Add Span merging functions (#12511)

# Description
This PR adds a few functions to `Span` for merging spans together:
- `Span::append`: merges two spans that are known to be in order.
- `Span::concat`: returns a span that encompasses all the spans in a
slice. The spans must be in order.
- `Span::merge`: merges two spans (no order necessary).
- `Span::merge_many`: merges an iterator of spans into a single span (no
order necessary).

These are meant to replace the free-standing `nu_protocol::span`
function.

The spans in a `LiteCommand` (the `parts`) should always be in order
based on the lite parser and lexer. So, the parser code sees the most
usage of `Span::append` and `Span::concat` where the order is known. In
other code areas, `Span::merge` and `Span::merge_many` are used since
the order between spans is often not known.
This commit is contained in:
Ian Manske
2024-05-16 22:34:49 +00:00
committed by GitHub
parent 2a09dccc11
commit aec41f3df0
15 changed files with 305 additions and 241 deletions

View File

@ -1,6 +1,6 @@
use serde::{Deserialize, Serialize};
use crate::{span, ModuleId, Span, VarId};
use crate::{ModuleId, Span, VarId};
use std::collections::HashSet;
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
@ -12,17 +12,22 @@ pub enum ImportPatternMember {
impl ImportPatternMember {
pub fn span(&self) -> Span {
let mut spans = vec![];
match self {
ImportPatternMember::Glob { span } => spans.push(*span),
ImportPatternMember::Name { name: _, span } => spans.push(*span),
ImportPatternMember::Glob { span } | ImportPatternMember::Name { span, .. } => *span,
ImportPatternMember::List { names } => {
for (_, span) in names {
spans.push(*span);
}
let first = names
.first()
.map(|&(_, span)| span)
.unwrap_or(Span::unknown());
let last = names
.last()
.map(|&(_, span)| span)
.unwrap_or(Span::unknown());
Span::append(first, last)
}
}
span(&spans)
}
}
@ -59,13 +64,13 @@ impl ImportPattern {
}
pub fn span(&self) -> Span {
let mut spans = vec![self.head.span];
for member in &self.members {
spans.push(member.span());
}
span(&spans)
Span::append(
self.head.span,
self.members
.last()
.map(ImportPatternMember::span)
.unwrap_or(self.head.span),
)
}
pub fn with_hidden(self, hidden: HashSet<Vec<u8>>) -> Self {

View File

@ -1,7 +1,6 @@
use std::ops::Deref;
use miette::SourceSpan;
use serde::{Deserialize, Serialize};
use std::ops::Deref;
/// A spanned area of interest, generic over what kind of thing is of interest
#[derive(Clone, Copy, Debug, Serialize, Deserialize, PartialEq, Eq)]
@ -74,77 +73,123 @@ impl<T> IntoSpanned for T {
/// Spans are a global offset across all seen files, which are cached in the engine's state. The start and
/// end offset together make the inclusive start/exclusive end pair for where to underline to highlight
/// a given point of interest.
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Span {
pub start: usize,
pub end: usize,
}
impl From<Span> for SourceSpan {
fn from(s: Span) -> Self {
Self::new(s.start.into(), s.end - s.start)
}
}
impl Span {
pub fn new(start: usize, end: usize) -> Span {
pub fn new(start: usize, end: usize) -> Self {
debug_assert!(
end >= start,
"Can't create a Span whose end < start, start={start}, end={end}"
);
Span { start, end }
Self { start, end }
}
pub const fn unknown() -> Span {
Span { start: 0, end: 0 }
pub const fn unknown() -> Self {
Self { start: 0, end: 0 }
}
/// Note: Only use this for test data, *not* live data, as it will point into unknown source
/// when used in errors.
pub const fn test_data() -> Span {
pub const fn test_data() -> Self {
Self::unknown()
}
pub fn offset(&self, offset: usize) -> Span {
Span::new(self.start - offset, self.end - offset)
pub fn offset(&self, offset: usize) -> Self {
Self::new(self.start - offset, self.end - offset)
}
pub fn contains(&self, pos: usize) -> bool {
pos >= self.start && pos < self.end
self.start <= pos && pos < self.end
}
pub fn contains_span(&self, span: Span) -> bool {
span.start >= self.start && span.end <= self.end
pub fn contains_span(&self, span: Self) -> bool {
self.start <= span.start && span.end <= self.end
}
/// Point to the space just past this span, useful for missing
/// values
pub fn past(&self) -> Span {
Span {
/// Point to the space just past this span, useful for missing values
pub fn past(&self) -> Self {
Self {
start: self.end,
end: self.end,
}
}
/// Returns the minimal [`Span`] that encompasses both of the given spans.
///
/// The two `Spans` can overlap in the middle,
/// but must otherwise be in order by satisfying:
/// - `self.start <= after.start`
/// - `self.end <= after.end`
///
/// If this is not guaranteed to be the case, use [`Span::merge`] instead.
pub fn append(self, after: Self) -> Self {
debug_assert!(
self.start <= after.start && self.end <= after.end,
"Can't merge two Spans that are not in order"
);
Self {
start: self.start,
end: after.end,
}
}
/// Returns the minimal [`Span`] that encompasses both of the given spans.
///
/// The spans need not be in order or have any relationship.
///
/// [`Span::append`] is slightly more efficient if the spans are known to be in order.
pub fn merge(self, other: Self) -> Self {
Self {
start: usize::min(self.start, other.start),
end: usize::max(self.end, other.end),
}
}
/// Returns the minimal [`Span`] that encompasses all of the spans in the given slice.
///
/// The spans are assumed to be in order, that is, all consecutive spans must satisfy:
/// - `spans[i].start <= spans[i + 1].start`
/// - `spans[i].end <= spans[i + 1].end`
///
/// (Two consecutive spans can overlap as long as the above is true.)
///
/// Use [`Span::merge_many`] if the spans are not known to be in order.
pub fn concat(spans: &[Self]) -> Self {
// TODO: enable assert below
// debug_assert!(!spans.is_empty());
debug_assert!(spans.windows(2).all(|spans| {
let &[a, b] = spans else {
return false;
};
a.start <= b.start && a.end <= b.end
}));
Self {
start: spans.first().map(|s| s.start).unwrap_or(0),
end: spans.last().map(|s| s.end).unwrap_or(0),
}
}
/// Returns the minimal [`Span`] that encompasses all of the spans in the given iterator.
///
/// The spans need not be in order or have any relationship.
///
/// [`Span::concat`] is more efficient if the spans are known to be in order.
pub fn merge_many(spans: impl IntoIterator<Item = Self>) -> Self {
spans
.into_iter()
.reduce(Self::merge)
.unwrap_or(Self::unknown())
}
}
/// Used when you have a slice of spans of at least size 1
pub fn span(spans: &[Span]) -> Span {
let length = spans.len();
//TODO debug_assert!(length > 0, "expect spans > 0");
if length == 0 {
Span::unknown()
} else if length == 1 {
spans[0]
} else {
let end = spans
.iter()
.map(|s| s.end)
.max()
.expect("Must be an end. Length > 0");
Span::new(spans[0].start, end)
impl From<Span> for SourceSpan {
fn from(s: Span) -> Self {
Self::new(s.start.into(), s.end - s.start)
}
}