netbird/iface/bind/udp_muxed_conn.go
Misha Bragin 2eeed55c18
Bind implementation (#779)
This PR adds supports for the WireGuard userspace implementation
using Bind interface from wireguard-go. 
The newly introduced ICEBind struct implements Bind with UDPMux-based
structs from pion/ice to handle hole punching using ICE.
The core implementation was taken from StdBind of wireguard-go.

The result is a single WireGuard port that is used for host and server reflexive candidates. 
Relay candidates are still handled separately and will be integrated in the following PRs.

ICEBind checks the incoming packets for being STUN or WireGuard ones
and routes them to UDPMux (to handle hole punching) or to WireGuard  respectively.
2023-04-13 17:00:01 +02:00

234 lines
5.0 KiB
Go

package bind
/*
Most of this code was copied from https://github.com/pion/ice and modified to fulfill NetBird's requirements
*/
import (
"encoding/binary"
"io"
"net"
"sync"
"time"
"github.com/pion/logging"
"github.com/pion/transport/v2/packetio"
)
type udpMuxedConnParams struct {
Mux *UDPMuxDefault
AddrPool *sync.Pool
Key string
LocalAddr net.Addr
Logger logging.LeveledLogger
}
// udpMuxedConn represents a logical packet conn for a single remote as identified by ufrag
type udpMuxedConn struct {
params *udpMuxedConnParams
// remote addresses that we have sent to on this conn
addresses []string
// channel holding incoming packets
buf *packetio.Buffer
closedChan chan struct{}
closeOnce sync.Once
mu sync.Mutex
}
func newUDPMuxedConn(params *udpMuxedConnParams) *udpMuxedConn {
p := &udpMuxedConn{
params: params,
buf: packetio.NewBuffer(),
closedChan: make(chan struct{}),
}
return p
}
func (c *udpMuxedConn) ReadFrom(b []byte) (n int, rAddr net.Addr, err error) {
buf := c.params.AddrPool.Get().(*bufferHolder) //nolint:forcetypeassert
defer c.params.AddrPool.Put(buf)
// read address
total, err := c.buf.Read(buf.buf)
if err != nil {
return 0, nil, err
}
dataLen := int(binary.LittleEndian.Uint16(buf.buf[:2]))
if dataLen > total || dataLen > len(b) {
return 0, nil, io.ErrShortBuffer
}
// read data and then address
offset := 2
copy(b, buf.buf[offset:offset+dataLen])
offset += dataLen
// read address len & decode address
addrLen := int(binary.LittleEndian.Uint16(buf.buf[offset : offset+2]))
offset += 2
if rAddr, err = decodeUDPAddr(buf.buf[offset : offset+addrLen]); err != nil {
return 0, nil, err
}
return dataLen, rAddr, nil
}
func (c *udpMuxedConn) WriteTo(buf []byte, rAddr net.Addr) (n int, err error) {
if c.isClosed() {
return 0, io.ErrClosedPipe
}
// each time we write to a new address, we'll register it with the mux
addr := rAddr.String()
if !c.containsAddress(addr) {
c.addAddress(addr)
}
return c.params.Mux.writeTo(buf, rAddr)
}
func (c *udpMuxedConn) LocalAddr() net.Addr {
return c.params.LocalAddr
}
func (c *udpMuxedConn) SetDeadline(tm time.Time) error {
return nil
}
func (c *udpMuxedConn) SetReadDeadline(tm time.Time) error {
return nil
}
func (c *udpMuxedConn) SetWriteDeadline(tm time.Time) error {
return nil
}
func (c *udpMuxedConn) CloseChannel() <-chan struct{} {
return c.closedChan
}
func (c *udpMuxedConn) Close() error {
var err error
c.closeOnce.Do(func() {
err = c.buf.Close()
close(c.closedChan)
})
return err
}
func (c *udpMuxedConn) isClosed() bool {
select {
case <-c.closedChan:
return true
default:
return false
}
}
func (c *udpMuxedConn) getAddresses() []string {
c.mu.Lock()
defer c.mu.Unlock()
addresses := make([]string, len(c.addresses))
copy(addresses, c.addresses)
return addresses
}
func (c *udpMuxedConn) addAddress(addr string) {
c.mu.Lock()
c.addresses = append(c.addresses, addr)
c.mu.Unlock()
// map it on mux
c.params.Mux.registerConnForAddress(c, addr)
}
func (c *udpMuxedConn) containsAddress(addr string) bool {
c.mu.Lock()
defer c.mu.Unlock()
for _, a := range c.addresses {
if addr == a {
return true
}
}
return false
}
func (c *udpMuxedConn) writePacket(data []byte, addr *net.UDPAddr) error {
// write two packets, address and data
buf := c.params.AddrPool.Get().(*bufferHolder) //nolint:forcetypeassert
defer c.params.AddrPool.Put(buf)
// format of buffer | data len | data bytes | addr len | addr bytes |
if len(buf.buf) < len(data)+maxAddrSize {
return io.ErrShortBuffer
}
// data len
binary.LittleEndian.PutUint16(buf.buf, uint16(len(data)))
offset := 2
// data
copy(buf.buf[offset:], data)
offset += len(data)
// write address first, leaving room for its length
n, err := encodeUDPAddr(addr, buf.buf[offset+2:])
if err != nil {
return err
}
total := offset + n + 2
// address len
binary.LittleEndian.PutUint16(buf.buf[offset:], uint16(n))
if _, err := c.buf.Write(buf.buf[:total]); err != nil {
return err
}
return nil
}
func encodeUDPAddr(addr *net.UDPAddr, buf []byte) (int, error) {
ipData, err := addr.IP.MarshalText()
if err != nil {
return 0, err
}
total := 2 + len(ipData) + 2 + len(addr.Zone)
if total > len(buf) {
return 0, io.ErrShortBuffer
}
binary.LittleEndian.PutUint16(buf, uint16(len(ipData)))
offset := 2
n := copy(buf[offset:], ipData)
offset += n
binary.LittleEndian.PutUint16(buf[offset:], uint16(addr.Port))
offset += 2
copy(buf[offset:], addr.Zone)
return total, nil
}
func decodeUDPAddr(buf []byte) (*net.UDPAddr, error) {
addr := net.UDPAddr{}
offset := 0
ipLen := int(binary.LittleEndian.Uint16(buf[:2]))
offset += 2
// basic bounds checking
if ipLen+offset > len(buf) {
return nil, io.ErrShortBuffer
}
if err := addr.IP.UnmarshalText(buf[offset : offset+ipLen]); err != nil {
return nil, err
}
offset += ipLen
addr.Port = int(binary.LittleEndian.Uint16(buf[offset : offset+2]))
offset += 2
zone := make([]byte, len(buf[offset:]))
copy(zone, buf[offset:])
addr.Zone = string(zone)
return &addr, nil
}