Upgrading to polars 0.44 (#14478)

Upgrading to polars 0.44
This commit is contained in:
Jack Wright 2024-11-29 17:39:07 -08:00 committed by GitHub
parent e1f74a6d57
commit 0172ad8461
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 836 additions and 232 deletions

883
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -31,11 +31,11 @@ mimalloc = { version = "0.1.42" }
num = {version = "0.4"}
serde = { version = "1.0", features = ["derive"] }
sqlparser = { version = "0.49"}
polars-io = { version = "0.43", features = ["avro"]}
polars-arrow = { version = "0.43"}
polars-ops = { version = "0.43", features = ["pivot"]}
polars-plan = { version = "0.43", features = ["regex"]}
polars-utils = { version = "0.43"}
polars-io = { version = "0.44", features = ["avro"]}
polars-arrow = { version = "0.44"}
polars-ops = { version = "0.44", features = ["pivot"]}
polars-plan = { version = "0.44", features = ["regex"]}
polars-utils = { version = "0.44"}
typetag = "0.2"
env_logger = "0.11.3"
log.workspace = true
@ -81,7 +81,7 @@ features = [
"to_dummies",
]
optional = false
version = "0.43"
version = "0.44"
[dev-dependencies]
nu-cmd-lang = { path = "../nu-cmd-lang", version = "0.100.1" }

View File

@ -10,7 +10,7 @@ use nu_protocol::{
Category, Example, LabeledError, PipelineData, ShellError, Signature, Span, SyntaxShape, Type,
Value,
};
use polars::prelude::{lit, QuantileInterpolOptions};
use polars::prelude::{lit, QuantileMethod};
#[derive(Clone)]
pub struct LazyQuantile;
@ -109,7 +109,7 @@ impl PluginCommand for LazyQuantile {
PolarsPluginObject::NuExpression(expr) => {
let expr: NuExpression = expr
.into_polars()
.quantile(lit(quantile), QuantileInterpolOptions::default())
.quantile(lit(quantile), QuantileMethod::default())
.into();
expr.to_pipeline_data(plugin, engine, call.head)
}
@ -136,7 +136,7 @@ fn command(
let lazy = NuLazyFrame::new(
lazy.from_eager,
lazy.to_polars()
.quantile(lit(quantile), QuantileInterpolOptions::default()),
.quantile(lit(quantile), QuantileMethod::default()),
);
lazy.to_pipeline_data(plugin, engine, call.head)

View File

@ -28,9 +28,7 @@ use polars::{
},
};
use polars_io::{
avro::AvroReader, csv::read::CsvReadOptions, prelude::ParallelStrategy, HiveOptions,
};
use polars_io::{avro::AvroReader, csv::read::CsvReadOptions, HiveOptions};
const DEFAULT_INFER_SCHEMA: usize = 100;
@ -179,20 +177,7 @@ fn from_parquet(
) -> Result<Value, ShellError> {
if !call.has_flag("eager")? {
let file: String = call.req(0)?;
let args = ScanArgsParquet {
n_rows: None,
cache: true,
parallel: ParallelStrategy::Auto,
rechunk: false,
row_index: None,
low_memory: false,
cloud_options: None,
use_statistics: false,
hive_options: HiveOptions::default(),
glob: true,
include_file_paths: None,
};
let args = ScanArgsParquet::default();
let df: NuLazyFrame = LazyFrame::scan_parquet(file, args)
.map_err(|e| ShellError::GenericError {
error: "Parquet reader error".into(),

View File

@ -10,8 +10,8 @@ use nu_protocol::{
use polars::{
chunked_array::ChunkedArray,
prelude::{
AnyValue, DataFrame, DataType, Float64Type, IntoSeries, NewChunkedArray,
QuantileInterpolOptions, Series, StringType,
AnyValue, Column as PolarsColumn, DataFrame, DataType, Float64Type, IntoSeries,
NewChunkedArray, QuantileMethod, StringType,
},
};
@ -184,7 +184,6 @@ fn command(
let tail = df
.as_ref()
.get_columns()
.iter()
.filter(|col| !matches!(col.dtype(), &DataType::Object("object", _)))
.map(|col| {
@ -200,7 +199,7 @@ fn command(
.clone()
.into_iter()
.map(|q| {
col.quantile_reduce(q, QuantileInterpolOptions::default())
col.quantile_reduce(q, QuantileMethod::default())
.ok()
.map(|s| s.into_series("quantile".into()))
.and_then(|ca| ca.cast(&DataType::Float64).ok())
@ -221,7 +220,10 @@ fn command(
ChunkedArray::<Float64Type>::from_slice_options(name.into(), &descriptors).into_series()
});
let res = head.chain(tail).collect::<Vec<Series>>();
let res = head
.chain(tail)
.map(PolarsColumn::from)
.collect::<Vec<PolarsColumn>>();
let polars_df = DataFrame::new(res).map_err(|e| ShellError::GenericError {
error: "Dataframe Error".into(),

View File

@ -185,7 +185,7 @@ fn command_lazy(
}
let lazy = lazy.to_polars();
let lazy: NuLazyFrame = lazy.rename(&columns, &new_names).into();
let lazy: NuLazyFrame = lazy.rename(&columns, &new_names, true).into();
lazy.to_pipeline_data(plugin, engine, call.head)
}

View File

@ -160,13 +160,14 @@ fn command_df(
df: NuDataFrame,
) -> Result<PipelineData, ShellError> {
let start: i64 = call.req(0)?;
let start = Series::new("".into(), &[start]);
let start = Series::new("".into(), &[start]).into();
let length: Option<i64> = call.get_flag("length")?;
let length = match length {
Some(v) => Series::new("".into(), &[v as u64]),
None => Series::new_null("".into(), 1),
};
}
.into();
let series = df.as_series(call.head)?;

View File

@ -5,8 +5,8 @@ use nu_protocol::{
};
use num::Zero;
use polars::prelude::{
BooleanType, ChunkCompare, ChunkedArray, DataType, Float64Type, Int64Type, IntoSeries,
NumOpsDispatchChecked, PolarsError, Series, StringNameSpaceImpl,
BooleanType, ChunkCompareEq, ChunkCompareIneq, ChunkedArray, DataType, Float64Type, Int64Type,
IntoSeries, NumOpsDispatchChecked, PolarsError, Series, StringNameSpaceImpl,
};
use std::ops::{Add, BitAnd, BitOr, Div, Mul, Sub};

View File

@ -10,11 +10,11 @@ use polars::chunked_array::ChunkedArray;
use polars::datatypes::{AnyValue, PlSmallStr};
use polars::export::arrow::Either;
use polars::prelude::{
ChunkAnyValue, DataFrame, DataType, DatetimeChunked, Float32Type, Float64Type, Int16Type,
Int32Type, Int64Type, Int8Type, IntoSeries, ListBooleanChunkedBuilder, ListBuilderTrait,
ListPrimitiveChunkedBuilder, ListStringChunkedBuilder, ListType, NamedFrom, NewChunkedArray,
ObjectType, PolarsError, Schema, SchemaExt, Series, StructChunked, TemporalMethods, TimeUnit,
UInt16Type, UInt32Type, UInt64Type, UInt8Type,
ChunkAnyValue, Column as PolarsColumn, DataFrame, DataType, DatetimeChunked, Float32Type,
Float64Type, Int16Type, Int32Type, Int64Type, Int8Type, IntoSeries, ListBooleanChunkedBuilder,
ListBuilderTrait, ListPrimitiveChunkedBuilder, ListStringChunkedBuilder, ListType, NamedFrom,
NewChunkedArray, ObjectType, PolarsError, Schema, SchemaExt, Series, StructChunked,
TemporalMethods, TimeUnit, UInt16Type, UInt32Type, UInt64Type, UInt8Type,
};
use nu_protocol::{Record, ShellError, Span, Value};
@ -146,6 +146,16 @@ impl DerefMut for TypedColumn {
pub type ColumnMap = IndexMap<PlSmallStr, TypedColumn>;
pub fn create_column(
column: &PolarsColumn,
from_row: usize,
to_row: usize,
span: Span,
) -> Result<Column, ShellError> {
let series = column.as_materialized_series();
create_column_from_series(series, from_row, to_row, span)
}
pub fn create_column_from_series(
series: &Series,
from_row: usize,
to_row: usize,
@ -497,7 +507,10 @@ fn typed_column_to_series(name: PlSmallStr, column: TypedColumn) -> Result<Serie
insert_record(&mut column_values, record.clone(), &schema)?;
let df = from_parsed_columns(column_values)?;
for name in df.df.get_column_names() {
let series = df.df.column(name).map_err(|e| ShellError::GenericError {
let series = df
.df
.column(name)
.map_err(|e| ShellError::GenericError {
error: format!(
"Error creating struct, could not get column name {name}: {e}"
),
@ -505,7 +518,8 @@ fn typed_column_to_series(name: PlSmallStr, column: TypedColumn) -> Result<Serie
span: None,
help: None,
inner: vec![],
})?;
})?
.as_materialized_series();
if let Some(v) = structs.get_mut(name) {
let _ = v.append(series)
@ -524,8 +538,11 @@ fn typed_column_to_series(name: PlSmallStr, column: TypedColumn) -> Result<Serie
let structs: Vec<Series> = structs.into_values().collect();
let chunked =
StructChunked::from_series(column.name().to_owned(), structs.as_slice())
let chunked = StructChunked::from_series(
column.name().to_owned(),
structs.len(),
structs.iter(),
)
.map_err(|e| ShellError::GenericError {
error: format!("Error creating struct: {e}"),
msg: "".into(),
@ -558,13 +575,13 @@ fn typed_column_to_series(name: PlSmallStr, column: TypedColumn) -> Result<Serie
// This data can be used to create a Series object that can initialize
// the dataframe based on the type of data that is found
pub fn from_parsed_columns(column_values: ColumnMap) -> Result<NuDataFrame, ShellError> {
let mut df_series: Vec<Series> = Vec::new();
let mut df_columns: Vec<PolarsColumn> = Vec::new();
for (name, column) in column_values {
let series = typed_column_to_series(name, column)?;
df_series.push(series);
df_columns.push(series.into());
}
DataFrame::new(df_series)
DataFrame::new(df_columns)
.map(|df| NuDataFrame::new(false, df))
.map_err(|e| ShellError::GenericError {
error: "Error creating dataframe".into(),
@ -1245,7 +1262,8 @@ fn any_value_to_value(any_value: &AnyValue, span: Span) -> Result<Value, ShellEr
}
AnyValue::Datetime(a, time_unit, tz) => {
let nanos = nanos_from_timeunit(*a, *time_unit);
datetime_from_epoch_nanos(nanos, tz, span).map(|datetime| Value::date(datetime, span))
datetime_from_epoch_nanos(nanos, &tz.cloned(), span)
.map(|datetime| Value::date(datetime, span))
}
AnyValue::Duration(a, time_unit) => {
let nanos = match time_unit {
@ -1264,17 +1282,7 @@ fn any_value_to_value(any_value: &AnyValue, span: Span) -> Result<Value, ShellEr
}
AnyValue::Struct(_idx, _struct_array, _s_fields) => {
// This should convert to a StructOwned object.
let static_value =
any_value
.clone()
.into_static()
.map_err(|e| ShellError::GenericError {
error: "Cannot convert polars struct to static value".into(),
msg: e.to_string(),
span: Some(span),
help: None,
inner: Vec::new(),
})?;
let static_value = any_value.clone().into_static();
any_value_to_value(&static_value, span)
}
AnyValue::StructOwned(struct_tuple) => {
@ -1485,7 +1493,7 @@ mod tests {
let test_millis = 946_684_800_000;
assert_eq!(
any_value_to_value(
&AnyValue::Datetime(test_millis, TimeUnit::Milliseconds, &None),
&AnyValue::Datetime(test_millis, TimeUnit::Milliseconds, None),
span
)?,
Value::date(comparison_date, span)
@ -1575,6 +1583,7 @@ mod tests {
let test_bool_arr = BooleanArray::from([Some(true)]);
let test_struct_arr = StructArray::new(
DataType::Struct(fields.clone()).to_arrow(CompatLevel::newest()),
1,
vec![Box::new(test_int_arr), Box::new(test_bool_arr)],
None,
);

View File

@ -8,7 +8,9 @@ pub use operations::Axis;
use indexmap::map::IndexMap;
use nu_protocol::{did_you_mean, PipelineData, Record, ShellError, Span, Value};
use polars::prelude::{DataFrame, DataType, IntoLazy, PolarsObject, Series};
use polars::prelude::{
Column as PolarsColumn, DataFrame, DataType, IntoLazy, PolarsObject, Series,
};
use polars_plan::prelude::{lit, Expr, Null};
use polars_utils::total_ord::{TotalEq, TotalHash};
use std::{
@ -135,7 +137,7 @@ impl NuDataFrame {
}
pub fn try_from_series(series: Series, span: Span) -> Result<Self, ShellError> {
match DataFrame::new(vec![series]) {
match DataFrame::new(vec![series.into()]) {
Ok(dataframe) => Ok(NuDataFrame::new(false, dataframe)),
Err(e) => Err(ShellError::GenericError {
error: "Error creating dataframe".into(),
@ -191,7 +193,10 @@ impl NuDataFrame {
}
pub fn try_from_series_vec(columns: Vec<Series>, span: Span) -> Result<Self, ShellError> {
let dataframe = DataFrame::new(columns).map_err(|e| ShellError::GenericError {
let columns_converted: Vec<PolarsColumn> = columns.into_iter().map(Into::into).collect();
let dataframe =
DataFrame::new(columns_converted).map_err(|e| ShellError::GenericError {
error: "Error creating dataframe".into(),
msg: format!("Unable to create DataFrame: {e}"),
span: Some(span),
@ -295,14 +300,15 @@ impl NuDataFrame {
.df
.get_columns()
.first()
.expect("We have already checked that the width is 1");
.expect("We have already checked that the width is 1")
.as_materialized_series();
Ok(series.clone())
}
pub fn get_value(&self, row: usize, span: Span) -> Result<Value, ShellError> {
let series = self.as_series(span)?;
let column = conversion::create_column(&series, row, row + 1, span)?;
let column = conversion::create_column_from_series(&series, row, row + 1, span)?;
if column.len() == 0 {
Err(ShellError::AccessEmptyContent { span })

View File

@ -1,5 +1,5 @@
use nu_protocol::{ast::Operator, ShellError, Span, Spanned, Value};
use polars::prelude::{DataFrame, Series};
use polars::prelude::{Column as PolarsColumn, DataFrame};
use crate::values::CustomValueSupport;
use crate::PolarsPlugin;
@ -137,7 +137,7 @@ impl NuDataFrame {
series.rename(name.into());
series
})
.collect::<Vec<Series>>();
.collect::<Vec<PolarsColumn>>();
let df_new = DataFrame::new(new_cols).map_err(|e| ShellError::GenericError {
error: "Error creating dataframe".into(),
@ -195,7 +195,7 @@ impl NuDataFrame {
}),
}
})
.collect::<Result<Vec<Series>, ShellError>>()?;
.collect::<Result<Vec<PolarsColumn>, ShellError>>()?;
let df_new = DataFrame::new(new_cols).map_err(|e| ShellError::GenericError {
error: "Error appending dataframe".into(),

View File

@ -215,12 +215,12 @@ pub fn expr_to_value(expr: &Expr, span: Span) -> Result<Value, ShellError> {
AggExpr::Quantile {
expr,
quantile,
interpol,
method,
} => Ok(Value::record(
record! {
"expr" => expr_to_value(expr.as_ref(), span)?,
"quantile" => expr_to_value(quantile.as_ref(), span)?,
"interpol" => Value::string(format!("{interpol:?}"), span),
"method" => Value::string(format!("{method:?}"), span),
},
span,
)),