Fix bits ror/bits rol implementation (#13673)

# Description
`bits rol` and `bits ror` were both undefined for the full byte rotates
and panicked when exceeding the byte rotation range.
`bits ror` further more produced nonsensical results by pulling bits
from the following byte instead of the preceding byte.

Those bugs are now fixed

# User-Facing Changes
Sound Nushell `IncorrectValue` error when exceeding the available bits

# Tests + Formatting
Added the necessary tests
This commit is contained in:
Stefan Holderbach 2024-08-22 21:22:10 +02:00 committed by GitHub
parent ffddee5678
commit 43dcf19ac3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 236 additions and 23 deletions

View File

@ -1,11 +1,10 @@
use super::{get_input_num_type, get_number_bytes, InputNumType, NumberBytes}; use super::{get_input_num_type, get_number_bytes, InputNumType, NumberBytes};
use itertools::Itertools;
use nu_cmd_base::input_handler::{operate, CmdArgument}; use nu_cmd_base::input_handler::{operate, CmdArgument};
use nu_engine::command_prelude::*; use nu_engine::command_prelude::*;
struct Arguments { struct Arguments {
signed: bool, signed: bool,
bits: usize, bits: Spanned<usize>,
number_size: NumberBytes, number_size: NumberBytes,
} }
@ -69,7 +68,7 @@ impl Command for BitsRol {
input: PipelineData, input: PipelineData,
) -> Result<PipelineData, ShellError> { ) -> Result<PipelineData, ShellError> {
let head = call.head; let head = call.head;
let bits: usize = call.req(engine_state, stack, 0)?; let bits = call.req(engine_state, stack, 0)?;
let signed = call.has_flag(engine_state, stack, "signed")?; let signed = call.has_flag(engine_state, stack, "signed")?;
let number_bytes: Option<Spanned<usize>> = let number_bytes: Option<Spanned<usize>> =
call.get_flag(engine_state, stack, "number-bytes")?; call.get_flag(engine_state, stack, "number-bytes")?;
@ -119,6 +118,8 @@ fn action(input: &Value, args: &Arguments, span: Span) -> Value {
number_size, number_size,
bits, bits,
} = *args; } = *args;
let bits_span = bits.span;
let bits = bits.item;
match input { match input {
Value::Int { val, .. } => { Value::Int { val, .. } => {
@ -127,6 +128,19 @@ fn action(input: &Value, args: &Arguments, span: Span) -> Value {
let bits = bits as u32; let bits = bits as u32;
let input_num_type = get_input_num_type(val, signed, number_size); let input_num_type = get_input_num_type(val, signed, number_size);
if bits > input_num_type.num_bits() {
return Value::error(
ShellError::IncorrectValue {
msg: format!(
"Trying to rotate by more than the available bits ({})",
input_num_type.num_bits()
),
val_span: bits_span,
call_span: span,
},
span,
);
}
let int = match input_num_type { let int = match input_num_type {
One => (val as u8).rotate_left(bits) as i64, One => (val as u8).rotate_left(bits) as i64,
Two => (val as u16).rotate_left(bits) as i64, Two => (val as u16).rotate_left(bits) as i64,
@ -157,16 +171,28 @@ fn action(input: &Value, args: &Arguments, span: Span) -> Value {
Value::int(int, span) Value::int(int, span)
} }
Value::Binary { val, .. } => { Value::Binary { val, .. } => {
let len = val.len();
if bits > len * 8 {
return Value::error(
ShellError::IncorrectValue {
msg: format!(
"Trying to rotate by more than the available bits ({})",
len * 8
),
val_span: bits_span,
call_span: span,
},
span,
);
}
let byte_shift = bits / 8; let byte_shift = bits / 8;
let bit_rotate = bits % 8; let bit_rotate = bits % 8;
let mut bytes = val let bytes = if bit_rotate == 0 {
.iter() rotate_bytes_left(val, byte_shift)
.copied() } else {
.circular_tuple_windows::<(u8, u8)>() rotate_bytes_and_bits_left(val, byte_shift, bit_rotate)
.map(|(lhs, rhs)| (lhs << bit_rotate) | (rhs >> (8 - bit_rotate))) };
.collect::<Vec<u8>>();
bytes.rotate_left(byte_shift);
Value::binary(bytes, span) Value::binary(bytes, span)
} }
@ -184,6 +210,34 @@ fn action(input: &Value, args: &Arguments, span: Span) -> Value {
} }
} }
fn rotate_bytes_left(data: &[u8], byte_shift: usize) -> Vec<u8> {
let len = data.len();
let mut output = vec![0; len];
output[..len - byte_shift].copy_from_slice(&data[byte_shift..]);
output[len - byte_shift..].copy_from_slice(&data[..byte_shift]);
output
}
fn rotate_bytes_and_bits_left(data: &[u8], byte_shift: usize, bit_shift: usize) -> Vec<u8> {
debug_assert!(byte_shift < data.len());
debug_assert!(
(1..8).contains(&bit_shift),
"Bit shifts of 0 can't be handled by this impl and everything else should be part of the byteshift");
let mut bytes = Vec::with_capacity(data.len());
let mut next_index = byte_shift;
for _ in 0..data.len() {
let curr_byte = data[next_index];
next_index += 1;
if next_index == data.len() {
next_index = 0;
}
let next_byte = data[next_index];
let new_byte = (curr_byte << bit_shift) | (next_byte >> (8 - bit_shift));
bytes.push(new_byte);
}
bytes
}
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use super::*; use super::*;

View File

@ -1,11 +1,10 @@
use super::{get_input_num_type, get_number_bytes, InputNumType, NumberBytes}; use super::{get_input_num_type, get_number_bytes, InputNumType, NumberBytes};
use itertools::Itertools;
use nu_cmd_base::input_handler::{operate, CmdArgument}; use nu_cmd_base::input_handler::{operate, CmdArgument};
use nu_engine::command_prelude::*; use nu_engine::command_prelude::*;
struct Arguments { struct Arguments {
signed: bool, signed: bool,
bits: usize, bits: Spanned<usize>,
number_size: NumberBytes, number_size: NumberBytes,
} }
@ -69,7 +68,7 @@ impl Command for BitsRor {
input: PipelineData, input: PipelineData,
) -> Result<PipelineData, ShellError> { ) -> Result<PipelineData, ShellError> {
let head = call.head; let head = call.head;
let bits: usize = call.req(engine_state, stack, 0)?; let bits = call.req(engine_state, stack, 0)?;
let signed = call.has_flag(engine_state, stack, "signed")?; let signed = call.has_flag(engine_state, stack, "signed")?;
let number_bytes: Option<Spanned<usize>> = let number_bytes: Option<Spanned<usize>> =
call.get_flag(engine_state, stack, "number-bytes")?; call.get_flag(engine_state, stack, "number-bytes")?;
@ -123,6 +122,8 @@ fn action(input: &Value, args: &Arguments, span: Span) -> Value {
number_size, number_size,
bits, bits,
} = *args; } = *args;
let bits_span = bits.span;
let bits = bits.item;
match input { match input {
Value::Int { val, .. } => { Value::Int { val, .. } => {
@ -131,6 +132,19 @@ fn action(input: &Value, args: &Arguments, span: Span) -> Value {
let bits = bits as u32; let bits = bits as u32;
let input_num_type = get_input_num_type(val, signed, number_size); let input_num_type = get_input_num_type(val, signed, number_size);
if bits > input_num_type.num_bits() {
return Value::error(
ShellError::IncorrectValue {
msg: format!(
"Trying to rotate by more than the available bits ({})",
input_num_type.num_bits()
),
val_span: bits_span,
call_span: span,
},
span,
);
}
let int = match input_num_type { let int = match input_num_type {
One => (val as u8).rotate_right(bits) as i64, One => (val as u8).rotate_right(bits) as i64,
Two => (val as u16).rotate_right(bits) as i64, Two => (val as u16).rotate_right(bits) as i64,
@ -161,16 +175,28 @@ fn action(input: &Value, args: &Arguments, span: Span) -> Value {
Value::int(int, span) Value::int(int, span)
} }
Value::Binary { val, .. } => { Value::Binary { val, .. } => {
let len = val.len();
if bits > len * 8 {
return Value::error(
ShellError::IncorrectValue {
msg: format!(
"Trying to rotate by more than the available bits ({})",
len * 8
),
val_span: bits_span,
call_span: span,
},
span,
);
}
let byte_shift = bits / 8; let byte_shift = bits / 8;
let bit_rotate = bits % 8; let bit_rotate = bits % 8;
let mut bytes = val let bytes = if bit_rotate == 0 {
.iter() rotate_bytes_right(val, byte_shift)
.copied() } else {
.circular_tuple_windows::<(u8, u8)>() rotate_bytes_and_bits_right(val, byte_shift, bit_rotate)
.map(|(lhs, rhs)| (lhs >> bit_rotate) | (rhs << (8 - bit_rotate))) };
.collect::<Vec<u8>>();
bytes.rotate_right(byte_shift);
Value::binary(bytes, span) Value::binary(bytes, span)
} }
@ -188,6 +214,35 @@ fn action(input: &Value, args: &Arguments, span: Span) -> Value {
} }
} }
fn rotate_bytes_right(data: &[u8], byte_shift: usize) -> Vec<u8> {
let len = data.len();
let mut output = vec![0; len];
output[byte_shift..].copy_from_slice(&data[..len - byte_shift]);
output[..byte_shift].copy_from_slice(&data[len - byte_shift..]);
output
}
fn rotate_bytes_and_bits_right(data: &[u8], byte_shift: usize, bit_shift: usize) -> Vec<u8> {
debug_assert!(byte_shift < data.len());
debug_assert!(
(1..8).contains(&bit_shift),
"Bit shifts of 0 can't be handled by this impl and everything else should be part of the byteshift"
);
let mut bytes = Vec::with_capacity(data.len());
let mut previous_index = data.len() - byte_shift - 1;
for _ in 0..data.len() {
let previous_byte = data[previous_index];
previous_index += 1;
if previous_index == data.len() {
previous_index = 0;
}
let curr_byte = data[previous_index];
let rotated_byte = (curr_byte >> bit_shift) | (previous_byte << (8 - bit_shift));
bytes.push(rotated_byte);
}
bytes
}
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use super::*; use super::*;

View File

@ -241,20 +241,124 @@ fn bits_rotate_left_list() -> TestResult {
) )
} }
#[test]
fn bits_rotate_left_negative_operand() -> TestResult {
fail_test("8 | bits rol -2", "positive value")
}
#[test]
fn bits_rotate_left_exceeding1() -> TestResult {
// We have no type accepting more than 64 bits so guaranteed fail
fail_test("8 | bits rol 65", "more than the available bits (8)")
}
#[test]
fn bits_rotate_left_exceeding2() -> TestResult {
// This is purely down to the current autodetect feature limiting to the smallest integer
// type thus assuming a u8
fail_test("8 | bits rol 9", "more than the available bits (8)")
}
#[test]
fn bits_rotate_left_binary1() -> TestResult {
run_test(
"0x[01 30 80] | bits rol 3 | into bits",
"00001001 10000100 00000000",
)
}
#[test]
fn bits_rotate_left_binary2() -> TestResult {
// Whole byte case
run_test(
"0x[01 30 80] | bits rol 8 | into bits",
"00110000 10000000 00000001",
)
}
#[test]
fn bits_rotate_left_binary3() -> TestResult {
// Compared to the int case this is made inclusive of the bit count
run_test(
"0x[01 30 80] | bits rol 24 | into bits",
"00000001 00110000 10000000",
)
}
#[test]
fn bits_rotate_left_binary4() -> TestResult {
// Shifting by both bytes and bits
run_test(
"0x[01 30 80] | bits rol 15 | into bits",
"01000000 00000000 10011000",
)
}
#[test] #[test]
fn bits_rotate_right() -> TestResult { fn bits_rotate_right() -> TestResult {
run_test("2 | bits ror 62", "8") run_test("2 | bits ror 6", "8")
} }
#[test] #[test]
fn bits_rotate_right_negative() -> TestResult { fn bits_rotate_right_negative() -> TestResult {
run_test("-3 | bits ror 60", "-33") run_test("-3 | bits ror 4", "-33")
} }
#[test] #[test]
fn bits_rotate_right_list() -> TestResult { fn bits_rotate_right_list() -> TestResult {
run_test( run_test(
"[1 2 7 32 23 10] | bits ror 60 | str join '.'", "[1 2 7 32 23 10] | bits ror 4 | str join '.'",
"16.32.112.2.113.160", "16.32.112.2.113.160",
) )
} }
#[test]
fn bits_rotate_right_negative_operand() -> TestResult {
fail_test("8 | bits ror -2", "positive value")
}
#[test]
fn bits_rotate_right_exceeding1() -> TestResult {
// We have no type accepting more than 64 bits so guaranteed fail
fail_test("8 | bits ror 65", "more than the available bits (8)")
}
#[test]
fn bits_rotate_right_exceeding2() -> TestResult {
// This is purely down to the current autodetect feature limiting to the smallest integer
// type thus assuming a u8
fail_test("8 | bits ror 9", "more than the available bits (8)")
}
#[test]
fn bits_rotate_right_binary1() -> TestResult {
run_test(
"0x[01 30 80] | bits ror 3 | into bits",
"00000000 00100110 00010000",
)
}
#[test]
fn bits_rotate_right_binary2() -> TestResult {
// Whole byte case
run_test(
"0x[01 30 80] | bits ror 8 | into bits",
"10000000 00000001 00110000",
)
}
#[test]
fn bits_rotate_right_binary3() -> TestResult {
// Compared to the int case this is made inclusive of the bit count
run_test(
"0x[01 30 80] | bits ror 24 | into bits",
"00000001 00110000 10000000",
)
}
#[test]
fn bits_rotate_right_binary4() -> TestResult {
// Shifting by both bytes and bits
run_test(
"0x[01 30 80] | bits ror 15 | into bits",
"01100001 00000000 00000010",
)
}