Refactor flattening to reduce intermediate allocations (#12756)

# Description
Our current flattening code creates a bunch of intermediate `Vec`s for
each function call. These intermediate `Vec`s are then usually appended
to the current `output` `Vec`. By instead passing a mutable reference of
the `output` `Vec` to each flattening function, this `Vec` can be
reused/appended to directly thereby eliminating the need for
intermediate `Vec`s in most cases.
This commit is contained in:
Ian Manske 2024-05-05 08:43:20 +00:00 committed by GitHub
parent 9181fca859
commit 2f8e397365
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -98,44 +98,98 @@ impl Display for FlatShape {
} }
} }
pub fn flatten_block(working_set: &StateWorkingSet, block: &Block) -> Vec<(Span, FlatShape)> { /*
let mut output = vec![]; The `_into` functions below (e.g., `flatten_block_into`) take an existing `output` `Vec`
and append more data to it. This is to reduce the number of intermediate `Vec`s.
The non-`into` functions (e.g., `flatten_block`) are part of the crate's public API
and return a new `Vec` instead of modifying an existing one.
*/
fn flatten_block_into(
working_set: &StateWorkingSet,
block: &Block,
output: &mut Vec<(Span, FlatShape)>,
) {
for pipeline in &block.pipelines { for pipeline in &block.pipelines {
output.extend(flatten_pipeline(working_set, pipeline)); flatten_pipeline_into(working_set, pipeline, output);
} }
output
} }
pub fn flatten_expression( fn flatten_pipeline_into(
working_set: &StateWorkingSet,
pipeline: &Pipeline,
output: &mut Vec<(Span, FlatShape)>,
) {
for expr in &pipeline.elements {
flatten_pipeline_element_into(working_set, expr, output)
}
}
fn flatten_pipeline_element_into(
working_set: &StateWorkingSet,
pipeline_element: &PipelineElement,
output: &mut Vec<(Span, FlatShape)>,
) {
if let Some(span) = pipeline_element.pipe {
output.push((span, FlatShape::Pipe));
}
flatten_expression_into(working_set, &pipeline_element.expr, output);
if let Some(redirection) = pipeline_element.redirection.as_ref() {
match redirection {
PipelineRedirection::Single { target, .. } => {
output.push((target.span(), FlatShape::Redirection));
if let Some(expr) = target.expr() {
flatten_expression_into(working_set, expr, output);
}
}
PipelineRedirection::Separate { out, err } => {
let (out, err) = if out.span() <= err.span() {
(out, err)
} else {
(err, out)
};
output.push((out.span(), FlatShape::Redirection));
if let Some(expr) = out.expr() {
flatten_expression_into(working_set, expr, output);
}
output.push((err.span(), FlatShape::Redirection));
if let Some(expr) = err.expr() {
flatten_expression_into(working_set, expr, output);
}
}
}
}
}
fn flatten_expression_into(
working_set: &StateWorkingSet, working_set: &StateWorkingSet,
expr: &Expression, expr: &Expression,
) -> Vec<(Span, FlatShape)> { output: &mut Vec<(Span, FlatShape)>,
) {
if let Some(custom_completion) = &expr.custom_completion { if let Some(custom_completion) = &expr.custom_completion {
return vec![(expr.span, FlatShape::Custom(*custom_completion))]; output.push((expr.span, FlatShape::Custom(*custom_completion)));
return;
} }
match &expr.expr { match &expr.expr {
Expr::BinaryOp(lhs, op, rhs) => { Expr::BinaryOp(lhs, op, rhs) => {
let mut output = vec![]; flatten_expression_into(working_set, lhs, output);
output.extend(flatten_expression(working_set, lhs)); flatten_expression_into(working_set, op, output);
output.extend(flatten_expression(working_set, op)); flatten_expression_into(working_set, rhs, output);
output.extend(flatten_expression(working_set, rhs));
output
} }
Expr::UnaryNot(inner_expr) => { Expr::UnaryNot(expr) => {
let mut output = vec![( output.push((
Span::new(expr.span.start, expr.span.start + 3), Span::new(expr.span.start, expr.span.start + 3),
FlatShape::Operator, FlatShape::Operator,
)]; ));
output.extend(flatten_expression(working_set, inner_expr)); flatten_expression_into(working_set, expr, output);
output
} }
Expr::Closure(block_id) => { Expr::Closure(block_id) => {
let outer_span = expr.span; let outer_span = expr.span;
let mut output = vec![];
let block = working_set.get_block(*block_id); let block = working_set.get_block(*block_id);
let flattened = flatten_block(working_set, block); let flattened = flatten_block(working_set, block);
@ -160,16 +214,12 @@ pub fn flatten_expression(
output.extend(flattened); output.extend(flattened);
if let Some(last) = last { if let Some(last) = last {
output.push(last) output.push(last);
} }
output
} }
Expr::Block(block_id) | Expr::RowCondition(block_id) | Expr::Subexpression(block_id) => { Expr::Block(block_id) | Expr::RowCondition(block_id) | Expr::Subexpression(block_id) => {
let outer_span = expr.span; let outer_span = expr.span;
let mut output = vec![];
let flattened = flatten_block(working_set, working_set.get_block(*block_id)); let flattened = flatten_block(working_set, working_set.get_block(*block_id));
if let Some(first) = flattened.first() { if let Some(first) = flattened.first() {
@ -190,150 +240,99 @@ pub fn flatten_expression(
output.extend(flattened); output.extend(flattened);
if let Some(last) = last { if let Some(last) = last {
output.push(last) output.push(last);
} }
output
} }
Expr::Call(call) => { Expr::Call(call) => {
let mut output = vec![];
if call.head.end != 0 { if call.head.end != 0 {
// Make sure we don't push synthetic calls // Make sure we don't push synthetic calls
output.push((call.head, FlatShape::InternalCall(call.decl_id))); output.push((call.head, FlatShape::InternalCall(call.decl_id)));
} }
let mut args = vec![]; let arg_start = output.len();
for arg in &call.arguments { for arg in &call.arguments {
match arg { match arg {
Argument::Positional(positional) | Argument::Unknown(positional) => { Argument::Positional(positional) | Argument::Unknown(positional) => {
let flattened = flatten_expression(working_set, positional); flatten_expression_into(working_set, positional, output)
args.extend(flattened);
} }
Argument::Named(named) => { Argument::Named(named) => {
if named.0.span.end != 0 { if named.0.span.end != 0 {
// Ignore synthetic flags // Ignore synthetic flags
args.push((named.0.span, FlatShape::Flag)); output.push((named.0.span, FlatShape::Flag));
} }
if let Some(expr) = &named.2 { if let Some(expr) = &named.2 {
args.extend(flatten_expression(working_set, expr)); flatten_expression_into(working_set, expr, output);
} }
} }
Argument::Spread(expr) => { Argument::Spread(expr) => {
args.push(( output.push((
Span::new(expr.span.start - 3, expr.span.start), Span::new(expr.span.start - 3, expr.span.start),
FlatShape::Operator, FlatShape::Operator,
)); ));
args.extend(flatten_expression(working_set, expr)); flatten_expression_into(working_set, expr, output);
} }
} }
} }
// sort these since flags and positional args can be intermixed // sort these since flags and positional args can be intermixed
args.sort(); output[arg_start..].sort();
output.extend(args);
output
} }
Expr::ExternalCall(head, args) => { Expr::ExternalCall(head, args) => {
let mut output = vec![]; if let Expr::String(..) = &head.expr {
output.push((head.span, FlatShape::External));
match **head { } else {
Expression { flatten_expression_into(working_set, head, output);
expr: Expr::String(..),
span,
..
} => {
output.push((span, FlatShape::External));
}
_ => {
output.extend(flatten_expression(working_set, head));
}
} }
for arg in args.as_ref() { for arg in args.as_ref() {
//output.push((*arg, FlatShape::ExternalArg));
match arg { match arg {
ExternalArgument::Regular(expr) => match expr { ExternalArgument::Regular(expr) => {
Expression { if let Expr::String(..) = &expr.expr {
expr: Expr::String(..), output.push((expr.span, FlatShape::ExternalArg));
span, } else {
.. flatten_expression_into(working_set, expr, output);
} => {
output.push((*span, FlatShape::ExternalArg));
} }
_ => {
output.extend(flatten_expression(working_set, expr));
} }
},
ExternalArgument::Spread(expr) => { ExternalArgument::Spread(expr) => {
output.push(( output.push((
Span::new(expr.span.start - 3, expr.span.start), Span::new(expr.span.start - 3, expr.span.start),
FlatShape::Operator, FlatShape::Operator,
)); ));
output.extend(flatten_expression(working_set, expr)); flatten_expression_into(working_set, expr, output);
} }
} }
} }
output
}
Expr::Garbage => {
vec![(expr.span, FlatShape::Garbage)]
}
Expr::Nothing => {
vec![(expr.span, FlatShape::Nothing)]
}
Expr::DateTime(_) => {
vec![(expr.span, FlatShape::DateTime)]
}
Expr::Binary(_) => {
vec![(expr.span, FlatShape::Binary)]
}
Expr::Int(_) => {
vec![(expr.span, FlatShape::Int)]
}
Expr::Float(_) => {
vec![(expr.span, FlatShape::Float)]
} }
Expr::Garbage => output.push((expr.span, FlatShape::Garbage)),
Expr::Nothing => output.push((expr.span, FlatShape::Nothing)),
Expr::DateTime(_) => output.push((expr.span, FlatShape::DateTime)),
Expr::Binary(_) => output.push((expr.span, FlatShape::Binary)),
Expr::Int(_) => output.push((expr.span, FlatShape::Int)),
Expr::Float(_) => output.push((expr.span, FlatShape::Float)),
Expr::MatchBlock(matches) => { Expr::MatchBlock(matches) => {
let mut output = vec![]; for (pattern, expr) in matches {
flatten_pattern_into(pattern, output);
for match_ in matches { flatten_expression_into(working_set, expr, output);
output.extend(flatten_pattern(&match_.0));
output.extend(flatten_expression(working_set, &match_.1));
} }
output
} }
Expr::ValueWithUnit(value) => { Expr::ValueWithUnit(value) => {
let mut output = flatten_expression(working_set, &value.expr); flatten_expression_into(working_set, &value.expr, output);
output.push((value.unit.span, FlatShape::String)); output.push((value.unit.span, FlatShape::String));
output
} }
Expr::CellPath(cell_path) => { Expr::CellPath(cell_path) => {
let mut output = vec![]; output.extend(cell_path.members.iter().map(|member| match *member {
for path_element in &cell_path.members { PathMember::String { span, .. } => (span, FlatShape::String),
match path_element { PathMember::Int { span, .. } => (span, FlatShape::Int),
PathMember::String { span, .. } => output.push((*span, FlatShape::String)), }));
PathMember::Int { span, .. } => output.push((*span, FlatShape::Int)),
}
}
output
} }
Expr::FullCellPath(cell_path) => { Expr::FullCellPath(cell_path) => {
let mut output = vec![]; flatten_expression_into(working_set, &cell_path.head, output);
output.extend(flatten_expression(working_set, &cell_path.head)); output.extend(cell_path.tail.iter().map(|member| match *member {
for path_element in &cell_path.tail { PathMember::String { span, .. } => (span, FlatShape::String),
match path_element { PathMember::Int { span, .. } => (span, FlatShape::Int),
PathMember::String { span, .. } => output.push((*span, FlatShape::String)), }));
PathMember::Int { span, .. } => output.push((*span, FlatShape::Int)),
}
}
output
} }
Expr::ImportPattern(import_pattern) => { Expr::ImportPattern(import_pattern) => {
let mut output = vec![(import_pattern.head.span, FlatShape::String)]; output.push((import_pattern.head.span, FlatShape::String));
for member in &import_pattern.members { for member in &import_pattern.members {
match member { match member {
@ -342,50 +341,33 @@ pub fn flatten_expression(
output.push((*span, FlatShape::String)) output.push((*span, FlatShape::String))
} }
ImportPatternMember::List { names } => { ImportPatternMember::List { names } => {
for (_, span) in names { output.extend(names.iter().map(|&(_, span)| (span, FlatShape::String)))
output.push((*span, FlatShape::String));
} }
} }
} }
} }
Expr::Overlay(_) => output.push((expr.span, FlatShape::String)),
output
}
Expr::Overlay(_) => {
vec![(expr.span, FlatShape::String)]
}
Expr::Range(range) => { Expr::Range(range) => {
let mut output = vec![];
if let Some(f) = &range.from { if let Some(f) = &range.from {
output.extend(flatten_expression(working_set, f)); flatten_expression_into(working_set, f, output);
} }
if let Some(s) = &range.next { if let Some(s) = &range.next {
output.extend(vec![(range.operator.next_op_span, FlatShape::Operator)]); output.push((range.operator.next_op_span, FlatShape::Operator));
output.extend(flatten_expression(working_set, s)); flatten_expression_into(working_set, s, output);
} }
output.extend(vec![(range.operator.span, FlatShape::Operator)]); output.push((range.operator.span, FlatShape::Operator));
if let Some(t) = &range.to { if let Some(t) = &range.to {
output.extend(flatten_expression(working_set, t)); flatten_expression_into(working_set, t, output);
} }
output
}
Expr::Bool(_) => {
vec![(expr.span, FlatShape::Bool)]
}
Expr::Filepath(_, _) => {
vec![(expr.span, FlatShape::Filepath)]
}
Expr::Directory(_, _) => {
vec![(expr.span, FlatShape::Directory)]
}
Expr::GlobPattern(_, _) => {
vec![(expr.span, FlatShape::GlobPattern)]
} }
Expr::Bool(_) => output.push((expr.span, FlatShape::Bool)),
Expr::Filepath(_, _) => output.push((expr.span, FlatShape::Filepath)),
Expr::Directory(_, _) => output.push((expr.span, FlatShape::Directory)),
Expr::GlobPattern(_, _) => output.push((expr.span, FlatShape::GlobPattern)),
Expr::List(list) => { Expr::List(list) => {
let outer_span = expr.span; let outer_span = expr.span;
let mut last_end = outer_span.start; let mut last_end = outer_span.start;
let mut output = vec![];
for item in list { for item in list {
match item { match item {
ListItem::Item(expr) => { ListItem::Item(expr) => {
@ -404,11 +386,11 @@ pub fn flatten_expression(
output.extend(flattened); output.extend(flattened);
} }
ListItem::Spread(_, expr) => { ListItem::Spread(_, expr) => {
let mut output = vec![( output.push((
Span::new(expr.span.start, expr.span.start + 3), Span::new(expr.span.start, expr.span.start + 3),
FlatShape::Operator, FlatShape::Operator,
)]; ));
output.extend(flatten_expression(working_set, expr)); flatten_expression_into(working_set, expr, output);
} }
} }
} }
@ -416,37 +398,32 @@ pub fn flatten_expression(
if last_end < outer_span.end { if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::List)); output.push((Span::new(last_end, outer_span.end), FlatShape::List));
} }
output
} }
Expr::StringInterpolation(exprs) => { Expr::StringInterpolation(exprs) => {
let mut output = vec![]; let mut flattened = vec![];
for expr in exprs { for expr in exprs {
output.extend(flatten_expression(working_set, expr)); flatten_expression_into(working_set, expr, &mut flattened);
} }
if let Some(first) = output.first() { if let Some(first) = flattened.first() {
if first.0.start != expr.span.start { if first.0.start != expr.span.start {
// If we aren't a bare word interpolation, also highlight the outer quotes // If we aren't a bare word interpolation, also highlight the outer quotes
output.insert( output.push((
0,
(
Span::new(expr.span.start, expr.span.start + 2), Span::new(expr.span.start, expr.span.start + 2),
FlatShape::StringInterpolation, FlatShape::StringInterpolation,
), ));
); flattened.push((
output.push((
Span::new(expr.span.end - 1, expr.span.end), Span::new(expr.span.end - 1, expr.span.end),
FlatShape::StringInterpolation, FlatShape::StringInterpolation,
)); ));
} }
} }
output output.extend(flattened);
} }
Expr::Record(list) => { Expr::Record(list) => {
let outer_span = expr.span; let outer_span = expr.span;
let mut last_end = outer_span.start; let mut last_end = outer_span.start;
let mut output = vec![];
for l in list { for l in list {
match l { match l {
RecordItem::Pair(key, val) => { RecordItem::Pair(key, val) => {
@ -483,50 +460,38 @@ pub fn flatten_expression(
output.push((*op_span, FlatShape::Operator)); output.push((*op_span, FlatShape::Operator));
last_end = op_span.end; last_end = op_span.end;
let flattened_inner = flatten_expression(working_set, record); let flattened = flatten_expression(working_set, record);
if let Some(first) = flattened_inner.first() { if let Some(first) = flattened.first() {
if first.0.start > last_end { if first.0.start > last_end {
output output
.push((Span::new(last_end, first.0.start), FlatShape::Record)); .push((Span::new(last_end, first.0.start), FlatShape::Record));
} }
} }
if let Some(last) = flattened_inner.last() { if let Some(last) = flattened.last() {
last_end = last.0.end; last_end = last.0.end;
} }
output.extend(flattened_inner); output.extend(flattened);
} }
} }
} }
if last_end < outer_span.end { if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::Record)); output.push((Span::new(last_end, outer_span.end), FlatShape::Record));
} }
output
} }
Expr::Keyword(kw) => { Expr::Keyword(kw) => {
let mut output = vec![(kw.span, FlatShape::Keyword)]; output.push((kw.span, FlatShape::Keyword));
output.extend(flatten_expression(working_set, &kw.expr)); flatten_expression_into(working_set, &kw.expr, output);
output
}
Expr::Operator(_) => {
vec![(expr.span, FlatShape::Operator)]
}
Expr::Signature(_) => {
vec![(expr.span, FlatShape::Signature)]
}
Expr::String(_) => {
vec![(expr.span, FlatShape::String)]
}
Expr::RawString(_) => {
vec![(expr.span, FlatShape::RawString)]
} }
Expr::Operator(_) => output.push((expr.span, FlatShape::Operator)),
Expr::Signature(_) => output.push((expr.span, FlatShape::Signature)),
Expr::String(_) => output.push((expr.span, FlatShape::String)),
Expr::RawString(_) => output.push((expr.span, FlatShape::RawString)),
Expr::Table(table) => { Expr::Table(table) => {
let outer_span = expr.span; let outer_span = expr.span;
let mut last_end = outer_span.start; let mut last_end = outer_span.start;
let mut output = vec![]; for col in table.columns.as_ref() {
for e in table.columns.as_ref() { let flattened = flatten_expression(working_set, col);
let flattened = flatten_expression(working_set, e);
if let Some(first) = flattened.first() { if let Some(first) = flattened.first() {
if first.0.start > last_end { if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::Table)); output.push((Span::new(last_end, first.0.start), FlatShape::Table));
@ -559,83 +524,17 @@ pub fn flatten_expression(
if last_end < outer_span.end { if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::Table)); output.push((Span::new(last_end, outer_span.end), FlatShape::Table));
} }
output
}
Expr::Var(var_id) => {
vec![(expr.span, FlatShape::Variable(*var_id))]
}
Expr::VarDecl(var_id) => {
vec![(expr.span, FlatShape::VarDecl(*var_id))]
}
}
}
pub fn flatten_pipeline_element(
working_set: &StateWorkingSet,
pipeline_element: &PipelineElement,
) -> Vec<(Span, FlatShape)> {
let mut output = if let Some(span) = pipeline_element.pipe {
let mut output = vec![(span, FlatShape::Pipe)];
output.extend(flatten_expression(working_set, &pipeline_element.expr));
output
} else {
flatten_expression(working_set, &pipeline_element.expr)
};
if let Some(redirection) = pipeline_element.redirection.as_ref() {
match redirection {
PipelineRedirection::Single { target, .. } => {
output.push((target.span(), FlatShape::Redirection));
if let Some(expr) = target.expr() {
output.extend(flatten_expression(working_set, expr));
}
}
PipelineRedirection::Separate { out, err } => {
let (out, err) = if out.span() <= err.span() {
(out, err)
} else {
(err, out)
};
output.push((out.span(), FlatShape::Redirection));
if let Some(expr) = out.expr() {
output.extend(flatten_expression(working_set, expr));
}
output.push((err.span(), FlatShape::Redirection));
if let Some(expr) = err.expr() {
output.extend(flatten_expression(working_set, expr));
}
} }
Expr::Var(var_id) => output.push((expr.span, FlatShape::Variable(*var_id))),
Expr::VarDecl(var_id) => output.push((expr.span, FlatShape::VarDecl(*var_id))),
} }
} }
output fn flatten_pattern_into(match_pattern: &MatchPattern, output: &mut Vec<(Span, FlatShape)>) {
}
pub fn flatten_pipeline(
working_set: &StateWorkingSet,
pipeline: &Pipeline,
) -> Vec<(Span, FlatShape)> {
let mut output = vec![];
for expr in &pipeline.elements {
output.extend(flatten_pipeline_element(working_set, expr))
}
output
}
pub fn flatten_pattern(match_pattern: &MatchPattern) -> Vec<(Span, FlatShape)> {
let mut output = vec![];
match &match_pattern.pattern { match &match_pattern.pattern {
Pattern::Garbage => { Pattern::Garbage => output.push((match_pattern.span, FlatShape::Garbage)),
output.push((match_pattern.span, FlatShape::Garbage)); Pattern::IgnoreValue => output.push((match_pattern.span, FlatShape::Nothing)),
} Pattern::IgnoreRest => output.push((match_pattern.span, FlatShape::Nothing)),
Pattern::IgnoreValue => {
output.push((match_pattern.span, FlatShape::Nothing));
}
Pattern::IgnoreRest => {
output.push((match_pattern.span, FlatShape::Nothing));
}
Pattern::List(items) => { Pattern::List(items) => {
if let Some(first) = items.first() { if let Some(first) = items.first() {
if let Some(last) = items.last() { if let Some(last) = items.last() {
@ -644,7 +543,7 @@ pub fn flatten_pattern(match_pattern: &MatchPattern) -> Vec<(Span, FlatShape)> {
FlatShape::MatchPattern, FlatShape::MatchPattern,
)); ));
for item in items { for item in items {
output.extend(flatten_pattern(item)); flatten_pattern_into(item, output);
} }
output.push(( output.push((
Span::new(last.span.end, match_pattern.span.end), Span::new(last.span.end, match_pattern.span.end),
@ -662,8 +561,8 @@ pub fn flatten_pattern(match_pattern: &MatchPattern) -> Vec<(Span, FlatShape)> {
Span::new(match_pattern.span.start, first.1.span.start), Span::new(match_pattern.span.start, first.1.span.start),
FlatShape::MatchPattern, FlatShape::MatchPattern,
)); ));
for item in items { for (_, pattern) in items {
output.extend(flatten_pattern(&item.1)); flatten_pattern_into(pattern, output);
} }
output.push(( output.push((
Span::new(last.1.span.end, match_pattern.span.end), Span::new(last.1.span.end, match_pattern.span.end),
@ -674,20 +573,46 @@ pub fn flatten_pattern(match_pattern: &MatchPattern) -> Vec<(Span, FlatShape)> {
output.push((match_pattern.span, FlatShape::MatchPattern)); output.push((match_pattern.span, FlatShape::MatchPattern));
} }
} }
Pattern::Value(_) => { Pattern::Value(_) => output.push((match_pattern.span, FlatShape::MatchPattern)),
output.push((match_pattern.span, FlatShape::MatchPattern)); Pattern::Variable(var_id) => output.push((match_pattern.span, FlatShape::VarDecl(*var_id))),
} Pattern::Rest(var_id) => output.push((match_pattern.span, FlatShape::VarDecl(*var_id))),
Pattern::Variable(var_id) => {
output.push((match_pattern.span, FlatShape::VarDecl(*var_id)));
}
Pattern::Rest(var_id) => {
output.push((match_pattern.span, FlatShape::VarDecl(*var_id)));
}
Pattern::Or(patterns) => { Pattern::Or(patterns) => {
for pattern in patterns { for pattern in patterns {
output.extend(flatten_pattern(pattern)); flatten_pattern_into(pattern, output);
} }
} }
} }
}
pub fn flatten_block(working_set: &StateWorkingSet, block: &Block) -> Vec<(Span, FlatShape)> {
let mut output = Vec::new();
flatten_block_into(working_set, block, &mut output);
output
}
pub fn flatten_pipeline(
working_set: &StateWorkingSet,
pipeline: &Pipeline,
) -> Vec<(Span, FlatShape)> {
let mut output = Vec::new();
flatten_pipeline_into(working_set, pipeline, &mut output);
output
}
pub fn flatten_pipeline_element(
working_set: &StateWorkingSet,
pipeline_element: &PipelineElement,
) -> Vec<(Span, FlatShape)> {
let mut output = Vec::new();
flatten_pipeline_element_into(working_set, pipeline_element, &mut output);
output
}
pub fn flatten_expression(
working_set: &StateWorkingSet,
expr: &Expression,
) -> Vec<(Span, FlatShape)> {
let mut output = Vec::new();
flatten_expression_into(working_set, expr, &mut output);
output output
} }