netbird/relay/test/benchmark_test.go
Zoltan Papp 0c039274a4
[relay] Feature/relay integration (#2244)
This update adds new relay integration for NetBird clients. The new relay is based on web sockets and listens on a single port.

- Adds new relay implementation with websocket with single port relaying mechanism
- refactor peer connection logic, allowing upgrade and downgrade from/to P2P connection
- peer connections are faster since it connects first to relay and then upgrades to P2P
- maintains compatibility with old clients by not using the new relay
- updates infrastructure scripts with new relay service
2024-09-08 12:06:14 +02:00

387 lines
8.9 KiB
Go

package test
import (
"context"
"crypto/rand"
"fmt"
"net"
"os"
"sync"
"testing"
"time"
"github.com/pion/logging"
"github.com/pion/turn/v3"
"go.opentelemetry.io/otel"
"github.com/netbirdio/netbird/relay/auth/allow"
"github.com/netbirdio/netbird/relay/auth/hmac"
"github.com/netbirdio/netbird/relay/client"
"github.com/netbirdio/netbird/relay/server"
"github.com/netbirdio/netbird/util"
)
var (
av = &allow.Auth{}
hmacTokenStore = &hmac.TokenStore{}
pairs = []int{1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
dataSize = 1024 * 1024 * 10
)
func TestMain(m *testing.M) {
_ = util.InitLog("error", "console")
code := m.Run()
os.Exit(code)
}
func TestRelayDataTransfer(t *testing.T) {
t.SkipNow() // skip this test on CI because it is a benchmark test
testData, err := seedRandomData(dataSize)
if err != nil {
t.Fatalf("failed to seed random data: %s", err)
}
for _, peerPairs := range pairs {
t.Run(fmt.Sprintf("peerPairs-%d", peerPairs), func(t *testing.T) {
transfer(t, testData, peerPairs)
})
}
}
// TestTurnDataTransfer run turn server:
// docker run --rm --name coturn -d --network=host coturn/coturn --user test:test
func TestTurnDataTransfer(t *testing.T) {
t.SkipNow() // skip this test on CI because it is a benchmark test
testData, err := seedRandomData(dataSize)
if err != nil {
t.Fatalf("failed to seed random data: %s", err)
}
for _, peerPairs := range pairs {
t.Run(fmt.Sprintf("peerPairs-%d", peerPairs), func(t *testing.T) {
runTurnTest(t, testData, peerPairs)
})
}
}
func transfer(t *testing.T, testData []byte, peerPairs int) {
t.Helper()
ctx := context.Background()
port := 35000 + peerPairs
serverAddress := fmt.Sprintf("127.0.0.1:%d", port)
serverConnURL := fmt.Sprintf("rel://%s", serverAddress)
srv, err := server.NewServer(otel.Meter(""), serverConnURL, false, av)
if err != nil {
t.Fatalf("failed to create server: %s", err)
}
errChan := make(chan error, 1)
go func() {
listenCfg := server.ListenerConfig{Address: serverAddress}
err := srv.Listen(listenCfg)
if err != nil {
errChan <- err
}
}()
defer func() {
err := srv.Shutdown(ctx)
if err != nil {
t.Errorf("failed to close server: %s", err)
}
}()
// wait for server to start
if err := waitForServerToStart(errChan); err != nil {
t.Fatalf("failed to start server: %s", err)
}
clientsSender := make([]*client.Client, peerPairs)
for i := 0; i < cap(clientsSender); i++ {
c := client.NewClient(ctx, serverConnURL, hmacTokenStore, "sender-"+fmt.Sprint(i))
err := c.Connect()
if err != nil {
t.Fatalf("failed to connect to server: %s", err)
}
clientsSender[i] = c
}
clientsReceiver := make([]*client.Client, peerPairs)
for i := 0; i < cap(clientsReceiver); i++ {
c := client.NewClient(ctx, serverConnURL, hmacTokenStore, "receiver-"+fmt.Sprint(i))
err := c.Connect()
if err != nil {
t.Fatalf("failed to connect to server: %s", err)
}
clientsReceiver[i] = c
}
connsSender := make([]net.Conn, 0, peerPairs)
connsReceiver := make([]net.Conn, 0, peerPairs)
for i := 0; i < len(clientsSender); i++ {
conn, err := clientsSender[i].OpenConn("receiver-" + fmt.Sprint(i))
if err != nil {
t.Fatalf("failed to bind channel: %s", err)
}
connsSender = append(connsSender, conn)
conn, err = clientsReceiver[i].OpenConn("sender-" + fmt.Sprint(i))
if err != nil {
t.Fatalf("failed to bind channel: %s", err)
}
connsReceiver = append(connsReceiver, conn)
}
var transferDuration []time.Duration
wg := sync.WaitGroup{}
var writeErr error
var readErr error
for i := 0; i < len(connsSender); i++ {
wg.Add(2)
start := time.Now()
go func(i int) {
defer wg.Done()
pieceSize := 1024
testDataLen := len(testData)
for j := 0; j < testDataLen; j += pieceSize {
end := j + pieceSize
if end > testDataLen {
end = testDataLen
}
_, writeErr = connsSender[i].Write(testData[j:end])
if writeErr != nil {
return
}
}
}(i)
go func(i int, start time.Time) {
defer wg.Done()
buf := make([]byte, 8192)
rcv := 0
var n int
for receivedSize := 0; receivedSize < len(testData); {
n, readErr = connsReceiver[i].Read(buf)
if readErr != nil {
return
}
receivedSize += n
rcv += n
}
transferDuration = append(transferDuration, time.Since(start))
}(i, start)
}
wg.Wait()
if writeErr != nil {
t.Fatalf("failed to write to channel: %s", err)
}
if readErr != nil {
t.Fatalf("failed to read from channel: %s", err)
}
// calculate the megabytes per second from the average transferDuration against the dataSize
var totalDuration time.Duration
for _, d := range transferDuration {
totalDuration += d
}
avgDuration := totalDuration / time.Duration(len(transferDuration))
mbps := float64(len(testData)) / avgDuration.Seconds() / 1024 / 1024
t.Logf("average transfer duration: %s", avgDuration)
t.Logf("average transfer speed: %.2f MB/s", mbps)
for i := 0; i < len(connsSender); i++ {
err := connsSender[i].Close()
if err != nil {
t.Errorf("failed to close connection: %s", err)
}
err = connsReceiver[i].Close()
if err != nil {
t.Errorf("failed to close connection: %s", err)
}
}
}
func runTurnTest(t *testing.T, testData []byte, maxPairs int) {
t.Helper()
var transferDuration []time.Duration
var wg sync.WaitGroup
for i := 0; i < maxPairs; i++ {
wg.Add(1)
go func() {
defer wg.Done()
d := runTurnDataTransfer(t, testData)
transferDuration = append(transferDuration, d)
}()
}
wg.Wait()
var totalDuration time.Duration
for _, d := range transferDuration {
totalDuration += d
}
avgDuration := totalDuration / time.Duration(len(transferDuration))
mbps := float64(len(testData)) / avgDuration.Seconds() / 1024 / 1024
t.Logf("average transfer duration: %s", avgDuration)
t.Logf("average transfer speed: %.2f MB/s", mbps)
}
func runTurnDataTransfer(t *testing.T, testData []byte) time.Duration {
t.Helper()
testDataLen := len(testData)
relayAddress := "192.168.0.10:3478"
conn, err := net.Dial("tcp", relayAddress)
if err != nil {
t.Fatal(err)
}
defer func(conn net.Conn) {
_ = conn.Close()
}(conn)
turnClient, err := getTurnClient(t, relayAddress, conn)
if err != nil {
t.Fatal(err)
}
defer turnClient.Close()
relayConn, err := turnClient.Allocate()
if err != nil {
t.Fatal(err)
}
defer func(relayConn net.PacketConn) {
_ = relayConn.Close()
}(relayConn)
receiverConn, err := net.Dial("udp", relayConn.LocalAddr().String())
if err != nil {
t.Fatal(err)
}
defer func(receiverConn net.Conn) {
_ = receiverConn.Close()
}(receiverConn)
var (
tb int
start time.Time
timerInit bool
readDone = make(chan struct{})
ack = make([]byte, 1)
)
go func() {
defer func() {
readDone <- struct{}{}
}()
buff := make([]byte, 8192)
for {
n, e := receiverConn.Read(buff)
if e != nil {
return
}
if !timerInit {
start = time.Now()
timerInit = true
}
tb += n
_, _ = receiverConn.Write(ack)
if tb >= testDataLen {
return
}
}
}()
pieceSize := 1024
ackBuff := make([]byte, 1)
pipelineSize := 10
for j := 0; j < testDataLen; j += pieceSize {
end := j + pieceSize
if end > testDataLen {
end = testDataLen
}
_, err := relayConn.WriteTo(testData[j:end], receiverConn.LocalAddr())
if err != nil {
t.Fatalf("failed to write to channel: %s", err)
}
if pipelineSize == 0 {
_, _, _ = relayConn.ReadFrom(ackBuff)
} else {
pipelineSize--
}
}
ctx, cancel := context.WithTimeout(context.Background(), 20*time.Second)
defer cancel()
select {
case <-readDone:
if tb != testDataLen {
t.Fatalf("failed to read all data: %d/%d", tb, testDataLen)
}
case <-ctx.Done():
t.Fatal("timeout")
}
return time.Since(start)
}
func getTurnClient(t *testing.T, address string, conn net.Conn) (*turn.Client, error) {
t.Helper()
// Dial TURN Server
addrStr := fmt.Sprintf("%s:%d", address, 443)
fac := logging.NewDefaultLoggerFactory()
//fac.DefaultLogLevel = logging.LogLevelTrace
// Start a new TURN Client and wrap our net.Conn in a STUNConn
// This allows us to simulate datagram based communication over a net.Conn
cfg := &turn.ClientConfig{
TURNServerAddr: address,
Conn: turn.NewSTUNConn(conn),
Username: "test",
Password: "test",
LoggerFactory: fac,
}
client, err := turn.NewClient(cfg)
if err != nil {
return nil, fmt.Errorf("failed to create TURN client for server %s: %s", addrStr, err)
}
// Start listening on the conn provided.
err = client.Listen()
if err != nil {
client.Close()
return nil, fmt.Errorf("failed to listen on TURN client for server %s: %s", addrStr, err)
}
return client, nil
}
func seedRandomData(size int) ([]byte, error) {
token := make([]byte, size)
_, err := rand.Read(token)
if err != nil {
return nil, err
}
return token, nil
}
func waitForServerToStart(errChan chan error) error {
select {
case err := <-errChan:
if err != nil {
return err
}
case <-time.After(300 * time.Millisecond):
return nil
}
return nil
}