netbird/relay/client/client.go

577 lines
14 KiB
Go
Raw Normal View History

package client
import (
"context"
"fmt"
"io"
"net"
"sync"
"time"
log "github.com/sirupsen/logrus"
auth "github.com/netbirdio/netbird/relay/auth/hmac"
"github.com/netbirdio/netbird/relay/client/dialer/ws"
"github.com/netbirdio/netbird/relay/healthcheck"
"github.com/netbirdio/netbird/relay/messages"
)
const (
bufferSize = 8820
serverResponseTimeout = 8 * time.Second
)
var (
ErrConnAlreadyExists = fmt.Errorf("connection already exists")
)
type internalStopFlag struct {
sync.Mutex
stop bool
}
func newInternalStopFlag() *internalStopFlag {
return &internalStopFlag{}
}
func (isf *internalStopFlag) set() {
isf.Lock()
defer isf.Unlock()
isf.stop = true
}
func (isf *internalStopFlag) isSet() bool {
isf.Lock()
defer isf.Unlock()
return isf.stop
}
// Msg carry the payload from the server to the client. With this struct, the net.Conn can free the buffer.
type Msg struct {
Payload []byte
bufPool *sync.Pool
bufPtr *[]byte
}
func (m *Msg) Free() {
m.bufPool.Put(m.bufPtr)
}
// connContainer is a container for the connection to the peer. It is responsible for managing the messages from the
// server and forwarding them to the upper layer content reader.
type connContainer struct {
log *log.Entry
conn *Conn
messages chan Msg
msgChanLock sync.Mutex
closed bool // flag to check if channel is closed
ctx context.Context
cancel context.CancelFunc
}
func newConnContainer(log *log.Entry, conn *Conn, messages chan Msg) *connContainer {
ctx, cancel := context.WithCancel(context.Background())
return &connContainer{
log: log,
conn: conn,
messages: messages,
ctx: ctx,
cancel: cancel,
}
}
func (cc *connContainer) writeMsg(msg Msg) {
cc.msgChanLock.Lock()
defer cc.msgChanLock.Unlock()
if cc.closed {
msg.Free()
return
}
select {
case cc.messages <- msg:
case <-cc.ctx.Done():
msg.Free()
default:
msg.Free()
cc.log.Infof("message queue is full")
// todo consider to close the connection
}
}
func (cc *connContainer) close() {
cc.cancel()
cc.msgChanLock.Lock()
defer cc.msgChanLock.Unlock()
if cc.closed {
return
}
cc.closed = true
close(cc.messages)
for msg := range cc.messages {
msg.Free()
}
}
// Client is a client for the relay server. It is responsible for establishing a connection to the relay server and
// managing connections to other peers. All exported functions are safe to call concurrently. After close the connection,
// the client can be reused by calling Connect again. When the client is closed, all connections are closed too.
// While the Connect is in progress, the OpenConn function will block until the connection is established with relay server.
type Client struct {
log *log.Entry
parentCtx context.Context
connectionURL string
authTokenStore *auth.TokenStore
hashedID []byte
bufPool *sync.Pool
relayConn net.Conn
conns map[string]*connContainer
serviceIsRunning bool
mu sync.Mutex // protect serviceIsRunning and conns
readLoopMutex sync.Mutex
wgReadLoop sync.WaitGroup
instanceURL *RelayAddr
muInstanceURL sync.Mutex
onDisconnectListener func()
listenerMutex sync.Mutex
}
// NewClient creates a new client for the relay server. The client is not connected to the server until the Connect
func NewClient(ctx context.Context, serverURL string, authTokenStore *auth.TokenStore, peerID string) *Client {
hashedID, hashedStringId := messages.HashID(peerID)
c := &Client{
log: log.WithFields(log.Fields{"relay": serverURL}),
parentCtx: ctx,
connectionURL: serverURL,
authTokenStore: authTokenStore,
hashedID: hashedID,
bufPool: &sync.Pool{
New: func() any {
buf := make([]byte, bufferSize)
return &buf
},
},
conns: make(map[string]*connContainer),
}
c.log.Infof("create new relay connection: local peerID: %s, local peer hashedID: %s", peerID, hashedStringId)
return c
}
// Connect establishes a connection to the relay server. It blocks until the connection is established or an error occurs.
func (c *Client) Connect() error {
c.log.Infof("connecting to relay server")
c.readLoopMutex.Lock()
defer c.readLoopMutex.Unlock()
c.mu.Lock()
defer c.mu.Unlock()
if c.serviceIsRunning {
return nil
}
err := c.connect()
if err != nil {
return err
}
c.log = c.log.WithField("relay", c.instanceURL.String())
c.log.Infof("relay connection established")
c.serviceIsRunning = true
c.wgReadLoop.Add(1)
go c.readLoop(c.relayConn)
return nil
}
// OpenConn create a new net.Conn for the destination peer ID. In case if the connection is in progress
// to the relay server, the function will block until the connection is established or timed out. Otherwise,
// it will return immediately.
// todo: what should happen if call with the same peerID with multiple times?
func (c *Client) OpenConn(dstPeerID string) (net.Conn, error) {
c.mu.Lock()
defer c.mu.Unlock()
if !c.serviceIsRunning {
return nil, fmt.Errorf("relay connection is not established")
}
hashedID, hashedStringID := messages.HashID(dstPeerID)
_, ok := c.conns[hashedStringID]
if ok {
return nil, ErrConnAlreadyExists
}
c.log.Infof("open connection to peer: %s", hashedStringID)
msgChannel := make(chan Msg, 100)
conn := NewConn(c, hashedID, hashedStringID, msgChannel, c.instanceURL)
c.conns[hashedStringID] = newConnContainer(c.log, conn, msgChannel)
return conn, nil
}
// ServerInstanceURL returns the address of the relay server. It could change after the close and reopen the connection.
func (c *Client) ServerInstanceURL() (string, error) {
c.muInstanceURL.Lock()
defer c.muInstanceURL.Unlock()
if c.instanceURL == nil {
return "", fmt.Errorf("relay connection is not established")
}
return c.instanceURL.String(), nil
}
// SetOnDisconnectListener sets a function that will be called when the connection to the relay server is closed.
func (c *Client) SetOnDisconnectListener(fn func()) {
c.listenerMutex.Lock()
defer c.listenerMutex.Unlock()
c.onDisconnectListener = fn
}
// HasConns returns true if there are connections.
func (c *Client) HasConns() bool {
c.mu.Lock()
defer c.mu.Unlock()
return len(c.conns) > 0
}
// Close closes the connection to the relay server and all connections to other peers.
func (c *Client) Close() error {
return c.close(true)
}
func (c *Client) connect() error {
conn, err := ws.Dial(c.connectionURL)
if err != nil {
return err
}
c.relayConn = conn
err = c.handShake()
if err != nil {
cErr := conn.Close()
if cErr != nil {
c.log.Errorf("failed to close connection: %s", cErr)
}
return err
}
return nil
}
func (c *Client) handShake() error {
msg, err := messages.MarshalAuthMsg(c.hashedID, c.authTokenStore.TokenBinary())
if err != nil {
c.log.Errorf("failed to marshal auth message: %s", err)
return err
}
_, err = c.relayConn.Write(msg)
if err != nil {
c.log.Errorf("failed to send auth message: %s", err)
return err
}
buf := make([]byte, messages.MaxHandshakeRespSize)
n, err := c.readWithTimeout(buf)
if err != nil {
c.log.Errorf("failed to read auth response: %s", err)
return err
}
_, err = messages.ValidateVersion(buf[:n])
if err != nil {
return fmt.Errorf("validate version: %w", err)
}
msgType, err := messages.DetermineServerMessageType(buf[messages.SizeOfVersionByte:n])
if err != nil {
c.log.Errorf("failed to determine message type: %s", err)
return err
}
if msgType != messages.MsgTypeAuthResponse {
c.log.Errorf("unexpected message type: %s", msgType)
return fmt.Errorf("unexpected message type")
}
addr, err := messages.UnmarshalAuthResponse(buf[messages.SizeOfProtoHeader:n])
if err != nil {
return err
}
c.muInstanceURL.Lock()
c.instanceURL = &RelayAddr{addr: addr}
c.muInstanceURL.Unlock()
return nil
}
func (c *Client) readLoop(relayConn net.Conn) {
internallyStoppedFlag := newInternalStopFlag()
hc := healthcheck.NewReceiver(c.log)
go c.listenForStopEvents(hc, relayConn, internallyStoppedFlag)
var (
errExit error
n int
)
for {
bufPtr := c.bufPool.Get().(*[]byte)
buf := *bufPtr
n, errExit = relayConn.Read(buf)
if errExit != nil {
c.log.Infof("start to Relay read loop exit")
c.mu.Lock()
if c.serviceIsRunning && !internallyStoppedFlag.isSet() {
c.log.Debugf("failed to read message from relay server: %s", errExit)
}
c.mu.Unlock()
break
}
_, err := messages.ValidateVersion(buf[:n])
if err != nil {
c.log.Errorf("failed to validate protocol version: %s", err)
c.bufPool.Put(bufPtr)
continue
}
msgType, err := messages.DetermineServerMessageType(buf[messages.SizeOfVersionByte:n])
if err != nil {
c.log.Errorf("failed to determine message type: %s", err)
c.bufPool.Put(bufPtr)
continue
}
if !c.handleMsg(msgType, buf[messages.SizeOfProtoHeader:n], bufPtr, hc, internallyStoppedFlag) {
break
}
}
hc.Stop()
c.muInstanceURL.Lock()
c.instanceURL = nil
c.muInstanceURL.Unlock()
c.notifyDisconnected()
c.wgReadLoop.Done()
_ = c.close(false)
}
func (c *Client) handleMsg(msgType messages.MsgType, buf []byte, bufPtr *[]byte, hc *healthcheck.Receiver, internallyStoppedFlag *internalStopFlag) (continueLoop bool) {
switch msgType {
case messages.MsgTypeHealthCheck:
c.handleHealthCheck(hc, internallyStoppedFlag)
c.bufPool.Put(bufPtr)
case messages.MsgTypeTransport:
return c.handleTransportMsg(buf, bufPtr, internallyStoppedFlag)
case messages.MsgTypeClose:
c.log.Debugf("relay connection close by server")
c.bufPool.Put(bufPtr)
return false
}
return true
}
func (c *Client) handleHealthCheck(hc *healthcheck.Receiver, internallyStoppedFlag *internalStopFlag) {
msg := messages.MarshalHealthcheck()
_, wErr := c.relayConn.Write(msg)
if wErr != nil {
if c.serviceIsRunning && !internallyStoppedFlag.isSet() {
c.log.Errorf("failed to send heartbeat: %s", wErr)
}
}
hc.Heartbeat()
}
func (c *Client) handleTransportMsg(buf []byte, bufPtr *[]byte, internallyStoppedFlag *internalStopFlag) bool {
peerID, payload, err := messages.UnmarshalTransportMsg(buf)
if err != nil {
if c.serviceIsRunning && !internallyStoppedFlag.isSet() {
c.log.Errorf("failed to parse transport message: %v", err)
}
c.bufPool.Put(bufPtr)
return true
}
stringID := messages.HashIDToString(peerID)
c.mu.Lock()
if !c.serviceIsRunning {
c.mu.Unlock()
c.bufPool.Put(bufPtr)
return false
}
container, ok := c.conns[stringID]
c.mu.Unlock()
if !ok {
c.log.Errorf("peer not found: %s", stringID)
c.bufPool.Put(bufPtr)
return true
}
msg := Msg{
bufPool: c.bufPool,
bufPtr: bufPtr,
Payload: payload,
}
container.writeMsg(msg)
return true
}
func (c *Client) writeTo(connReference *Conn, id string, dstID []byte, payload []byte) (int, error) {
c.mu.Lock()
conn, ok := c.conns[id]
c.mu.Unlock()
if !ok {
return 0, io.EOF
}
if conn.conn != connReference {
return 0, io.EOF
}
// todo: use buffer pool instead of create new transport msg.
msg, err := messages.MarshalTransportMsg(dstID, payload)
if err != nil {
c.log.Errorf("failed to marshal transport message: %s", err)
return 0, err
}
// the write always return with 0 length because the underling does not support the size feedback.
_, err = c.relayConn.Write(msg)
if err != nil {
c.log.Errorf("failed to write transport message: %s", err)
}
return len(payload), err
}
func (c *Client) listenForStopEvents(hc *healthcheck.Receiver, conn net.Conn, internalStopFlag *internalStopFlag) {
for {
select {
case _, ok := <-hc.OnTimeout:
if !ok {
return
}
c.log.Errorf("health check timeout")
internalStopFlag.set()
if err := conn.Close(); err != nil {
// ignore the err handling because the readLoop will handle it
c.log.Warnf("failed to close connection: %s", err)
}
return
case <-c.parentCtx.Done():
err := c.close(true)
if err != nil {
c.log.Errorf("failed to teardown connection: %s", err)
}
return
}
}
}
func (c *Client) closeAllConns() {
for _, container := range c.conns {
container.close()
}
c.conns = make(map[string]*connContainer)
}
func (c *Client) closeConn(connReference *Conn, id string) error {
c.mu.Lock()
defer c.mu.Unlock()
container, ok := c.conns[id]
if !ok {
return fmt.Errorf("connection already closed")
}
if container.conn != connReference {
return fmt.Errorf("conn reference mismatch")
}
c.log.Infof("free up connection to peer: %s", id)
delete(c.conns, id)
container.close()
return nil
}
func (c *Client) close(gracefullyExit bool) error {
c.readLoopMutex.Lock()
defer c.readLoopMutex.Unlock()
c.mu.Lock()
var err error
if !c.serviceIsRunning {
c.mu.Unlock()
c.log.Warn("relay connection was already marked as not running")
return nil
}
c.serviceIsRunning = false
c.log.Infof("closing all peer connections")
c.closeAllConns()
if gracefullyExit {
c.writeCloseMsg()
}
err = c.relayConn.Close()
c.mu.Unlock()
c.log.Infof("waiting for read loop to close")
c.wgReadLoop.Wait()
c.log.Infof("relay connection closed")
return err
}
func (c *Client) notifyDisconnected() {
c.listenerMutex.Lock()
defer c.listenerMutex.Unlock()
if c.onDisconnectListener == nil {
return
}
go c.onDisconnectListener()
}
func (c *Client) writeCloseMsg() {
msg := messages.MarshalCloseMsg()
_, err := c.relayConn.Write(msg)
if err != nil {
c.log.Errorf("failed to send close message: %s", err)
}
}
func (c *Client) readWithTimeout(buf []byte) (int, error) {
ctx, cancel := context.WithTimeout(c.parentCtx, serverResponseTimeout)
defer cancel()
readDone := make(chan struct{})
var (
n int
err error
)
go func() {
n, err = c.relayConn.Read(buf)
close(readDone)
}()
select {
case <-ctx.Done():
return 0, fmt.Errorf("read operation timed out")
case <-readDone:
return n, err
}
}