netbird/client/firewall/nftables/manager_linux.go

872 lines
21 KiB
Go
Raw Permalink Normal View History

package nftables
import (
"bytes"
"encoding/binary"
"fmt"
"net"
"net/netip"
"strconv"
"strings"
"sync"
"time"
"github.com/google/nftables"
"github.com/google/nftables/expr"
log "github.com/sirupsen/logrus"
"golang.org/x/sys/unix"
fw "github.com/netbirdio/netbird/client/firewall"
"github.com/netbirdio/netbird/iface"
)
const (
// FilterTableName is the name of the table that is used for filtering by the Netbird client
FilterTableName = "netbird-acl"
// FilterInputChainName is the name of the chain that is used for filtering incoming packets
FilterInputChainName = "netbird-acl-input-filter"
// FilterOutputChainName is the name of the chain that is used for filtering outgoing packets
FilterOutputChainName = "netbird-acl-output-filter"
AllowNetbirdInputRuleID = "allow Netbird incoming traffic"
)
var anyIP = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
// Manager of iptables firewall
type Manager struct {
mutex sync.Mutex
rConn *nftables.Conn
sConn *nftables.Conn
tableIPv4 *nftables.Table
tableIPv6 *nftables.Table
filterInputChainIPv4 *nftables.Chain
filterOutputChainIPv4 *nftables.Chain
filterInputChainIPv6 *nftables.Chain
filterOutputChainIPv6 *nftables.Chain
rulesetManager *rulesetManager
setRemovedIPs map[string]struct{}
setRemoved map[string]*nftables.Set
wgIface iFaceMapper
}
// iFaceMapper defines subset methods of interface required for manager
type iFaceMapper interface {
Name() string
Address() iface.WGAddress
}
// Create nftables firewall manager
func Create(wgIface iFaceMapper) (*Manager, error) {
// sConn is used for creating sets and adding/removing elements from them
// it's differ then rConn (which does create new conn for each flush operation)
// and is permanent. Using same connection for booth type of operations
// overloads netlink with high amount of rules ( > 10000)
sConn, err := nftables.New(nftables.AsLasting())
if err != nil {
return nil, err
}
m := &Manager{
rConn: &nftables.Conn{},
sConn: sConn,
rulesetManager: newRuleManager(),
setRemovedIPs: map[string]struct{}{},
setRemoved: map[string]*nftables.Set{},
wgIface: wgIface,
}
if err := m.Reset(); err != nil {
return nil, err
}
return m, nil
}
// AddFiltering rule to the firewall
//
// If comment argument is empty firewall manager should set
// rule ID as comment for the rule
func (m *Manager) AddFiltering(
ip net.IP,
proto fw.Protocol,
sPort *fw.Port,
dPort *fw.Port,
direction fw.RuleDirection,
action fw.Action,
ipsetName string,
comment string,
) (fw.Rule, error) {
m.mutex.Lock()
defer m.mutex.Unlock()
var (
err error
ipset *nftables.Set
table *nftables.Table
chain *nftables.Chain
)
if direction == fw.RuleDirectionOUT {
table, chain, err = m.chain(
ip,
FilterOutputChainName,
nftables.ChainHookOutput,
nftables.ChainPriorityFilter,
nftables.ChainTypeFilter)
} else {
table, chain, err = m.chain(
ip,
FilterInputChainName,
nftables.ChainHookInput,
nftables.ChainPriorityFilter,
nftables.ChainTypeFilter)
}
if err != nil {
return nil, err
}
rawIP := ip.To4()
if rawIP == nil {
rawIP = ip.To16()
}
rulesetID := m.getRulesetID(ip, proto, sPort, dPort, direction, action, ipsetName)
if ipsetName != "" {
// if we already have set with given name, just add ip to the set
// and return rule with new ID in other case let's create rule
// with fresh created set and set element
var isSetNew bool
ipset, err = m.rConn.GetSetByName(table, ipsetName)
if err != nil {
if ipset, err = m.createSet(table, rawIP, ipsetName); err != nil {
return nil, fmt.Errorf("get set name: %v", err)
}
isSetNew = true
}
if err := m.sConn.SetAddElements(ipset, []nftables.SetElement{{Key: rawIP}}); err != nil {
return nil, fmt.Errorf("add set element for the first time: %v", err)
}
if err := m.sConn.Flush(); err != nil {
return nil, fmt.Errorf("flush add elements: %v", err)
}
if !isSetNew {
// if we already have nftables rules with set for given direction
// just add new rule to the ruleset and return new fw.Rule object
if ruleset, ok := m.rulesetManager.getRuleset(rulesetID); ok {
return m.rulesetManager.addRule(ruleset, rawIP)
}
// if ipset exists but it is not linked to rule for given direction
// create new rule for direction and bind ipset to it later
}
}
ifaceKey := expr.MetaKeyIIFNAME
if direction == fw.RuleDirectionOUT {
ifaceKey = expr.MetaKeyOIFNAME
}
expressions := []expr.Any{
&expr.Meta{Key: ifaceKey, Register: 1},
&expr.Cmp{
Op: expr.CmpOpEq,
Register: 1,
Data: ifname(m.wgIface.Name()),
},
}
if proto != "all" {
expressions = append(expressions, &expr.Payload{
DestRegister: 1,
Base: expr.PayloadBaseNetworkHeader,
Offset: uint32(9),
Len: uint32(1),
})
var protoData []byte
switch proto {
case fw.ProtocolTCP:
protoData = []byte{unix.IPPROTO_TCP}
case fw.ProtocolUDP:
protoData = []byte{unix.IPPROTO_UDP}
case fw.ProtocolICMP:
protoData = []byte{unix.IPPROTO_ICMP}
default:
return nil, fmt.Errorf("unsupported protocol: %s", proto)
}
expressions = append(expressions, &expr.Cmp{
Register: 1,
Op: expr.CmpOpEq,
Data: protoData,
})
}
// check if rawIP contains zeroed IPv4 0.0.0.0 or same IPv6 value
// in that case not add IP match expression into the rule definition
if !bytes.HasPrefix(anyIP, rawIP) {
// source address position
addrLen := uint32(len(rawIP))
addrOffset := uint32(12)
if addrLen == 16 {
addrOffset = 8
}
// change to destination address position if need
if direction == fw.RuleDirectionOUT {
addrOffset += addrLen
}
expressions = append(expressions,
&expr.Payload{
DestRegister: 1,
Base: expr.PayloadBaseNetworkHeader,
Offset: addrOffset,
Len: addrLen,
},
)
// add individual IP for match if no ipset defined
if ipset == nil {
expressions = append(expressions,
&expr.Cmp{
Op: expr.CmpOpEq,
Register: 1,
Data: rawIP,
},
)
} else {
expressions = append(expressions,
&expr.Lookup{
SourceRegister: 1,
SetName: ipsetName,
SetID: ipset.ID,
},
)
}
}
if sPort != nil && len(sPort.Values) != 0 {
expressions = append(expressions,
&expr.Payload{
DestRegister: 1,
Base: expr.PayloadBaseTransportHeader,
Offset: 0,
Len: 2,
},
&expr.Cmp{
Op: expr.CmpOpEq,
Register: 1,
Data: encodePort(*sPort),
},
)
}
if dPort != nil && len(dPort.Values) != 0 {
expressions = append(expressions,
&expr.Payload{
DestRegister: 1,
Base: expr.PayloadBaseTransportHeader,
Offset: 2,
Len: 2,
},
&expr.Cmp{
Op: expr.CmpOpEq,
Register: 1,
Data: encodePort(*dPort),
},
)
}
if action == fw.ActionAccept {
expressions = append(expressions, &expr.Verdict{Kind: expr.VerdictAccept})
} else {
expressions = append(expressions, &expr.Verdict{Kind: expr.VerdictDrop})
}
userData := []byte(strings.Join([]string{rulesetID, comment}, " "))
rule := m.rConn.InsertRule(&nftables.Rule{
Table: table,
Chain: chain,
Position: 0,
Exprs: expressions,
UserData: userData,
})
if err := m.rConn.Flush(); err != nil {
return nil, fmt.Errorf("flush insert rule: %v", err)
}
ruleset := m.rulesetManager.createRuleset(rulesetID, rule, ipset)
return m.rulesetManager.addRule(ruleset, rawIP)
}
// getRulesetID returns ruleset ID based on given parameters
func (m *Manager) getRulesetID(
ip net.IP,
proto fw.Protocol,
sPort *fw.Port,
dPort *fw.Port,
direction fw.RuleDirection,
action fw.Action,
ipsetName string,
) string {
rulesetID := ":" + strconv.Itoa(int(direction)) + ":"
if sPort != nil {
rulesetID += sPort.String()
}
rulesetID += ":"
if dPort != nil {
rulesetID += dPort.String()
}
rulesetID += ":"
rulesetID += strconv.Itoa(int(action))
if ipsetName == "" {
return "ip:" + ip.String() + rulesetID
}
return "set:" + ipsetName + rulesetID
}
// createSet in given table by name
func (m *Manager) createSet(
table *nftables.Table,
rawIP []byte,
name string,
) (*nftables.Set, error) {
keyType := nftables.TypeIPAddr
if len(rawIP) == 16 {
keyType = nftables.TypeIP6Addr
}
// else we create new ipset and continue creating rule
ipset := &nftables.Set{
Name: name,
Table: table,
Dynamic: true,
KeyType: keyType,
}
if err := m.rConn.AddSet(ipset, nil); err != nil {
return nil, fmt.Errorf("create set: %v", err)
}
if err := m.rConn.Flush(); err != nil {
return nil, fmt.Errorf("flush created set: %v", err)
}
return ipset, nil
}
// chain returns the chain for the given IP address with specific settings
func (m *Manager) chain(
ip net.IP,
name string,
hook nftables.ChainHook,
priority nftables.ChainPriority,
cType nftables.ChainType,
) (*nftables.Table, *nftables.Chain, error) {
var err error
getChain := func(c *nftables.Chain, tf nftables.TableFamily) (*nftables.Chain, error) {
if c != nil {
return c, nil
}
return m.createChainIfNotExists(tf, FilterTableName, name, hook, priority, cType)
}
if ip.To4() != nil {
if name == FilterInputChainName {
m.filterInputChainIPv4, err = getChain(m.filterInputChainIPv4, nftables.TableFamilyIPv4)
return m.tableIPv4, m.filterInputChainIPv4, err
}
m.filterOutputChainIPv4, err = getChain(m.filterOutputChainIPv4, nftables.TableFamilyIPv4)
return m.tableIPv4, m.filterOutputChainIPv4, err
}
if name == FilterInputChainName {
m.filterInputChainIPv6, err = getChain(m.filterInputChainIPv6, nftables.TableFamilyIPv6)
return m.tableIPv4, m.filterInputChainIPv6, err
}
m.filterOutputChainIPv6, err = getChain(m.filterOutputChainIPv6, nftables.TableFamilyIPv6)
return m.tableIPv4, m.filterOutputChainIPv6, err
}
// table returns the table for the given family of the IP address
func (m *Manager) table(
family nftables.TableFamily, tableName string,
) (*nftables.Table, error) {
// we cache access to Netbird ACL table only
if tableName != FilterTableName {
return m.createTableIfNotExists(nftables.TableFamilyIPv4, tableName)
}
if family == nftables.TableFamilyIPv4 {
if m.tableIPv4 != nil {
return m.tableIPv4, nil
}
table, err := m.createTableIfNotExists(nftables.TableFamilyIPv4, tableName)
if err != nil {
return nil, err
}
m.tableIPv4 = table
return m.tableIPv4, nil
}
if m.tableIPv6 != nil {
return m.tableIPv6, nil
}
table, err := m.createTableIfNotExists(nftables.TableFamilyIPv6, tableName)
if err != nil {
return nil, err
}
m.tableIPv6 = table
return m.tableIPv6, nil
}
func (m *Manager) createTableIfNotExists(
family nftables.TableFamily, tableName string,
) (*nftables.Table, error) {
tables, err := m.rConn.ListTablesOfFamily(family)
if err != nil {
return nil, fmt.Errorf("list of tables: %w", err)
}
for _, t := range tables {
if t.Name == tableName {
return t, nil
}
}
table := m.rConn.AddTable(&nftables.Table{Name: tableName, Family: nftables.TableFamilyIPv4})
if err := m.rConn.Flush(); err != nil {
return nil, err
}
return table, nil
}
func (m *Manager) createChainIfNotExists(
family nftables.TableFamily,
tableName string,
name string,
hooknum nftables.ChainHook,
priority nftables.ChainPriority,
chainType nftables.ChainType,
) (*nftables.Chain, error) {
table, err := m.table(family, tableName)
if err != nil {
return nil, err
}
chains, err := m.rConn.ListChainsOfTableFamily(family)
if err != nil {
return nil, fmt.Errorf("list of chains: %w", err)
}
for _, c := range chains {
if c.Name == name && c.Table.Name == table.Name {
return c, nil
}
}
polAccept := nftables.ChainPolicyAccept
chain := &nftables.Chain{
Name: name,
Table: table,
Hooknum: hooknum,
Priority: priority,
Type: chainType,
Policy: &polAccept,
}
chain = m.rConn.AddChain(chain)
ifaceKey := expr.MetaKeyIIFNAME
shiftDSTAddr := 0
if name == FilterOutputChainName {
ifaceKey = expr.MetaKeyOIFNAME
shiftDSTAddr = 1
}
expressions := []expr.Any{
&expr.Meta{Key: ifaceKey, Register: 1},
&expr.Cmp{
Op: expr.CmpOpEq,
Register: 1,
Data: ifname(m.wgIface.Name()),
},
}
mask, _ := netip.AddrFromSlice(m.wgIface.Address().Network.Mask)
if m.wgIface.Address().IP.To4() == nil {
ip, _ := netip.AddrFromSlice(m.wgIface.Address().Network.IP.To16())
expressions = append(expressions,
&expr.Payload{
DestRegister: 2,
Base: expr.PayloadBaseNetworkHeader,
Offset: uint32(8 + (16 * shiftDSTAddr)),
Len: 16,
},
&expr.Bitwise{
SourceRegister: 2,
DestRegister: 2,
Len: 16,
Xor: []byte{0x0, 0x0, 0x0, 0x0},
Mask: mask.Unmap().AsSlice(),
},
&expr.Cmp{
Op: expr.CmpOpNeq,
Register: 2,
Data: ip.Unmap().AsSlice(),
},
&expr.Verdict{Kind: expr.VerdictAccept},
)
} else {
ip, _ := netip.AddrFromSlice(m.wgIface.Address().Network.IP.To4())
expressions = append(expressions,
&expr.Payload{
DestRegister: 2,
Base: expr.PayloadBaseNetworkHeader,
Offset: uint32(12 + (4 * shiftDSTAddr)),
Len: 4,
},
&expr.Bitwise{
SourceRegister: 2,
DestRegister: 2,
Len: 4,
Xor: []byte{0x0, 0x0, 0x0, 0x0},
Mask: m.wgIface.Address().Network.Mask,
},
&expr.Cmp{
Op: expr.CmpOpNeq,
Register: 2,
Data: ip.Unmap().AsSlice(),
},
&expr.Verdict{Kind: expr.VerdictAccept},
)
}
_ = m.rConn.AddRule(&nftables.Rule{
Table: table,
Chain: chain,
Exprs: expressions,
})
expressions = []expr.Any{
&expr.Meta{Key: ifaceKey, Register: 1},
&expr.Cmp{
Op: expr.CmpOpEq,
Register: 1,
Data: ifname(m.wgIface.Name()),
},
&expr.Verdict{Kind: expr.VerdictDrop},
}
_ = m.rConn.AddRule(&nftables.Rule{
Table: table,
Chain: chain,
Exprs: expressions,
})
if err := m.rConn.Flush(); err != nil {
return nil, err
}
return chain, nil
}
// DeleteRule from the firewall by rule definition
func (m *Manager) DeleteRule(rule fw.Rule) error {
m.mutex.Lock()
defer m.mutex.Unlock()
nativeRule, ok := rule.(*Rule)
if !ok {
return fmt.Errorf("invalid rule type")
}
if nativeRule.nftRule == nil {
return nil
}
if nativeRule.nftSet != nil {
// call twice of delete set element raises error
// so we need to check if element is already removed
key := fmt.Sprintf("%s:%v", nativeRule.nftSet.Name, nativeRule.ip)
if _, ok := m.setRemovedIPs[key]; !ok {
err := m.sConn.SetDeleteElements(nativeRule.nftSet, []nftables.SetElement{{Key: nativeRule.ip}})
if err != nil {
log.Errorf("delete elements for set %q: %v", nativeRule.nftSet.Name, err)
}
if err := m.sConn.Flush(); err != nil {
return err
}
m.setRemovedIPs[key] = struct{}{}
}
}
if m.rulesetManager.deleteRule(nativeRule) {
// deleteRule indicates that we still have IP in the ruleset
// it means we should not remove the nftables rule but need to update set
// so we prepare IP to be removed from set on the next flush call
return nil
}
// ruleset doesn't contain IP anymore (or contains only one), remove nft rule
if err := m.rConn.DelRule(nativeRule.nftRule); err != nil {
log.Errorf("failed to delete rule: %v", err)
}
if err := m.rConn.Flush(); err != nil {
return err
}
nativeRule.nftRule = nil
if nativeRule.nftSet != nil {
if _, ok := m.setRemoved[nativeRule.nftSet.Name]; !ok {
m.setRemoved[nativeRule.nftSet.Name] = nativeRule.nftSet
}
nativeRule.nftSet = nil
}
return nil
}
// Reset firewall to the default state
func (m *Manager) Reset() error {
m.mutex.Lock()
defer m.mutex.Unlock()
chains, err := m.rConn.ListChains()
if err != nil {
return fmt.Errorf("list of chains: %w", err)
}
for _, c := range chains {
// delete Netbird allow input traffic rule if it exists
if c.Table.Name == "filter" && c.Name == "INPUT" {
rules, err := m.rConn.GetRules(c.Table, c)
if err != nil {
log.Errorf("get rules for chain %q: %v", c.Name, err)
continue
}
for _, r := range rules {
if bytes.Equal(r.UserData, []byte(AllowNetbirdInputRuleID)) {
if err := m.rConn.DelRule(r); err != nil {
log.Errorf("delete rule: %v", err)
}
}
}
}
if c.Name == FilterInputChainName || c.Name == FilterOutputChainName {
m.rConn.DelChain(c)
}
}
tables, err := m.rConn.ListTables()
if err != nil {
return fmt.Errorf("list of tables: %w", err)
}
for _, t := range tables {
if t.Name == FilterTableName {
m.rConn.DelTable(t)
}
}
return m.rConn.Flush()
}
// Flush rule/chain/set operations from the buffer
//
// Method also get all rules after flush and refreshes handle values in the rulesets
func (m *Manager) Flush() error {
m.mutex.Lock()
defer m.mutex.Unlock()
if err := m.flushWithBackoff(); err != nil {
return err
}
// set must be removed after flush rule changes
// otherwise we will get error
for _, s := range m.setRemoved {
m.rConn.FlushSet(s)
m.rConn.DelSet(s)
}
if len(m.setRemoved) > 0 {
if err := m.flushWithBackoff(); err != nil {
return err
}
}
m.setRemovedIPs = map[string]struct{}{}
m.setRemoved = map[string]*nftables.Set{}
if err := m.refreshRuleHandles(m.tableIPv4, m.filterInputChainIPv4); err != nil {
log.Errorf("failed to refresh rule handles ipv4 input chain: %v", err)
}
if err := m.refreshRuleHandles(m.tableIPv4, m.filterOutputChainIPv4); err != nil {
log.Errorf("failed to refresh rule handles IPv4 output chain: %v", err)
}
if err := m.refreshRuleHandles(m.tableIPv6, m.filterInputChainIPv6); err != nil {
log.Errorf("failed to refresh rule handles IPv6 input chain: %v", err)
}
if err := m.refreshRuleHandles(m.tableIPv6, m.filterOutputChainIPv6); err != nil {
log.Errorf("failed to refresh rule handles IPv6 output chain: %v", err)
}
return nil
}
// AllowNetbird allows netbird interface traffic
func (m *Manager) AllowNetbird() error {
m.mutex.Lock()
defer m.mutex.Unlock()
tf := nftables.TableFamilyIPv4
if m.wgIface.Address().IP.To4() == nil {
tf = nftables.TableFamilyIPv6
}
chains, err := m.rConn.ListChainsOfTableFamily(tf)
if err != nil {
return fmt.Errorf("list of chains: %w", err)
}
var chain *nftables.Chain
for _, c := range chains {
if c.Table.Name == "filter" && c.Name == "INPUT" {
chain = c
break
}
}
if chain == nil {
log.Debugf("chain INPUT not found. Skiping add allow netbird rule")
return nil
}
rules, err := m.rConn.GetRules(chain.Table, chain)
if err != nil {
return fmt.Errorf("failed to get rules for the INPUT chain: %v", err)
}
if rule := m.detectAllowNetbirdRule(rules); rule != nil {
log.Debugf("allow netbird rule already exists: %v", rule)
return nil
}
m.applyAllowNetbirdRules(chain)
err = m.rConn.Flush()
if err != nil {
return fmt.Errorf("failed to flush allow input netbird rules: %v", err)
}
return nil
}
func (m *Manager) flushWithBackoff() (err error) {
backoff := 4
backoffTime := 1000 * time.Millisecond
for i := 0; ; i++ {
err = m.rConn.Flush()
if err != nil {
if !strings.Contains(err.Error(), "busy") {
return
}
log.Error("failed to flush nftables, retrying...")
if i == backoff-1 {
return err
}
time.Sleep(backoffTime)
backoffTime = backoffTime * 2
continue
}
break
}
return
}
func (m *Manager) refreshRuleHandles(table *nftables.Table, chain *nftables.Chain) error {
if table == nil || chain == nil {
return nil
}
list, err := m.rConn.GetRules(table, chain)
if err != nil {
return err
}
for _, rule := range list {
if len(rule.UserData) != 0 {
if err := m.rulesetManager.setNftRuleHandle(rule); err != nil {
log.Errorf("failed to set rule handle: %v", err)
}
}
}
return nil
}
func (m *Manager) applyAllowNetbirdRules(chain *nftables.Chain) {
rule := &nftables.Rule{
Table: chain.Table,
Chain: chain,
Exprs: []expr.Any{
&expr.Meta{Key: expr.MetaKeyIIFNAME, Register: 1},
&expr.Cmp{
Op: expr.CmpOpEq,
Register: 1,
Data: ifname(m.wgIface.Name()),
},
&expr.Verdict{
Kind: expr.VerdictAccept,
},
},
UserData: []byte(AllowNetbirdInputRuleID),
}
_ = m.rConn.InsertRule(rule)
}
func (m *Manager) detectAllowNetbirdRule(existedRules []*nftables.Rule) *nftables.Rule {
ifName := ifname(m.wgIface.Name())
for _, rule := range existedRules {
if rule.Table.Name == "filter" && rule.Chain.Name == "INPUT" {
if len(rule.Exprs) < 4 {
if e, ok := rule.Exprs[0].(*expr.Meta); !ok || e.Key != expr.MetaKeyIIFNAME {
continue
}
if e, ok := rule.Exprs[1].(*expr.Cmp); !ok || e.Op != expr.CmpOpEq || !bytes.Equal(e.Data, ifName) {
continue
}
return rule
}
}
}
return nil
}
func encodePort(port fw.Port) []byte {
bs := make([]byte, 2)
binary.BigEndian.PutUint16(bs, uint16(port.Values[0]))
return bs
}
func ifname(n string) []byte {
b := make([]byte, 16)
copy(b, []byte(n+"\x00"))
return b
}