# Description
The meaning of the word usage is specific to describing how a command
function is *used* and not a synonym for general description. Usage can
be used to describe the SYNOPSIS or EXAMPLES sections of a man page
where the permitted argument combinations are shown or example *uses*
are given.
Let's not confuse people and call it what it is a description.
Our `help` command already creates its own *Usage* section based on the
available arguments and doesn't refer to the description with usage.
# User-Facing Changes
`help commands` and `scope commands` will now use `description` or
`extra_description`
`usage`-> `description`
`extra_usage` -> `extra_description`
Breaking change in the plugin protocol:
In the signature record communicated with the engine.
`usage`-> `description`
`extra_usage` -> `extra_description`
The same rename also takes place for the methods on
`SimplePluginCommand` and `PluginCommand`
# Tests + Formatting
- Updated plugin protocol specific changes
# After Submitting
- [ ] update plugin protocol doc
# Description
This allows plugins to report their version (and potentially other
metadata in the future). The version is shown in `plugin list` and in
`version`.
The metadata is stored in the registry file, and reflects whatever was
retrieved on `plugin add`, not necessarily the running binary. This can
help you to diagnose if there's some kind of mismatch with what you
expect. We could potentially use this functionality to show a warning or
error if a plugin being run does not have the same version as what was
in the cache file, suggesting `plugin add` be run again, but I haven't
done that at this point.
It is optional, and it requires the plugin author to make some code
changes if they want to provide it, since I can't automatically
determine the version of the calling crate or anything tricky like that
to do it.
Example:
```
> plugin list | select name version is_running pid
╭───┬────────────────┬─────────┬────────────┬─────╮
│ # │ name │ version │ is_running │ pid │
├───┼────────────────┼─────────┼────────────┼─────┤
│ 0 │ example │ 0.93.1 │ false │ │
│ 1 │ gstat │ 0.93.1 │ false │ │
│ 2 │ inc │ 0.93.1 │ false │ │
│ 3 │ python_example │ 0.1.0 │ false │ │
╰───┴────────────────┴─────────┴────────────┴─────╯
```
cc @maxim-uvarov (he asked for it)
# User-Facing Changes
- `plugin list` gets a `version` column
- `version` shows plugin versions when available
- plugin authors *should* add `fn metadata()` to their `impl Plugin`,
but don't have to
# Tests + Formatting
Tested the low level stuff and also the `plugin list` column.
# After Submitting
- [ ] update plugin guide docs
- [ ] update plugin protocol docs (`Metadata` call & response)
- [ ] update plugin template (`fn metadata()` should be easy)
- [ ] release notes
# Description
This PR introduces a `ByteStream` type which is a `Read`-able stream of
bytes. Internally, it has an enum over three different byte stream
sources:
```rust
pub enum ByteStreamSource {
Read(Box<dyn Read + Send + 'static>),
File(File),
Child(ChildProcess),
}
```
This is in comparison to the current `RawStream` type, which is an
`Iterator<Item = Vec<u8>>` and has to allocate for each read chunk.
Currently, `PipelineData::ExternalStream` serves a weird dual role where
it is either external command output or a wrapper around `RawStream`.
`ByteStream` makes this distinction more clear (via `ByteStreamSource`)
and replaces `PipelineData::ExternalStream` in this PR:
```rust
pub enum PipelineData {
Empty,
Value(Value, Option<PipelineMetadata>),
ListStream(ListStream, Option<PipelineMetadata>),
ByteStream(ByteStream, Option<PipelineMetadata>),
}
```
The PR is relatively large, but a decent amount of it is just repetitive
changes.
This PR fixes#7017, fixes#10763, and fixes#12369.
This PR also improves performance when piping external commands. Nushell
should, in most cases, have competitive pipeline throughput compared to,
e.g., bash.
| Command | Before (MB/s) | After (MB/s) | Bash (MB/s) |
| -------------------------------------------------- | -------------:|
------------:| -----------:|
| `throughput \| rg 'x'` | 3059 | 3744 | 3739 |
| `throughput \| nu --testbin relay o> /dev/null` | 3508 | 8087 | 8136 |
# User-Facing Changes
- This is a breaking change for the plugin communication protocol,
because the `ExternalStreamInfo` was replaced with `ByteStreamInfo`.
Plugins now only have to deal with a single input stream, as opposed to
the previous three streams: stdout, stderr, and exit code.
- The output of `describe` has been changed for external/byte streams.
- Temporary breaking change: `bytes starts-with` no longer works with
byte streams. This is to keep the PR smaller, and `bytes ends-with`
already does not work on byte streams.
- If a process core dumped, then instead of having a `Value::Error` in
the `exit_code` column of the output returned from `complete`, it now is
a `Value::Int` with the negation of the signal number.
# After Submitting
- Update docs and book as necessary
- Release notes (e.g., plugin protocol changes)
- Adapt/convert commands to work with byte streams (high priority is
`str length`, `bytes starts-with`, and maybe `bytes ends-with`).
- Refactor the `tee` code, Devyn has already done some work on this.
---------
Co-authored-by: Devyn Cairns <devyn.cairns@gmail.com>
# Description
@ayax79 added `nu-cmd-lang` as a dep for `nu-plugin-test-support` in
order to get access to `let`. Since we have the dep anyway now, we might
as well just add all of the lang commands - there aren't very many of
them and it would be less confusing than only `let` working.
# User-Facing Changes
- Can use some more core nu language features in plugin tests, like
loops and `do`
# Tests + Formatting
- 🟢 `toolkit fmt`
- 🟢 `toolkit clippy`
- 🟢 `toolkit test`
- 🟢 `toolkit test stdlib`
# After Submitting
- [ ] Might need to change something about the plugin testing section of
the book, since I think it says something about there only being the
plugin command itself available
# Description
This is something that was discussed in the core team meeting last
Wednesday. @ayax79 is building `nu-plugin-polars` with all of the
dataframe commands into a plugin, and there are a lot of them, so it
would help to make the API more similar. At the same time, I think the
`Command` API is just better anyway. I don't think the difference is
justified, and the types for core commands have the benefit of requiring
less `.into()` because they often don't own their data
- Broke `signature()` up into `name()`, `usage()`, `extra_usage()`,
`search_terms()`, `examples()`
- `signature()` returns `nu_protocol::Signature`
- `examples()` returns `Vec<nu_protocol::Example>`
- `PluginSignature` and `PluginExample` no longer need to be used by
plugin developers
# User-Facing Changes
Breaking API for plugins yet again 😄
# Description
Adds a `nu-plugin-test-support` crate with an interface that supports
testing plugins.
Unlike in reality, these plugins run in the same process on separate
threads. This will allow
testing aspects of the plugin internal state and handling serialized
plugin custom values easily.
We still serialize their custom values and all of the engine to plugin
logic is still in play, so
from a logical perspective this should still expose any bugs that would
have been caused by that.
The only difference is that it doesn't run in a different process, and
doesn't try to serialize
everything to the final wire format for stdin/stdout.
TODO still:
- [x] Clean up warnings about private types exposed in trait definition
- [x] Automatically deserialize plugin custom values in the result so
they can be inspected
- [x] Automatic plugin examples test function
- [x] Write a bit more documentation
- [x] More tests
- [x] Add MIT License file to new crate
# User-Facing Changes
Plugin developers get a nice way to test their plugins.
# Tests + Formatting
Run the tests with `cargo test -p nu-plugin-test-support --
--show-output` to see some examples of what the failing test output for
examples can look like. I used the `difference` crate (MIT licensed) to
make it look nice.
- 🟢 `toolkit fmt`
- 🟢 `toolkit clippy`
- 🟢 `toolkit test`
- 🟢 `toolkit test stdlib`
# After Submitting
- [ ] Add a section to the book about testing
- [ ] Test some of the example plugins this way
- [ ] Add example tests to nu_plugin_template so plugin developers have
something to start with