unit(), Star, literal(3f64)),
Slash,
literal(2f64)
)
);
}
#[test]
#[wasm_bindgen_test]
fn test_multiple_decl_units() {
/*let add_two = binary(decl_unit(), Plus, decl_unit());
let mut symbol_table = SymbolTable::new();
assert_eq!(
add_two.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Slash, literal("2"))
);*/
}
}