mirror of
https://github.com/nushell/nushell.git
synced 2025-04-29 15:44:28 +02:00
fix(polars): remove requirement that pivot columns must be same type in polars pivot
(#15608)
<!-- if this PR closes one or more issues, you can automatically link the PR with them by using one of the [*linking keywords*](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword), e.g. - this PR should close #xxxx - fixes #xxxx you can also mention related issues, PRs or discussions! --> # Description <!-- Thank you for improving Nushell. Please, check our [contributing guide](../CONTRIBUTING.md) and talk to the core team before making major changes. Description of your pull request goes here. **Provide examples and/or screenshots** if your changes affect the user experience. --> Contrary to the underlying implementation in polars rust/python, `polars pivot` throws an error if the user tries to pivot on multiple columns of different types. This PR seeks to remove this type-check. See comparison below. ```nushell # Current implementation: throws error when pivoting on multiple values of different types. > [[name subject date test_1 test_2 grade_1 grade_2]; [Cady maths 2025-04-01 98 100 A A] [Cady physics 2025-04-01 99 100 A A] [Karen maths 2025-04-02 61 60 D D] [Karen physics 2025-04-02 58 60 D D]] | polars into-df | polars pivot --on [subject] --index [name] --values [test_1 grade_1] Error: × Merge error ╭─[entry #291:1:271] 1 │ [[name subject date test_1 test_2 grade_1 grade_2]; [Cady maths 2025-04-01 98 100 A A] [Cady physics 2025-04-01 99 100 A A] [Karen maths 2025-04-02 61 60 D D] [Karen physics 2025-04-02 58 60 D D]] | polars into-df | polars pivot --on [subject] --index [name] --values [test_1 grade_1] · ───────┬────── · ╰── found different column types in list ╰──── help: datatypes i64 and str are incompatible # Proposed implementation > [[name subject date test_1 test_2 grade_1 grade_2]; [Cady maths 2025-04-01 98 100 A A] [Cady physics 2025-04-01 99 100 A A] [Karen maths 2025-04-02 61 60 D D] [Karen physics 2025-04-02 58 60 D D]] | polars into-df | polars pivot --on [subject] --index [name] --values [test_1 grade_1] ╭───┬───────┬──────────────┬────────────────┬───────────────┬─────────────────╮ │ # │ name │ test_1_maths │ test_1_physics │ grade_1_maths │ grade_1_physics │ ├───┼───────┼──────────────┼────────────────┼───────────────┼─────────────────┤ │ 0 │ Cady │ 98 │ 99 │ A │ A │ │ 1 │ Karen │ 61 │ 58 │ D │ D │ ╰───┴───────┴──────────────┴────────────────┴───────────────┴─────────────────╯ ``` Additionally, this PR ports over the `separator` parameter in `pivot`, which allows the user to specify how to delimit multiple `values` column names: ```nushell > [[name subject date test_1 test_2 grade_1 grade_2]; [Cady maths 2025-04-01 98 100 A A] [Cady physics 2025-04-01 99 100 A A] [Karen maths 2025-04-02 61 60 D D] [Karen physics 2025-04-02 58 60 D D]] | polars into-df | polars pivot --on [subject] --index [name] --values [test_1 grade_1] --separator / ╭───┬───────┬──────────────┬────────────────┬───────────────┬─────────────────╮ │ # │ name │ test_1/maths │ test_1/physics │ grade_1/maths │ grade_1/physics │ ├───┼───────┼──────────────┼────────────────┼───────────────┼─────────────────┤ │ 0 │ Cady │ 98 │ 99 │ A │ A │ │ 1 │ Karen │ 61 │ 58 │ D │ D │ ╰───┴───────┴──────────────┴────────────────┴───────────────┴─────────────────╯ ``` # User-Facing Changes <!-- List of all changes that impact the user experience here. This helps us keep track of breaking changes. --> Soft breaking change: where a user may have previously expected an error (pivoting on multiple columns with different types), no error is thrown. # Tests + Formatting <!-- Don't forget to add tests that cover your changes. Make sure you've run and fixed any issues with these commands: - `cargo fmt --all -- --check` to check standard code formatting (`cargo fmt --all` applies these changes) - `cargo clippy --workspace -- -D warnings -D clippy::unwrap_used` to check that you're using the standard code style - `cargo test --workspace` to check that all tests pass (on Windows make sure to [enable developer mode](https://learn.microsoft.com/en-us/windows/apps/get-started/developer-mode-features-and-debugging)) - `cargo run -- -c "use toolkit.nu; toolkit test stdlib"` to run the tests for the standard library > **Note** > from `nushell` you can also use the `toolkit` as follows > ```bash > use toolkit.nu # or use an `env_change` hook to activate it automatically > toolkit check pr > ``` --> Examples were added to `polars pivot`. # After Submitting <!-- If your PR had any user-facing changes, update [the documentation](https://github.com/nushell/nushell.github.io) after the PR is merged, if necessary. This will help us keep the docs up to date. -->
This commit is contained in:
parent
6193679dfc
commit
1db4be12d1
@ -4,6 +4,7 @@ use nu_protocol::{
|
|||||||
Value,
|
Value,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
use chrono::DateTime;
|
||||||
use polars_ops::pivot::{pivot, PivotAgg};
|
use polars_ops::pivot::{pivot, PivotAgg};
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
@ -54,6 +55,12 @@ impl PluginCommand for PivotDF {
|
|||||||
"Aggregation to apply when pivoting. The following are supported: first, sum, min, max, mean, median, count, last",
|
"Aggregation to apply when pivoting. The following are supported: first, sum, min, max, mean, median, count, last",
|
||||||
Some('a'),
|
Some('a'),
|
||||||
)
|
)
|
||||||
|
.named(
|
||||||
|
"separator",
|
||||||
|
SyntaxShape::String,
|
||||||
|
"Delimiter in generated column names in case of multiple `values` columns (default '_')",
|
||||||
|
Some('p'),
|
||||||
|
)
|
||||||
.switch(
|
.switch(
|
||||||
"sort",
|
"sort",
|
||||||
"Sort columns",
|
"Sort columns",
|
||||||
@ -74,8 +81,8 @@ impl PluginCommand for PivotDF {
|
|||||||
fn examples(&self) -> Vec<Example> {
|
fn examples(&self) -> Vec<Example> {
|
||||||
vec![
|
vec![
|
||||||
Example {
|
Example {
|
||||||
example: "[[name subject test_1 test_2]; [Cady maths 98 100] [Cady physics 99 100] [Karen maths 61 60] [Karen physics 58 60]] | polars into-df | polars pivot --on [subject] --index [name] --values [test_1]",
|
|
||||||
description: "Perform a pivot in order to show individuals test score by subject",
|
description: "Perform a pivot in order to show individuals test score by subject",
|
||||||
|
example: "[[name subject date test_1 test_2]; [Cady maths 2025-04-01 98 100] [Cady physics 2025-04-01 99 100] [Karen maths 2025-04-02 61 60] [Karen physics 2025-04-02 58 60]] | polars into-df | polars pivot --on [subject] --index [name date] --values [test_1]",
|
||||||
result: Some(
|
result: Some(
|
||||||
NuDataFrame::try_from_columns(
|
NuDataFrame::try_from_columns(
|
||||||
vec![
|
vec![
|
||||||
@ -83,6 +90,27 @@ impl PluginCommand for PivotDF {
|
|||||||
"name".to_string(),
|
"name".to_string(),
|
||||||
vec![Value::string("Cady", Span::test_data()), Value::string("Karen", Span::test_data())],
|
vec![Value::string("Cady", Span::test_data()), Value::string("Karen", Span::test_data())],
|
||||||
),
|
),
|
||||||
|
Column::new(
|
||||||
|
"date".to_string(),
|
||||||
|
vec![
|
||||||
|
Value::date(
|
||||||
|
DateTime::parse_from_str(
|
||||||
|
"2025-04-01 00:00:00 +0000",
|
||||||
|
"%Y-%m-%d %H:%M:%S %z",
|
||||||
|
)
|
||||||
|
.expect("date calculation should not fail in test"),
|
||||||
|
Span::test_data(),
|
||||||
|
),
|
||||||
|
Value::date(
|
||||||
|
DateTime::parse_from_str(
|
||||||
|
"2025-04-02 00:00:00 +0000",
|
||||||
|
"%Y-%m-%d %H:%M:%S %z",
|
||||||
|
)
|
||||||
|
.expect("date calculation should not fail in test"),
|
||||||
|
Span::test_data(),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
Column::new(
|
Column::new(
|
||||||
"maths".to_string(),
|
"maths".to_string(),
|
||||||
vec![Value::int(98, Span::test_data()), Value::int(61, Span::test_data())],
|
vec![Value::int(98, Span::test_data()), Value::int(61, Span::test_data())],
|
||||||
@ -97,6 +125,39 @@ impl PluginCommand for PivotDF {
|
|||||||
.expect("simple df for test should not fail")
|
.expect("simple df for test should not fail")
|
||||||
.into_value(Span::unknown())
|
.into_value(Span::unknown())
|
||||||
)
|
)
|
||||||
|
},
|
||||||
|
Example {
|
||||||
|
description: "Perform a pivot with multiple `values` columns with a separator",
|
||||||
|
example: "[[name subject date test_1 test_2 grade_1 grade_2]; [Cady maths 2025-04-01 98 100 A A] [Cady physics 2025-04-01 99 100 A A] [Karen maths 2025-04-02 61 60 D D] [Karen physics 2025-04-02 58 60 D D]] | polars into-df | polars pivot --on [subject] --index [name] --values [test_1 grade_1] --separator /",
|
||||||
|
result: Some(
|
||||||
|
NuDataFrame::try_from_columns(
|
||||||
|
vec![
|
||||||
|
Column::new(
|
||||||
|
"name".to_string(),
|
||||||
|
vec![Value::string("Cady", Span::test_data()), Value::string("Karen", Span::test_data())],
|
||||||
|
),
|
||||||
|
Column::new(
|
||||||
|
"test_1/maths".to_string(),
|
||||||
|
vec![Value::int(98, Span::test_data()), Value::int(61, Span::test_data())],
|
||||||
|
),
|
||||||
|
Column::new(
|
||||||
|
"test_1/physics".to_string(),
|
||||||
|
vec![Value::int(99, Span::test_data()), Value::int(58, Span::test_data())],
|
||||||
|
),
|
||||||
|
Column::new(
|
||||||
|
"grade_1/maths".to_string(),
|
||||||
|
vec![Value::string("A", Span::test_data()), Value::string("D", Span::test_data())],
|
||||||
|
),
|
||||||
|
Column::new(
|
||||||
|
"grade_1/physics".to_string(),
|
||||||
|
vec![Value::string("A", Span::test_data()), Value::string("D", Span::test_data())],
|
||||||
|
),
|
||||||
|
],
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
.expect("simple df for test should not fail")
|
||||||
|
.into_value(Span::unknown())
|
||||||
|
)
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
@ -135,19 +196,17 @@ fn command_eager(
|
|||||||
let index_col: Vec<Value> = call.get_flag("index")?.expect("required value");
|
let index_col: Vec<Value> = call.get_flag("index")?.expect("required value");
|
||||||
let val_col: Vec<Value> = call.get_flag("values")?.expect("required value");
|
let val_col: Vec<Value> = call.get_flag("values")?.expect("required value");
|
||||||
|
|
||||||
let (on_col_string, id_col_span) = convert_columns_string(on_col, call.head)?;
|
let (on_col_string, ..) = convert_columns_string(on_col, call.head)?;
|
||||||
let (index_col_string, index_col_span) = convert_columns_string(index_col, call.head)?;
|
let (index_col_string, ..) = convert_columns_string(index_col, call.head)?;
|
||||||
let (val_col_string, val_col_span) = convert_columns_string(val_col, call.head)?;
|
let (val_col_string, ..) = convert_columns_string(val_col, call.head)?;
|
||||||
|
|
||||||
check_column_datatypes(df.as_ref(), &on_col_string, id_col_span)?;
|
|
||||||
check_column_datatypes(df.as_ref(), &index_col_string, index_col_span)?;
|
|
||||||
check_column_datatypes(df.as_ref(), &val_col_string, val_col_span)?;
|
|
||||||
|
|
||||||
let aggregate: Option<PivotAgg> = call
|
let aggregate: Option<PivotAgg> = call
|
||||||
.get_flag::<String>("aggregate")?
|
.get_flag::<String>("aggregate")?
|
||||||
.map(pivot_agg_for_str)
|
.map(pivot_agg_for_str)
|
||||||
.transpose()?;
|
.transpose()?;
|
||||||
|
|
||||||
|
let separator: Option<String> = call.get_flag::<String>("separator")?;
|
||||||
|
|
||||||
let sort = call.has_flag("sort")?;
|
let sort = call.has_flag("sort")?;
|
||||||
|
|
||||||
let polars_df = df.to_polars();
|
let polars_df = df.to_polars();
|
||||||
@ -159,7 +218,7 @@ fn command_eager(
|
|||||||
Some(&val_col_string),
|
Some(&val_col_string),
|
||||||
sort,
|
sort,
|
||||||
aggregate,
|
aggregate,
|
||||||
None,
|
separator.as_deref(),
|
||||||
)
|
)
|
||||||
.map_err(|e| ShellError::GenericError {
|
.map_err(|e| ShellError::GenericError {
|
||||||
error: format!("Pivot error: {e}"),
|
error: format!("Pivot error: {e}"),
|
||||||
@ -173,6 +232,7 @@ fn command_eager(
|
|||||||
res.to_pipeline_data(plugin, engine, call.head)
|
res.to_pipeline_data(plugin, engine, call.head)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[allow(dead_code)]
|
||||||
fn check_column_datatypes<T: AsRef<str>>(
|
fn check_column_datatypes<T: AsRef<str>>(
|
||||||
df: &polars::prelude::DataFrame,
|
df: &polars::prelude::DataFrame,
|
||||||
cols: &[T],
|
cols: &[T],
|
||||||
|
Loading…
Reference in New Issue
Block a user