use nu_parser::*; use nu_protocol::ast::{Argument, Call, PathMember}; use nu_protocol::Span; use nu_protocol::{ ast::{Expr, Expression, PipelineElement}, engine::{Command, EngineState, Stack, StateWorkingSet}, ParseError, PipelineData, ShellError, Signature, SyntaxShape, }; use rstest::rstest; #[cfg(test)] #[derive(Clone)] pub struct Let; #[cfg(test)] impl Command for Let { fn name(&self) -> &str { "let" } fn usage(&self) -> &str { "Create a variable and give it a value." } fn signature(&self) -> nu_protocol::Signature { Signature::build("let") .required("var_name", SyntaxShape::VarWithOptType, "variable name") .required( "initial_value", SyntaxShape::Keyword(b"=".to_vec(), Box::new(SyntaxShape::MathExpression)), "equals sign followed by value", ) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } fn test_int( test_tag: &str, // name of sub-test test: &[u8], // input expression expected_val: Expr, // (usually Expr::{Int,String, Float}, not ::BinOp... expected_err: Option<&str>, ) // substring in error text { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, test, true); let err = working_set.parse_errors.first(); if let Some(err_pat) = expected_err { if let Some(parse_err) = err { let act_err = format!("{:?}", parse_err); assert!( act_err.contains(err_pat), "{test_tag}: expected err to contain {err_pat}, but actual error was {act_err}" ); } else { assert!( err.is_some(), "{test_tag}: expected err containing {err_pat}, but no error returned" ); } } else { assert!(err.is_none(), "{test_tag}: unexpected error {err:#?}"); assert_eq!(block.len(), 1, "{test_tag}: result block length > 1"); let expressions = &block[0]; assert_eq!( expressions.len(), 1, "{test_tag}: got multiple result expressions, expected 1" ); if let PipelineElement::Expression( _, Expression { expr: observed_val, .. }, ) = &expressions[0] { compare_rhs_binaryOp(test_tag, &expected_val, observed_val); } } } #[allow(non_snake_case)] fn compare_rhs_binaryOp( test_tag: &str, expected: &Expr, // the rhs expr we hope to see (::Int, ::Float, not ::B) observed: &Expr, // the Expr actually provided: can be ::Int, ::Float, ::String, // or ::BinOp (in which case rhs is checked), or ::Call (in which case cmd is checked) ) { match observed { Expr::Int(..) | Expr::Float(..) | Expr::String(..) => { assert_eq!( expected, observed, "{test_tag}: Expected: {expected:#?}, observed {observed:#?}" ); } Expr::BinaryOp(_, _, e) => { let observed_expr = &e.expr; // can't pattern match Box, but can match the box, then deref in separate statement. assert_eq!( expected, observed_expr, "{test_tag}: Expected: {expected:#?}, observed: {observed:#?}" ) } Expr::ExternalCall(e, _, _) => { let observed_expr = &e.expr; assert_eq!( expected, observed_expr, "{test_tag}: Expected: {expected:#?}, observed: {observed_expr:#?}" ) } _ => { panic!("{test_tag}: Unexpected Expr:: variant returned, observed {observed:#?}"); } } } #[test] pub fn multi_test_parse_int() { struct Test<'a>(&'a str, &'a [u8], Expr, Option<&'a str>); // use test expression of form '0 + x' to force parse() to parse x as numeric. // if expression were just 'x', parse() would try other items that would mask the error we're looking for. let tests = vec![ Test("binary literal int", b"0 + 0b0", Expr::Int(0), None), Test( "binary literal invalid digits", b"0 + 0b2", Expr::Int(0), Some("invalid digits for radix 2"), ), Test("octal literal int", b"0 + 0o1", Expr::Int(1), None), Test( "octal literal int invalid digits", b"0 + 0o8", Expr::Int(0), Some("invalid digits for radix 8"), ), Test( "octal literal int truncated", b"0 + 0o", Expr::Int(0), Some("invalid digits for radix 8"), ), Test("hex literal int", b"0 + 0x2", Expr::Int(2), None), Test( "hex literal int invalid digits", b"0 + 0x0aq", Expr::Int(0), Some("invalid digits for radix 16"), ), Test( "hex literal with 'e' not mistaken for float", b"0 + 0x00e0", Expr::Int(0xe0), None, ), // decimal (rad10) literal is anything that starts with // optional sign then a digit. Test("rad10 literal int", b"0 + 42", Expr::Int(42), None), Test( "rad10 with leading + sign", b"0 + -42", Expr::Int(-42), None, ), Test("rad10 with leading - sign", b"0 + +42", Expr::Int(42), None), Test( "flag char is string, not (invalid) int", b"-x", Expr::String("-x".into()), None, ), Test( "keyword parameter is string", b"--exact", Expr::String("--exact".into()), None, ), Test( "ranges or relative paths not confused for int", b"./a/b", Expr::String("./a/b".into()), None, ), Test( "semver data not confused for int", b"'1.0.1'", Expr::String("1.0.1".into()), None, ), ]; for test in tests { test_int(test.0, test.1, test.2, test.3); } } #[ignore] #[test] pub fn multi_test_parse_number() { struct Test<'a>(&'a str, &'a [u8], Expr, Option<&'a str>); // use test expression of form '0 + x' to force parse() to parse x as numeric. // if expression were just 'x', parse() would try other items that would mask the error we're looking for. let tests = vec![ Test("float decimal", b"0 + 43.5", Expr::Float(43.5), None), //Test("float with leading + sign", b"0 + +41.7", Expr::Float(-41.7), None), Test( "float with leading - sign", b"0 + -41.7", Expr::Float(-41.7), None, ), Test( "float scientific notation", b"0 + 3e10", Expr::Float(3.00e10), None, ), Test( "float decimal literal invalid digits", b"0 + .3foo", Expr::Int(0), Some("invalid digits"), ), Test( "float scientific notation literal invalid digits", b"0 + 3e0faa", Expr::Int(0), Some("invalid digits"), ), Test( // odd that error is unsupportedOperation, but it does fail. "decimal literal int 2 leading signs", b"0 + --9", Expr::Int(0), Some("UnsupportedOperation"), ), //Test( // ". should not be taken as float", // b"abc + .foo", // Expr::String("..".into()), // None, //), ]; for test in tests { test_int(test.0, test.1, test.2, test.3); } } #[ignore] #[test] fn test_parse_any() { let test = b"1..10"; let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, test, true); match (block, working_set.parse_errors.first()) { (_, Some(e)) => { println!("test: {test:?}, error: {e:#?}"); } (b, None) => { println!("test: {test:?}, parse: {b:#?}"); } } } #[test] pub fn parse_int() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"3", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); assert!(matches!( expressions[0], PipelineElement::Expression( _, Expression { expr: Expr::Int(3), .. } ) )) } #[test] pub fn parse_int_with_underscores() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"420_69_2023", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); assert!(matches!( expressions[0], PipelineElement::Expression( _, Expression { expr: Expr::Int(420692023), .. } ) )) } #[test] pub fn parse_cell_path() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); working_set.add_variable( "foo".to_string().into_bytes(), Span::test_data(), nu_protocol::Type::Record(vec![]), false, ); let block = parse(&mut working_set, None, b"$foo.bar.baz", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); // hoo boy this pattern matching is a pain if let PipelineElement::Expression(_, expr) = &expressions[0] { if let Expr::FullCellPath(b) = &expr.expr { assert!(matches!( b.head, Expression { expr: Expr::Var(_), .. } )); if let [a, b] = &b.tail[..] { if let PathMember::String { val, optional, .. } = a { assert_eq!(val, "bar"); assert_eq!(optional, &false); } else { panic!("wrong type") } if let PathMember::String { val, optional, .. } = b { assert_eq!(val, "baz"); assert_eq!(optional, &false); } else { panic!("wrong type") } } else { panic!("cell path tail is unexpected") } } else { panic!("Not a cell path"); } } else { panic!("Not an expression") } } #[test] pub fn parse_cell_path_optional() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); working_set.add_variable( "foo".to_string().into_bytes(), Span::test_data(), nu_protocol::Type::Record(vec![]), false, ); let block = parse(&mut working_set, None, b"$foo.bar?.baz", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); // hoo boy this pattern matching is a pain if let PipelineElement::Expression(_, expr) = &expressions[0] { if let Expr::FullCellPath(b) = &expr.expr { assert!(matches!( b.head, Expression { expr: Expr::Var(_), .. } )); if let [a, b] = &b.tail[..] { if let PathMember::String { val, optional, .. } = a { assert_eq!(val, "bar"); assert_eq!(optional, &true); } else { panic!("wrong type") } if let PathMember::String { val, optional, .. } = b { assert_eq!(val, "baz"); assert_eq!(optional, &false); } else { panic!("wrong type") } } else { panic!("cell path tail is unexpected") } } else { panic!("Not a cell path"); } } else { panic!("Not an expression") } } #[test] pub fn parse_binary_with_hex_format() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"0x[13]", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { assert_eq!(expr.expr, Expr::Binary(vec![0x13])) } else { panic!("Not an expression") } } #[test] pub fn parse_binary_with_incomplete_hex_format() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"0x[3]", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { assert_eq!(expr.expr, Expr::Binary(vec![0x03])) } else { panic!("Not an expression") } } #[test] pub fn parse_binary_with_binary_format() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"0b[1010 1000]", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { assert_eq!(expr.expr, Expr::Binary(vec![0b10101000])) } else { panic!("Not an expression") } } #[test] pub fn parse_binary_with_incomplete_binary_format() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"0b[10]", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { assert_eq!(expr.expr, Expr::Binary(vec![0b00000010])) } else { panic!("Not an expression") } } #[test] pub fn parse_binary_with_octal_format() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"0o[250]", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { assert_eq!(expr.expr, Expr::Binary(vec![0o250])) } else { panic!("Not an expression") } } #[test] pub fn parse_binary_with_incomplete_octal_format() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"0o[2]", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { assert_eq!(expr.expr, Expr::Binary(vec![0o2])) } else { panic!("Not an expression") } } #[test] pub fn parse_binary_with_invalid_octal_format() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"0b[90]", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { assert!(!matches!(&expr.expr, Expr::Binary(_))) } else { panic!("Not an expression") } } #[test] pub fn parse_binary_with_multi_byte_char() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); // found using fuzzing, Rust can panic if you slice into this string let contents = b"0x[\xEF\xBF\xBD]"; let block = parse(&mut working_set, None, contents, true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { assert!(!matches!(&expr.expr, Expr::Binary(_))) } else { panic!("Not an expression") } } #[test] pub fn parse_call() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')); working_set.add_decl(sig.predeclare()); let block = parse(&mut working_set, None, b"foo", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression( _, Expression { expr: Expr::Call(call), .. }, ) = &expressions[0] { assert_eq!(call.decl_id, 0); } } #[test] pub fn parse_call_missing_flag_arg() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let sig = Signature::build("foo").named("jazz", SyntaxShape::Int, "jazz!!", Some('j')); working_set.add_decl(sig.predeclare()); parse(&mut working_set, None, b"foo --jazz", true); assert!(matches!( working_set.parse_errors.first(), Some(ParseError::MissingFlagParam(..)) )); } #[test] pub fn parse_call_missing_short_flag_arg() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let sig = Signature::build("foo").named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')); working_set.add_decl(sig.predeclare()); parse(&mut working_set, None, b"foo -j", true); assert!(matches!( working_set.parse_errors.first(), Some(ParseError::MissingFlagParam(..)) )); } #[test] pub fn parse_call_short_flag_batch_arg_allowed() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let sig = Signature::build("foo") .named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')) .switch("--math", "math!!", Some('m')); working_set.add_decl(sig.predeclare()); let block = parse(&mut working_set, None, b"foo -mj 10", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression( _, Expression { expr: Expr::Call(call), .. }, ) = &expressions[0] { assert_eq!(call.decl_id, 0); assert_eq!(call.arguments.len(), 2); matches!(call.arguments[0], Argument::Named((_, None, None))); matches!(call.arguments[1], Argument::Named((_, None, Some(_)))); } } #[test] pub fn parse_call_short_flag_batch_arg_disallowed() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let sig = Signature::build("foo") .named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')) .switch("--math", "math!!", Some('m')); working_set.add_decl(sig.predeclare()); parse(&mut working_set, None, b"foo -jm 10", true); assert!(matches!( working_set.parse_errors.first(), Some(ParseError::OnlyLastFlagInBatchCanTakeArg(..)) )); } #[test] pub fn parse_call_short_flag_batch_disallow_multiple_args() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let sig = Signature::build("foo") .named("--math", SyntaxShape::Int, "math!!", Some('m')) .named("--jazz", SyntaxShape::Int, "jazz!!", Some('j')); working_set.add_decl(sig.predeclare()); parse(&mut working_set, None, b"foo -mj 10 20", true); assert!(matches!( working_set.parse_errors.first(), Some(ParseError::OnlyLastFlagInBatchCanTakeArg(..)) )); } #[test] pub fn parse_call_unknown_shorthand() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let sig = Signature::build("foo").switch("--jazz", "jazz!!", Some('j')); working_set.add_decl(sig.predeclare()); parse(&mut working_set, None, b"foo -mj", true); assert!(matches!( working_set.parse_errors.first(), Some(ParseError::UnknownFlag(..)) )); } #[test] pub fn parse_call_extra_positional() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let sig = Signature::build("foo").switch("--jazz", "jazz!!", Some('j')); working_set.add_decl(sig.predeclare()); parse(&mut working_set, None, b"foo -j 100", true); assert!(matches!( working_set.parse_errors.first(), Some(ParseError::ExtraPositional(..)) )); } #[test] pub fn parse_call_missing_req_positional() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let sig = Signature::build("foo").required("jazz", SyntaxShape::Int, "jazz!!"); working_set.add_decl(sig.predeclare()); parse(&mut working_set, None, b"foo", true); assert!(matches!( working_set.parse_errors.first(), Some(ParseError::MissingPositional(..)) )); } #[test] pub fn parse_call_missing_req_flag() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let sig = Signature::build("foo").required_named("--jazz", SyntaxShape::Int, "jazz!!", None); working_set.add_decl(sig.predeclare()); parse(&mut working_set, None, b"foo", true); assert!(matches!( working_set.parse_errors.first(), Some(ParseError::MissingRequiredFlag(..)) )); } #[test] fn test_nothing_comparison_eq() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"2 == null", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); assert!(matches!( &expressions[0], PipelineElement::Expression( _, Expression { expr: Expr::BinaryOp(..), .. } ) )) } #[rstest] #[case(b"let a = 1 err> /dev/null", "RedirectionInLetMut")] #[case(b"let a = 1 out> /dev/null", "RedirectionInLetMut")] #[case(b"mut a = 1 err> /dev/null", "RedirectionInLetMut")] #[case(b"mut a = 1 out> /dev/null", "RedirectionInLetMut")] // This two cases cause AssignInPipeline instead of RedirectionInLetMut #[case(b"let a = 1 out+err> /dev/null", "AssignInPipeline")] #[case(b"mut a = 1 out+err> /dev/null", "AssignInPipeline")] fn test_redirection_with_letmut(#[case] phase: &[u8], #[case] expected: &str) { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let _block = parse(&mut working_set, None, phase, true); match expected { "RedirectionInLetMut" => assert!(matches!( working_set.parse_errors.first(), Some(ParseError::RedirectionInLetMut(_, _)) )), "AssignInPipeline" => assert!(matches!( working_set.parse_errors.first(), Some(ParseError::AssignInPipeline(_, _, _, _)) )), _ => panic!("unexpected pattern"), } } #[test] fn test_nothing_comparison_neq() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"2 != null", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); assert!(matches!( &expressions[0], PipelineElement::Expression( _, Expression { expr: Expr::BinaryOp(..), .. } ) )) } mod string { use super::*; #[test] pub fn parse_string() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"\"hello nushell\"", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { assert_eq!(expr.expr, Expr::String("hello nushell".to_string())) } else { panic!("Not an expression") } } mod interpolation { use nu_protocol::Span; use super::*; #[test] pub fn parse_string_interpolation() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"$\"hello (39 + 3)\"", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { let subexprs: Vec<&Expr> = match expr { Expression { expr: Expr::StringInterpolation(expressions), .. } => expressions.iter().map(|e| &e.expr).collect(), _ => panic!("Expected an `Expr::StringInterpolation`"), }; assert_eq!(subexprs.len(), 2); assert_eq!(subexprs[0], &Expr::String("hello ".to_string())); assert!(matches!(subexprs[1], &Expr::FullCellPath(..))); } else { panic!("Not an expression") } } #[test] pub fn parse_string_interpolation_escaped_parenthesis() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"$\"hello \\(39 + 3)\"", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { let subexprs: Vec<&Expr> = match expr { Expression { expr: Expr::StringInterpolation(expressions), .. } => expressions.iter().map(|e| &e.expr).collect(), _ => panic!("Expected an `Expr::StringInterpolation`"), }; assert_eq!(subexprs.len(), 1); assert_eq!(subexprs[0], &Expr::String("hello (39 + 3)".to_string())); } else { panic!("Not an expression") } } #[test] pub fn parse_string_interpolation_escaped_backslash_before_parenthesis() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"$\"hello \\\\(39 + 3)\"", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { let subexprs: Vec<&Expr> = match expr { Expression { expr: Expr::StringInterpolation(expressions), .. } => expressions.iter().map(|e| &e.expr).collect(), _ => panic!("Expected an `Expr::StringInterpolation`"), }; assert_eq!(subexprs.len(), 2); assert_eq!(subexprs[0], &Expr::String("hello \\".to_string())); assert!(matches!(subexprs[1], &Expr::FullCellPath(..))); } else { panic!("Not an expression") } } #[test] pub fn parse_string_interpolation_backslash_count_reset_by_expression() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, b"$\"\\(1 + 3)\\(7 - 5)\"", true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 1); if let PipelineElement::Expression(_, expr) = &expressions[0] { let subexprs: Vec<&Expr> = match expr { Expression { expr: Expr::StringInterpolation(expressions), .. } => expressions.iter().map(|e| &e.expr).collect(), _ => panic!("Expected an `Expr::StringInterpolation`"), }; assert_eq!(subexprs.len(), 1); assert_eq!(subexprs[0], &Expr::String("(1 + 3)(7 - 5)".to_string())); } else { panic!("Not an expression") } } #[test] pub fn parse_nested_expressions() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); working_set.add_variable( "foo".to_string().into_bytes(), Span::new(0, 0), nu_protocol::Type::CellPath, false, ); parse( &mut working_set, None, br#" $"(($foo))" "#, true, ); assert!(working_set.parse_errors.is_empty()); } #[test] pub fn parse_path_expression() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); working_set.add_variable( "foo".to_string().into_bytes(), Span::new(0, 0), nu_protocol::Type::CellPath, false, ); parse( &mut working_set, None, br#" $"Hello ($foo.bar)" "#, true, ); assert!(working_set.parse_errors.is_empty()); } } } #[rstest] #[case(b"let a = }")] #[case(b"mut a = }")] #[case(b"let a = | }")] #[case(b"mut a = | }")] fn test_semi_open_brace(#[case] phrase: &[u8]) { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); // this should not panic let _block = parse(&mut working_set, None, phrase, true); } mod range { use super::*; use nu_protocol::ast::{RangeInclusion, RangeOperator}; #[rstest] #[case(b"0..10", RangeInclusion::Inclusive, "inclusive")] #[case(b"0..=10", RangeInclusion::Inclusive, "=inclusive")] #[case(b"0..<10", RangeInclusion::RightExclusive, "exclusive")] #[case(b"10..0", RangeInclusion::Inclusive, "reverse inclusive")] #[case(b"10..=0", RangeInclusion::Inclusive, "reverse =inclusive")] #[case( b"(3 - 3)..<(8 + 2)", RangeInclusion::RightExclusive, "subexpression exclusive" )] #[case( b"(3 - 3)..(8 + 2)", RangeInclusion::Inclusive, "subexpression inclusive" )] #[case( b"(3 - 3)..=(8 + 2)", RangeInclusion::Inclusive, "subexpression =inclusive" )] #[case(b"-10..-3", RangeInclusion::Inclusive, "negative inclusive")] #[case(b"-10..=-3", RangeInclusion::Inclusive, "negative =inclusive")] #[case(b"-10..<-3", RangeInclusion::RightExclusive, "negative exclusive")] fn parse_bounded_range( #[case] phrase: &[u8], #[case] inclusion: RangeInclusion, #[case] tag: &str, ) { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, phrase, true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1, "{tag}: block length"); let expressions = &block[0]; assert_eq!(expressions.len(), 1, "{tag}: expression length"); if let PipelineElement::Expression( _, Expression { expr: Expr::Range( Some(_), None, Some(_), RangeOperator { inclusion: the_inclusion, .. }, ), .. }, ) = expressions[0] { assert_eq!( the_inclusion, inclusion, "{tag}: wrong RangeInclusion {the_inclusion:?}" ); } else { panic!("{tag}: expression mismatch.") }; } #[rstest] #[case( b"let a = 2; $a..10", RangeInclusion::Inclusive, "variable start inclusive" )] #[case( b"let a = 2; $a..=10", RangeInclusion::Inclusive, "variable start =inclusive" )] #[case( b"let a = 2; $a..<($a + 10)", RangeInclusion::RightExclusive, "subexpression variable exclusive" )] fn parse_variable_range( #[case] phrase: &[u8], #[case] inclusion: RangeInclusion, #[case] tag: &str, ) { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); working_set.add_decl(Box::new(Let)); let block = parse(&mut working_set, None, phrase, true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 2, "{tag} block len 2"); let expressions = &block[1]; assert_eq!(expressions.len(), 1, "{tag}: expression length 1"); if let PipelineElement::Expression( _, Expression { expr: Expr::Range( Some(_), None, Some(_), RangeOperator { inclusion: the_inclusion, .. }, ), .. }, ) = expressions[0] { assert_eq!( the_inclusion, inclusion, "{tag}: wrong RangeInclusion {the_inclusion:?}" ); } else { panic!("{tag}: expression mismatch.") }; } #[rstest] #[case(b"0..", RangeInclusion::Inclusive, "right unbounded")] #[case(b"0..=", RangeInclusion::Inclusive, "right unbounded =inclusive")] #[case(b"0..<", RangeInclusion::RightExclusive, "right unbounded")] fn parse_right_unbounded_range( #[case] phrase: &[u8], #[case] inclusion: RangeInclusion, #[case] tag: &str, ) { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, phrase, true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1, "{tag}: block len 1"); let expressions = &block[0]; assert_eq!(expressions.len(), 1, "{tag}: expression length 1"); if let PipelineElement::Expression( _, Expression { expr: Expr::Range( Some(_), None, None, RangeOperator { inclusion: the_inclusion, .. }, ), .. }, ) = expressions[0] { assert_eq!( the_inclusion, inclusion, "{tag}: wrong RangeInclusion {the_inclusion:?}" ); } else { panic!("{tag}: expression mismatch.") }; } #[rstest] #[case(b"..10", RangeInclusion::Inclusive, "left unbounded inclusive")] #[case(b"..=10", RangeInclusion::Inclusive, "left unbounded =inclusive")] #[case(b"..<10", RangeInclusion::RightExclusive, "left unbounded exclusive")] fn parse_left_unbounded_range( #[case] phrase: &[u8], #[case] inclusion: RangeInclusion, #[case] tag: &str, ) { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, phrase, true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1, "{tag}: block len 1"); let expressions = &block[0]; assert_eq!(expressions.len(), 1, "{tag}: expression length 1"); if let PipelineElement::Expression( _, Expression { expr: Expr::Range( None, None, Some(_), RangeOperator { inclusion: the_inclusion, .. }, ), .. }, ) = expressions[0] { assert_eq!( the_inclusion, inclusion, "{tag}: wrong RangeInclusion {the_inclusion:?}" ); } else { panic!("{tag}: expression mismatch.") }; } #[rstest] #[case(b"2.0..4.0..10.0", RangeInclusion::Inclusive, "float inclusive")] #[case(b"2.0..4.0..=10.0", RangeInclusion::Inclusive, "float =inclusive")] #[case(b"2.0..4.0..<10.0", RangeInclusion::RightExclusive, "float exclusive")] fn parse_float_range( #[case] phrase: &[u8], #[case] inclusion: RangeInclusion, #[case] tag: &str, ) { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let block = parse(&mut working_set, None, phrase, true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1, "{tag}: block length 1"); let expressions = &block[0]; assert_eq!(expressions.len(), 1, "{tag}: expression length 1"); if let PipelineElement::Expression( _, Expression { expr: Expr::Range( Some(_), Some(_), Some(_), RangeOperator { inclusion: the_inclusion, .. }, ), .. }, ) = expressions[0] { assert_eq!( the_inclusion, inclusion, "{tag}: wrong RangeInclusion {the_inclusion:?}" ); } else { panic!("{tag}: expression mismatch.") }; } #[test] fn bad_parse_does_crash() { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); let _ = parse(&mut working_set, None, b"(0)..\"a\"", true); assert!(!working_set.parse_errors.is_empty()); } } #[cfg(test)] mod input_types { use super::*; use nu_protocol::ast::Call; use nu_protocol::{ast::Argument, Category, PipelineData, ShellError, Type}; #[derive(Clone)] pub struct LsTest; impl Command for LsTest { fn name(&self) -> &str { "ls" } fn usage(&self) -> &str { "Mock ls command." } fn signature(&self) -> nu_protocol::Signature { Signature::build(self.name()).category(Category::Default) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } #[derive(Clone)] pub struct Def; impl Command for Def { fn name(&self) -> &str { "def" } fn usage(&self) -> &str { "Mock def command." } fn signature(&self) -> nu_protocol::Signature { Signature::build("def") .input_output_types(vec![(Type::Nothing, Type::Nothing)]) .required("def_name", SyntaxShape::String, "definition name") .required("params", SyntaxShape::Signature, "parameters") .required("body", SyntaxShape::Closure(None), "body of the definition") .category(Category::Core) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } #[derive(Clone)] pub struct GroupBy; impl Command for GroupBy { fn name(&self) -> &str { "group-by" } fn usage(&self) -> &str { "Mock group-by command." } fn signature(&self) -> nu_protocol::Signature { Signature::build(self.name()) .required("column", SyntaxShape::String, "column name") .category(Category::Default) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } #[derive(Clone)] pub struct ToCustom; impl Command for ToCustom { fn name(&self) -> &str { "to-custom" } fn usage(&self) -> &str { "Mock converter command." } fn signature(&self) -> nu_protocol::Signature { Signature::build(self.name()) .input_output_type(Type::Any, Type::Custom("custom".into())) .category(Category::Custom("custom".into())) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } #[derive(Clone)] pub struct GroupByCustom; impl Command for GroupByCustom { fn name(&self) -> &str { "group-by" } fn usage(&self) -> &str { "Mock custom group-by command." } fn signature(&self) -> nu_protocol::Signature { Signature::build(self.name()) .required("column", SyntaxShape::String, "column name") .required("other", SyntaxShape::String, "other value") .input_output_type(Type::Custom("custom".into()), Type::Custom("custom".into())) .category(Category::Custom("custom".into())) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } #[derive(Clone)] pub struct AggCustom; impl Command for AggCustom { fn name(&self) -> &str { "agg" } fn usage(&self) -> &str { "Mock custom agg command." } fn signature(&self) -> nu_protocol::Signature { Signature::build(self.name()) .required("operation", SyntaxShape::String, "operation") .input_output_type(Type::Custom("custom".into()), Type::Custom("custom".into())) .category(Category::Custom("custom".into())) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } #[derive(Clone)] pub struct AggMin; impl Command for AggMin { fn name(&self) -> &str { "min" } fn usage(&self) -> &str { "Mock custom min command." } fn signature(&self) -> nu_protocol::Signature { Signature::build(self.name()).category(Category::Custom("custom".into())) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } #[derive(Clone)] pub struct WithColumn; impl Command for WithColumn { fn name(&self) -> &str { "with-column" } fn usage(&self) -> &str { "Mock custom with-column command." } fn signature(&self) -> nu_protocol::Signature { Signature::build(self.name()) .rest("operation", SyntaxShape::Any, "operation") .input_output_type(Type::Custom("custom".into()), Type::Custom("custom".into())) .category(Category::Custom("custom".into())) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } #[derive(Clone)] pub struct Collect; impl Command for Collect { fn name(&self) -> &str { "collect" } fn usage(&self) -> &str { "Mock custom collect command." } fn signature(&self) -> nu_protocol::Signature { Signature::build(self.name()) .input_output_type(Type::Custom("custom".into()), Type::Custom("custom".into())) .category(Category::Custom("custom".into())) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } #[derive(Clone)] pub struct IfMocked; impl Command for IfMocked { fn name(&self) -> &str { "if" } fn usage(&self) -> &str { "Mock if command." } fn signature(&self) -> nu_protocol::Signature { Signature::build("if") .required("cond", SyntaxShape::MathExpression, "condition to check") .required( "then_block", SyntaxShape::Block, "block to run if check succeeds", ) .optional( "else_expression", SyntaxShape::Keyword( b"else".to_vec(), Box::new(SyntaxShape::OneOf(vec![ SyntaxShape::Block, SyntaxShape::Expression, ])), ), "expression or block to run if check fails", ) .category(Category::Core) } fn run( &self, _engine_state: &EngineState, _stack: &mut Stack, _call: &Call, _input: PipelineData, ) -> Result { todo!() } } fn add_declarations(engine_state: &mut EngineState) { let delta = { let mut working_set = StateWorkingSet::new(engine_state); working_set.add_decl(Box::new(Let)); working_set.add_decl(Box::new(Def)); working_set.add_decl(Box::new(AggCustom)); working_set.add_decl(Box::new(GroupByCustom)); working_set.add_decl(Box::new(GroupBy)); working_set.add_decl(Box::new(LsTest)); working_set.add_decl(Box::new(ToCustom)); working_set.add_decl(Box::new(AggMin)); working_set.add_decl(Box::new(Collect)); working_set.add_decl(Box::new(WithColumn)); working_set.add_decl(Box::new(IfMocked)); working_set.render() }; engine_state .merge_delta(delta) .expect("Error merging delta"); } #[test] fn call_non_custom_types_test() { let mut engine_state = EngineState::new(); add_declarations(&mut engine_state); let mut working_set = StateWorkingSet::new(&engine_state); let input = r#"ls | group-by name"#; let block = parse(&mut working_set, None, input.as_bytes(), true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; assert_eq!(expressions.len(), 2); match &expressions[0] { PipelineElement::Expression( _, Expression { expr: Expr::Call(call), .. }, ) => { let expected_id = working_set.find_decl(b"ls").unwrap(); assert_eq!(call.decl_id, expected_id) } _ => panic!("Expected expression Call not found"), } match &expressions[1] { PipelineElement::Expression( _, Expression { expr: Expr::Call(call), .. }, ) => { let expected_id = working_set.find_decl(b"group-by").unwrap(); assert_eq!(call.decl_id, expected_id) } _ => panic!("Expected expression Call not found"), } } #[test] fn nested_operations_test() { let mut engine_state = EngineState::new(); add_declarations(&mut engine_state); let (block, delta) = { let mut working_set = StateWorkingSet::new(&engine_state); let input = r#"ls | to-custom | group-by name other | agg ("b" | min)"#; let block = parse(&mut working_set, None, input.as_bytes(), true); (block, working_set.render()) }; engine_state.merge_delta(delta).unwrap(); let expressions = &block[0]; match &expressions[3] { PipelineElement::Expression( _, Expression { expr: Expr::Call(call), .. }, ) => { let arg = &call.arguments[0]; match arg { Argument::Positional(a) => match &a.expr { Expr::FullCellPath(path) => match &path.head.expr { Expr::Subexpression(id) => { let block = engine_state.get_block(*id); let expressions = &block[0]; assert_eq!(expressions.len(), 2); match &expressions[1] { PipelineElement::Expression( _, Expression { expr: Expr::Call(call), .. }, ) => { let working_set = StateWorkingSet::new(&engine_state); let expected_id = working_set.find_decl(b"min").unwrap(); assert_eq!(call.decl_id, expected_id) } _ => panic!("Expected expression Call not found"), } } _ => panic!("Expected Subexpression not found"), }, _ => panic!("Expected FullCellPath not found"), }, _ => panic!("Expected Argument Positional not found"), } } _ => panic!("Expected expression Call not found"), } } #[test] fn call_with_list_test() { let mut engine_state = EngineState::new(); add_declarations(&mut engine_state); let mut working_set = StateWorkingSet::new(&engine_state); let input = r#"[[a b]; [1 2] [3 4]] | to-custom | with-column [ ("a" | min) ("b" | min) ] | collect"#; let block = parse(&mut working_set, None, input.as_bytes(), true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 1); let expressions = &block[0]; match &expressions[2] { PipelineElement::Expression( _, Expression { expr: Expr::Call(call), .. }, ) => { let expected_id = working_set.find_decl(b"with-column").unwrap(); assert_eq!(call.decl_id, expected_id) } _ => panic!("Expected expression Call not found"), } match &expressions[3] { PipelineElement::Expression( _, Expression { expr: Expr::Call(call), .. }, ) => { let expected_id = working_set.find_decl(b"collect").unwrap(); assert_eq!(call.decl_id, expected_id) } _ => panic!("Expected expression Call not found"), } } #[test] fn operations_within_blocks_test() { let mut engine_state = EngineState::new(); add_declarations(&mut engine_state); let mut working_set = StateWorkingSet::new(&engine_state); let inputs = vec![ r#"let a = 'b'; ($a == 'b') or ($a == 'b')"#, r#"let a = 'b'; ($a == 'b') or ($a == 'b') and ($a == 'b')"#, r#"let a = 1; ($a == 1) or ($a == 2) and ($a == 3)"#, r#"let a = 'b'; if ($a == 'b') or ($a == 'b') { true } else { false }"#, r#"let a = 1; if ($a == 1) or ($a > 0) { true } else { false }"#, ]; for input in inputs { let block = parse(&mut working_set, None, input.as_bytes(), true); assert!(working_set.parse_errors.is_empty()); assert_eq!(block.len(), 2, "testing: {input}"); } } #[test] fn else_errors_correctly() { let mut engine_state = EngineState::new(); add_declarations(&mut engine_state); let mut working_set = StateWorkingSet::new(&engine_state); parse( &mut working_set, None, b"if false { 'a' } else { $foo }", true, ); assert!(matches!( working_set.parse_errors.first(), Some(ParseError::VariableNotFound(_, _)) )); } #[test] fn else_if_errors_correctly() { let mut engine_state = EngineState::new(); add_declarations(&mut engine_state); let mut working_set = StateWorkingSet::new(&engine_state); parse( &mut working_set, None, b"if false { 'a' } else $foo { 'b' }", true, ); assert!(matches!( working_set.parse_errors.first(), Some(ParseError::VariableNotFound(_, _)) )); } #[rstest] #[case::input_output(b"def q []: int -> int {1}", false)] #[case::input_output(b"def q []: string -> string {'qwe'}", false)] #[case::input_output(b"def q []: nothing -> nothing {null}", false)] #[case::input_output(b"def q []: list -> list {[]}", false)] #[case::input_output( b"def q []: record -> record {{c: 1 e: 1}}", false )] #[case::input_output( b"def q []: table -> table {[{c: 1 e: 1}]}", false )] #[case::input_output( b"def q []: nothing -> record e: int> {{c: {a: 1 b: 2} e: 1}}", false )] #[case::input_output(b"def q []: nothing -> list record record {{a: 1}}", true)] #[case::input_output(b"def q []: nothing -> record {{a: {a: 1}}}", true)] #[case::vardecl(b"let a: int = 1", false)] #[case::vardecl(b"let a: string = 'qwe'", false)] #[case::vardecl(b"let a: nothing = null", false)] #[case::vardecl(b"let a: list = []", false)] #[case::vardecl(b"let a: record = {a: 1 b: 1}", false)] #[case::vardecl( b"let a: record e: int> = {c: {a: 1 b: 2} e: 1}", false )] #[case::vardecl(b"let a: table = [[a b]; [1 1]]", false)] #[case::vardecl(b"let a: list = []", true)] #[case::vardecl(b"let a: record = {a: 1 b: {a: 1}}", true)] fn test_type_annotations(#[case] phrase: &[u8], #[case] expect_errors: bool) { let mut engine_state = EngineState::new(); add_declarations(&mut engine_state); let mut working_set = StateWorkingSet::new(&engine_state); // this should not panic let _block = parse(&mut working_set, None, phrase, false); // check that no parse errors happened assert_eq!( !working_set.parse_errors.is_empty(), expect_errors, "Got errors {:?}", working_set.parse_errors ) } } #[cfg(test)] mod operator { use super::*; #[rstest] #[case(br#""abc" < "bca""#, "string < string")] #[case(br#""abc" <= "bca""#, "string <= string")] #[case(br#""abc" > "bca""#, "string > string")] #[case(br#""abc" >= "bca""#, "string >= string")] fn parse_comparison_operators_with_string_and_string( #[case] expr: &[u8], #[case] test_tag: &str, ) { let engine_state = EngineState::new(); let mut working_set = StateWorkingSet::new(&engine_state); parse(&mut working_set, None, expr, false); assert_eq!( working_set.parse_errors.len(), 0, "{test_tag}: expected to be parsed successfully, but failed." ); } }