Going deeper (#3864)

* nuframe in its own type in UntaggedValue

* Removed eager dataframe from enum

* Dataframe created from list of values

* Corrected order in dataframe columns

* Returned tag from stream collection

* Removed series from dataframe commands

* Arithmetic operators

* forced push

* forced push

* Replace all command

* String commands

* appending operations with dfs

* Testing suite for dataframes

* Unit test for dataframe commands

* improved equality for dataframes

* moving all dataframe operations to protocol

* objects in dataframes

* Removed cloning when converting to row
This commit is contained in:
Fernando Herrera 2021-07-29 22:16:30 +01:00 committed by GitHub
parent f3e487e829
commit 653cbe651f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 696 additions and 313 deletions

1
Cargo.lock generated
View File

@ -4341,6 +4341,7 @@ dependencies = [
"rayon",
"regex",
"serde 1.0.126",
"serde_json",
"thiserror",
"unsafe_unwrap",
]

View File

@ -34,7 +34,7 @@ toml = "0.5.8"
[dependencies.polars]
version = "0.14.8"
optional = true
features = ["serde", "rows", "strings", "checked_arithmetic"]
features = ["default", "serde", "rows", "strings", "checked_arithmetic", "object"]
[features]
dataframe = ["polars"]

View File

@ -0,0 +1,626 @@
use indexmap::map::{Entry, IndexMap};
use polars::chunked_array::object::builder::ObjectChunkedBuilder;
use polars::chunked_array::ChunkedArray;
use bigdecimal::FromPrimitive;
use chrono::{DateTime, FixedOffset, NaiveDateTime};
use nu_errors::ShellError;
use nu_source::{Span, Tag};
use num_bigint::BigInt;
use polars::prelude::{
DataFrame, DataType, IntoSeries, NamedFrom, ObjectType, PolarsNumericType, Series, TimeUnit,
};
use std::ops::{Deref, DerefMut};
use super::NuDataFrame;
use crate::{Dictionary, Primitive, UntaggedValue, Value};
const SECS_PER_DAY: i64 = 86_400;
#[derive(Debug)]
pub struct Column {
name: String,
values: Vec<Value>,
}
impl Column {
pub fn new(name: String, values: Vec<Value>) -> Self {
Self { name, values }
}
pub fn new_empty(name: String) -> Self {
Self {
name,
values: Vec::new(),
}
}
pub fn name(&self) -> &str {
self.name.as_str()
}
pub fn iter(&self) -> impl Iterator<Item = &Value> {
self.values.iter()
}
}
impl IntoIterator for Column {
type Item = Value;
type IntoIter = std::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
self.values.into_iter()
}
}
impl Deref for Column {
type Target = Vec<Value>;
fn deref(&self) -> &Self::Target {
&self.values
}
}
impl DerefMut for Column {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.values
}
}
#[derive(Debug)]
pub enum InputType {
Integer,
Decimal,
String,
Boolean,
Object,
}
#[derive(Debug)]
pub struct TypedColumn {
column: Column,
column_type: Option<InputType>,
}
impl TypedColumn {
fn new_empty(name: String) -> Self {
Self {
column: Column::new_empty(name),
column_type: None,
}
}
}
impl Deref for TypedColumn {
type Target = Column;
fn deref(&self) -> &Self::Target {
&self.column
}
}
impl DerefMut for TypedColumn {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.column
}
}
pub type ColumnMap = IndexMap<String, TypedColumn>;
pub fn create_column(
series: &Series,
from_row: usize,
to_row: usize,
) -> Result<Column, ShellError> {
let size = to_row - from_row;
match series.dtype() {
DataType::Null => {
let values = std::iter::repeat(Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
})
.take(size)
.collect::<Vec<Value>>();
Ok(Column::new(series.name().into(), values))
}
DataType::UInt8 => {
let casted = series.u8().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
Ok(column_from_casted(casted, from_row, size))
}
DataType::UInt16 => {
let casted = series.u16().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
Ok(column_from_casted(casted, from_row, size))
}
DataType::UInt32 => {
let casted = series.u32().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
Ok(column_from_casted(casted, from_row, size))
}
DataType::UInt64 => {
let casted = series.u64().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
Ok(column_from_casted(casted, from_row, size))
}
DataType::Int8 => {
let casted = series.i8().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
Ok(column_from_casted(casted, from_row, size))
}
DataType::Int16 => {
let casted = series.i16().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
Ok(column_from_casted(casted, from_row, size))
}
DataType::Int32 => {
let casted = series.i32().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
Ok(column_from_casted(casted, from_row, size))
}
DataType::Int64 => {
let casted = series.i64().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
Ok(column_from_casted(casted, from_row, size))
}
DataType::Float32 => {
let casted = series.f32().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
Ok(column_from_casted(casted, from_row, size))
}
DataType::Float64 => {
let casted = series.f64().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
Ok(column_from_casted(casted, from_row, size))
}
DataType::Boolean => {
let casted = series.bool().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
let values = casted
.into_iter()
.skip(from_row)
.take(size)
.map(|v| match v {
Some(a) => Value {
value: UntaggedValue::Primitive((a).into()),
tag: Tag::default(),
},
None => Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
},
})
.collect::<Vec<Value>>();
Ok(Column::new(casted.name().into(), values))
}
DataType::Utf8 => {
let casted = series.utf8().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
let values = casted
.into_iter()
.skip(from_row)
.take(size)
.map(|v| match v {
Some(a) => Value {
value: UntaggedValue::Primitive((a).into()),
tag: Tag::default(),
},
None => Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
},
})
.collect::<Vec<Value>>();
Ok(Column::new(casted.name().into(), values))
}
DataType::Object(_) => {
let casted = series
.as_any()
.downcast_ref::<ChunkedArray<ObjectType<Value>>>();
match casted {
None => Err(ShellError::labeled_error(
"Format not supported",
"Value not supported for conversion",
Tag::unknown(),
)),
Some(ca) => {
let values = ca
.into_iter()
.skip(from_row)
.take(size)
.map(|v| match v {
Some(a) => a.clone(),
None => Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
},
})
.collect::<Vec<Value>>();
Ok(Column::new(ca.name().into(), values))
}
}
}
DataType::Date32 => {
let casted = series.date32().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
let values = casted
.into_iter()
.skip(from_row)
.take(size)
.map(|v| match v {
Some(a) => {
// elapsed time in day since 1970-01-01
let seconds = a as i64 * SECS_PER_DAY;
let naive_datetime = NaiveDateTime::from_timestamp(seconds, 0);
// Zero length offset
let offset = FixedOffset::east(0);
let datetime = DateTime::<FixedOffset>::from_utc(naive_datetime, offset);
Value {
value: UntaggedValue::Primitive(Primitive::Date(datetime)),
tag: Tag::default(),
}
}
None => Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
},
})
.collect::<Vec<Value>>();
Ok(Column::new(casted.name().into(), values))
}
DataType::Date64 => {
let casted = series.date64().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
let values = casted
.into_iter()
.skip(from_row)
.take(size)
.map(|v| match v {
Some(a) => {
// elapsed time in milliseconds since 1970-01-01
let seconds = a / 1000;
let naive_datetime = NaiveDateTime::from_timestamp(seconds, 0);
// Zero length offset
let offset = FixedOffset::east(0);
let datetime = DateTime::<FixedOffset>::from_utc(naive_datetime, offset);
Value {
value: UntaggedValue::Primitive(Primitive::Date(datetime)),
tag: Tag::default(),
}
}
None => Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
},
})
.collect::<Vec<Value>>();
Ok(Column::new(casted.name().into(), values))
}
DataType::Time64(timeunit) | DataType::Duration(timeunit) => {
let casted = series.time64_nanosecond().map_err(|e| {
ShellError::labeled_error(
"Casting error",
format!("casting error: {}", e),
Span::default(),
)
})?;
let values = casted
.into_iter()
.skip(from_row)
.take(size)
.map(|v| match v {
Some(a) => {
let nanoseconds = match timeunit {
TimeUnit::Second => a / 1_000_000_000,
TimeUnit::Millisecond => a / 1_000_000,
TimeUnit::Microsecond => a / 1_000,
TimeUnit::Nanosecond => a,
};
let untagged = if let Some(bigint) = BigInt::from_i64(nanoseconds) {
UntaggedValue::Primitive(Primitive::Duration(bigint))
} else {
unreachable!("Internal error: protocol did not use compatible decimal")
};
Value {
value: untagged,
tag: Tag::default(),
}
}
None => Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
},
})
.collect::<Vec<Value>>();
Ok(Column::new(casted.name().into(), values))
}
e => Err(ShellError::labeled_error(
"Format not supported",
format!("Value not supported for conversion: {}", e),
Tag::unknown(),
)),
}
}
fn column_from_casted<T>(casted: &ChunkedArray<T>, from_row: usize, size: usize) -> Column
where
T: PolarsNumericType,
T::Native: Into<Primitive>,
{
let values = casted
.into_iter()
.skip(from_row)
.take(size)
.map(|v| match v {
Some(a) => Value {
value: UntaggedValue::Primitive((a).into()),
tag: Tag::default(),
},
None => Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
},
})
.collect::<Vec<Value>>();
Column::new(casted.name().into(), values)
}
// Adds a separator to the vector of values using the column names from the
// dataframe to create the Values Row
pub fn add_separator(values: &mut Vec<Value>, df: &DataFrame) {
let column_names = df.get_column_names();
let mut dictionary = Dictionary::default();
for name in column_names {
let indicator = Value {
value: UntaggedValue::Primitive(Primitive::String("...".to_string())),
tag: Tag::unknown(),
};
dictionary.insert(name.to_string(), indicator);
}
let extra_column = Value {
value: UntaggedValue::Row(dictionary),
tag: Tag::unknown(),
};
values.push(extra_column);
}
// Inserting the values found in a UntaggedValue::Row
// All the entries for the dictionary are checked in order to check if
// the column values have the same type value.
pub fn insert_row(column_values: &mut ColumnMap, dictionary: Dictionary) -> Result<(), ShellError> {
for (key, value) in dictionary.entries {
insert_value(value, key, column_values)?;
}
Ok(())
}
// Inserting the values found in a UntaggedValue::Table
// All the entries for the table are checked in order to check if
// the column values have the same type value.
// The names for the columns are the enumerated numbers from the values
pub fn insert_table(column_values: &mut ColumnMap, table: Vec<Value>) -> Result<(), ShellError> {
for (index, value) in table.into_iter().enumerate() {
let key = format!("{}", index);
insert_value(value, key, column_values)?;
}
Ok(())
}
pub fn insert_value(
value: Value,
key: String,
column_values: &mut ColumnMap,
) -> Result<(), ShellError> {
let col_val = match column_values.entry(key.clone()) {
Entry::Vacant(entry) => entry.insert(TypedColumn::new_empty(key)),
Entry::Occupied(entry) => entry.into_mut(),
};
// Checking that the type for the value is the same
// for the previous value in the column
if col_val.values.is_empty() {
match &value.value {
UntaggedValue::Primitive(Primitive::Int(_)) => {
col_val.column_type = Some(InputType::Integer);
}
UntaggedValue::Primitive(Primitive::Decimal(_)) => {
col_val.column_type = Some(InputType::Decimal);
}
UntaggedValue::Primitive(Primitive::String(_)) => {
col_val.column_type = Some(InputType::String);
}
UntaggedValue::Primitive(Primitive::Boolean(_)) => {
col_val.column_type = Some(InputType::Boolean);
}
_ => col_val.column_type = Some(InputType::Object),
}
col_val.values.push(value);
} else {
let prev_value = &col_val.values[col_val.values.len() - 1];
match (&prev_value.value, &value.value) {
(
UntaggedValue::Primitive(Primitive::Int(_)),
UntaggedValue::Primitive(Primitive::Int(_)),
)
| (
UntaggedValue::Primitive(Primitive::Decimal(_)),
UntaggedValue::Primitive(Primitive::Decimal(_)),
)
| (
UntaggedValue::Primitive(Primitive::String(_)),
UntaggedValue::Primitive(Primitive::String(_)),
)
| (
UntaggedValue::Primitive(Primitive::Boolean(_)),
UntaggedValue::Primitive(Primitive::Boolean(_)),
) => col_val.values.push(value),
_ => {
col_val.column_type = Some(InputType::Object);
col_val.values.push(value);
}
}
}
Ok(())
}
// The ColumnMap has the parsed data from the StreamInput
// This data can be used to create a Series object that can initialize
// the dataframe based on the type of data that is found
pub fn from_parsed_columns(
column_values: ColumnMap,
span: &Span,
) -> Result<NuDataFrame, ShellError> {
let mut df_series: Vec<Series> = Vec::new();
for (name, column) in column_values {
if let Some(column_type) = &column.column_type {
match column_type {
InputType::Decimal => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_f64()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
InputType::Integer => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_i64()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
InputType::String => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_string()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
InputType::Boolean => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_bool()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
InputType::Object => {
let mut builder =
ObjectChunkedBuilder::<Value>::new(&name, column.values.len());
for v in column.values.iter() {
builder.append_value(v.clone());
}
let res = builder.finish();
df_series.push(res.into_series())
}
}
}
}
let df = DataFrame::new(df_series);
match df {
Ok(df) => Ok(NuDataFrame::new(df)),
Err(e) => {
return Err(ShellError::labeled_error(
"Error while creating dataframe",
format!("{}", e),
span,
))
}
}
}

View File

@ -1,10 +1,12 @@
pub mod compute_between;
pub mod conversion;
pub mod nu_dataframe;
pub mod nu_groupby;
pub mod operations;
pub use compute_between::{compute_between_dataframes, compute_series_single_value};
pub use nu_dataframe::{Column, NuDataFrame};
pub use conversion::Column;
pub use nu_dataframe::NuDataFrame;
pub use nu_groupby::NuGroupBy;
pub use operations::Axis;
use serde::{Deserialize, Serialize};

View File

@ -1,82 +1,40 @@
use indexmap::{map::Entry, IndexMap};
use indexmap::IndexMap;
use std::cmp::Ordering;
use std::fmt::Display;
use std::hash::{Hash, Hasher};
use std::ops::{Deref, DerefMut};
use bigdecimal::FromPrimitive;
use chrono::{DateTime, FixedOffset, NaiveDateTime};
use nu_errors::ShellError;
use nu_source::{Span, Tag};
use num_bigint::BigInt;
use polars::prelude::{AnyValue, DataFrame, DataType, NamedFrom, Series, TimeUnit};
use polars::prelude::{DataFrame, DataType, PolarsObject, Series};
use serde::{Deserialize, Serialize};
use crate::{Dictionary, Primitive, UntaggedValue, Value};
use super::conversion::{
add_separator, create_column, from_parsed_columns, insert_row, insert_table, insert_value,
Column, ColumnMap,
};
use crate::{Dictionary, Primitive, ShellTypeName, UntaggedValue, Value};
const SECS_PER_DAY: i64 = 86_400;
#[derive(Debug)]
pub struct Column {
name: String,
values: Vec<Value>,
impl Display for Value {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.type_name())
}
}
impl Column {
pub fn new(name: String, values: Vec<Value>) -> Self {
Self { name, values }
}
pub fn new_empty(name: String) -> Self {
impl Default for Value {
fn default() -> Self {
Self {
name,
values: Vec::new(),
}
}
pub fn push(&mut self, value: Value) {
self.values.push(value)
}
}
#[derive(Debug)]
enum InputType {
Integer,
Decimal,
String,
Boolean,
}
#[derive(Debug)]
struct TypedColumn {
pub column: Column,
pub column_type: Option<InputType>,
}
impl TypedColumn {
fn new_empty(name: String) -> Self {
Self {
column: Column::new_empty(name),
column_type: None,
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
}
}
}
impl Deref for TypedColumn {
type Target = Column;
fn deref(&self) -> &Self::Target {
&self.column
impl PolarsObject for Value {
fn type_name() -> &'static str {
"object"
}
}
impl DerefMut for TypedColumn {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.column
}
}
type ColumnMap = IndexMap<String, TypedColumn>;
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct NuDataFrame {
dataframe: DataFrame,
@ -250,8 +208,9 @@ impl NuDataFrame {
let mut column_values: ColumnMap = IndexMap::new();
for column in columns {
for value in column.values {
insert_value(value, column.name.clone(), &mut column_values)?;
let name = column.name().to_string();
for value in column.into_iter() {
insert_value(value, name.clone(), &mut column_values)?;
}
}
@ -369,256 +328,51 @@ impl NuDataFrame {
let df = self.as_ref();
let upper_row = to_row.min(df.height());
let mut values: Vec<Value> = Vec::new();
for i in from_row..upper_row {
let mut dictionary_row = Dictionary::default();
for col in df.get_columns() {
let dict_val = Value {
value: anyvalue_to_untagged(&col.get(i))?,
let mut size: usize = 0;
let columns = self
.as_ref()
.get_columns()
.iter()
.map(|col| match create_column(col, from_row, upper_row) {
Ok(col) => {
size = col.len();
Ok(col)
}
Err(e) => Err(e),
})
.collect::<Result<Vec<Column>, ShellError>>()?;
let mut iterators = columns
.into_iter()
.map(|col| (col.name().to_string(), col.into_iter()))
.collect::<Vec<(String, std::vec::IntoIter<Value>)>>();
let values = (0..size)
.into_iter()
.map(|i| {
let mut dictionary_row = Dictionary::default();
for (name, col) in iterators.iter_mut() {
let dict_val = match col.next() {
Some(v) => v,
None => {
println!("index: {}", i);
Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::default(),
}
}
};
dictionary_row.insert(name.clone(), dict_val);
}
Value {
value: UntaggedValue::Row(dictionary_row),
tag: Tag::unknown(),
};
dictionary_row.insert(col.name().into(), dict_val);
}
let value = Value {
value: UntaggedValue::Row(dictionary_row),
tag: Tag::unknown(),
};
values.push(value)
}
}
})
.collect::<Vec<Value>>();
Ok(values)
}
}
// Adds a separator to the vector of values using the column names from the
// dataframe to create the Values Row
fn add_separator(values: &mut Vec<Value>, df: &DataFrame) {
let column_names = df.get_column_names();
let mut dictionary = Dictionary::default();
for name in column_names {
let indicator = Value {
value: UntaggedValue::Primitive(Primitive::String("...".to_string())),
tag: Tag::unknown(),
};
dictionary.insert(name.to_string(), indicator);
}
let extra_column = Value {
value: UntaggedValue::Row(dictionary),
tag: Tag::unknown(),
};
values.push(extra_column);
}
// Converts a polars AnyValue to an UntaggedValue
// This is used when printing values coming for polars dataframes
fn anyvalue_to_untagged(anyvalue: &AnyValue) -> Result<UntaggedValue, ShellError> {
Ok(match anyvalue {
AnyValue::Null => UntaggedValue::Primitive(Primitive::Nothing),
AnyValue::Utf8(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Boolean(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Float32(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Float64(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Int32(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Int64(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::UInt8(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::UInt16(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Int8(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Int16(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::UInt32(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::UInt64(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Date32(a) => {
// elapsed time in day since 1970-01-01
let seconds = *a as i64 * SECS_PER_DAY;
let naive_datetime = NaiveDateTime::from_timestamp(seconds, 0);
// Zero length offset
let offset = FixedOffset::east(0);
let datetime = DateTime::<FixedOffset>::from_utc(naive_datetime, offset);
UntaggedValue::Primitive(Primitive::Date(datetime))
}
AnyValue::Date64(a) => {
// elapsed time in milliseconds since 1970-01-01
let seconds = *a / 1000;
let naive_datetime = NaiveDateTime::from_timestamp(seconds, 0);
// Zero length offset
let offset = FixedOffset::east(0);
let datetime = DateTime::<FixedOffset>::from_utc(naive_datetime, offset);
UntaggedValue::Primitive(Primitive::Date(datetime))
}
AnyValue::Time64(a, _) => UntaggedValue::Primitive((*a).into()),
AnyValue::Duration(a, unit) => {
let nanoseconds = match unit {
TimeUnit::Second => *a / 1_000_000_000,
TimeUnit::Millisecond => *a / 1_000_000,
TimeUnit::Microsecond => *a / 1_000,
TimeUnit::Nanosecond => *a,
};
if let Some(bigint) = BigInt::from_i64(nanoseconds) {
UntaggedValue::Primitive(Primitive::Duration(bigint))
} else {
unreachable!("Internal error: protocol did not use compatible decimal")
}
}
AnyValue::List(_) => {
return Err(ShellError::labeled_error(
"Format not supported",
"Value not supported for conversion",
Tag::unknown(),
));
}
})
}
// Inserting the values found in a UntaggedValue::Row
// All the entries for the dictionary are checked in order to check if
// the column values have the same type value.
fn insert_row(column_values: &mut ColumnMap, dictionary: Dictionary) -> Result<(), ShellError> {
for (key, value) in dictionary.entries {
insert_value(value, key, column_values)?;
}
Ok(())
}
// Inserting the values found in a UntaggedValue::Table
// All the entries for the table are checked in order to check if
// the column values have the same type value.
// The names for the columns are the enumerated numbers from the values
fn insert_table(column_values: &mut ColumnMap, table: Vec<Value>) -> Result<(), ShellError> {
for (index, value) in table.into_iter().enumerate() {
let key = format!("{}", index);
insert_value(value, key, column_values)?;
}
Ok(())
}
fn insert_value(
value: Value,
key: String,
column_values: &mut ColumnMap,
) -> Result<(), ShellError> {
let col_val = match column_values.entry(key.clone()) {
Entry::Vacant(entry) => entry.insert(TypedColumn::new_empty(key)),
Entry::Occupied(entry) => entry.into_mut(),
};
// Checking that the type for the value is the same
// for the previous value in the column
if col_val.values.is_empty() {
match &value.value {
UntaggedValue::Primitive(Primitive::Int(_)) => {
col_val.column_type = Some(InputType::Integer);
}
UntaggedValue::Primitive(Primitive::Decimal(_)) => {
col_val.column_type = Some(InputType::Decimal);
}
UntaggedValue::Primitive(Primitive::String(_)) => {
col_val.column_type = Some(InputType::String);
}
UntaggedValue::Primitive(Primitive::Boolean(_)) => {
col_val.column_type = Some(InputType::Boolean);
}
_ => {
return Err(ShellError::labeled_error(
"Only primitive values accepted",
"Not a primitive value",
&value.tag,
));
}
}
col_val.values.push(value);
} else {
let prev_value = &col_val.values[col_val.values.len() - 1];
match (&prev_value.value, &value.value) {
(
UntaggedValue::Primitive(Primitive::Int(_)),
UntaggedValue::Primitive(Primitive::Int(_)),
)
| (
UntaggedValue::Primitive(Primitive::Decimal(_)),
UntaggedValue::Primitive(Primitive::Decimal(_)),
)
| (
UntaggedValue::Primitive(Primitive::String(_)),
UntaggedValue::Primitive(Primitive::String(_)),
)
| (
UntaggedValue::Primitive(Primitive::Boolean(_)),
UntaggedValue::Primitive(Primitive::Boolean(_)),
) => col_val.values.push(value),
_ => {
return Err(ShellError::labeled_error_with_secondary(
"Different values in column",
"Value with different type",
&value.tag,
"Perhaps you want to change it to this value type",
&prev_value.tag,
));
}
}
}
Ok(())
}
// The ColumnMap has the parsed data from the StreamInput
// This data can be used to create a Series object that can initialize
// the dataframe based on the type of data that is found
fn from_parsed_columns(column_values: ColumnMap, span: &Span) -> Result<NuDataFrame, ShellError> {
let mut df_series: Vec<Series> = Vec::new();
for (name, column) in column_values {
if let Some(column_type) = &column.column_type {
match column_type {
InputType::Decimal => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_f64()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
InputType::Integer => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_i64()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
InputType::String => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_string()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
InputType::Boolean => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_bool()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
}
}
}
let df = DataFrame::new(df_series);
match df {
Ok(df) => Ok(NuDataFrame::new(df)),
Err(e) => {
return Err(ShellError::labeled_error(
"Error while creating dataframe",
format!("{}", e),
span,
))
}
}
}