use super::super::values::{Column, NuDataFrame}; use nu_engine::CallExt; use nu_protocol::{ ast::Call, engine::{Command, EngineState, Stack}, Category, Example, PipelineData, ShellError, Signature, Span, Spanned, SyntaxShape, Type, Value, }; use polars::prelude::{DataType, Duration, IntoSeries, RollingOptionsImpl, SeriesOpsTime}; enum RollType { Min, Max, Sum, Mean, } impl RollType { fn from_str(roll_type: &str, span: Span) -> Result { match roll_type { "min" => Ok(Self::Min), "max" => Ok(Self::Max), "sum" => Ok(Self::Sum), "mean" => Ok(Self::Mean), _ => Err(ShellError::GenericError { error: "Wrong operation".into(), msg: "Operation not valid for cumulative".into(), span: Some(span), help: Some("Allowed values: min, max, sum, mean".into()), inner: vec![], }), } } fn to_str(&self) -> &'static str { match self { RollType::Min => "rolling_min", RollType::Max => "rolling_max", RollType::Sum => "rolling_sum", RollType::Mean => "rolling_mean", } } } #[derive(Clone)] pub struct Rolling; impl Command for Rolling { fn name(&self) -> &str { "dfr rolling" } fn usage(&self) -> &str { "Rolling calculation for a series." } fn signature(&self) -> Signature { Signature::build(self.name()) .required("type", SyntaxShape::String, "rolling operation") .required("window", SyntaxShape::Int, "Window size for rolling") .input_output_type( Type::Custom("dataframe".into()), Type::Custom("dataframe".into()), ) .category(Category::Custom("dataframe".into())) } fn examples(&self) -> Vec { vec![ Example { description: "Rolling sum for a series", example: "[1 2 3 4 5] | dfr into-df | dfr rolling sum 2 | dfr drop-nulls", result: Some( NuDataFrame::try_from_columns( vec![Column::new( "0_rolling_sum".to_string(), vec![ Value::test_int(3), Value::test_int(5), Value::test_int(7), Value::test_int(9), ], )], None, ) .expect("simple df for test should not fail") .into_value(Span::test_data()), ), }, Example { description: "Rolling max for a series", example: "[1 2 3 4 5] | dfr into-df | dfr rolling max 2 | dfr drop-nulls", result: Some( NuDataFrame::try_from_columns( vec![Column::new( "0_rolling_max".to_string(), vec![ Value::test_int(2), Value::test_int(3), Value::test_int(4), Value::test_int(5), ], )], None, ) .expect("simple df for test should not fail") .into_value(Span::test_data()), ), }, ] } fn run( &self, engine_state: &EngineState, stack: &mut Stack, call: &Call, input: PipelineData, ) -> Result { command(engine_state, stack, call, input) } } fn command( engine_state: &EngineState, stack: &mut Stack, call: &Call, input: PipelineData, ) -> Result { let roll_type: Spanned = call.req(engine_state, stack, 0)?; let window_size: i64 = call.req(engine_state, stack, 1)?; let df = NuDataFrame::try_from_pipeline(input, call.head)?; let series = df.as_series(call.head)?; if let DataType::Object(..) = series.dtype() { return Err(ShellError::GenericError { error: "Found object series".into(), msg: "Series of type object cannot be used for rolling operation".into(), span: Some(call.head), help: None, inner: vec![], }); } let roll_type = RollType::from_str(&roll_type.item, roll_type.span)?; let rolling_opts = RollingOptionsImpl { window_size: Duration::new(window_size), min_periods: window_size as usize, weights: None, center: false, by: None, closed_window: None, tu: None, tz: None, fn_params: None, }; let res = match roll_type { RollType::Max => series.rolling_max(rolling_opts), RollType::Min => series.rolling_min(rolling_opts), RollType::Sum => series.rolling_sum(rolling_opts), RollType::Mean => series.rolling_mean(rolling_opts), }; let mut res = res.map_err(|e| ShellError::GenericError { error: "Error calculating rolling values".into(), msg: e.to_string(), span: Some(call.head), help: None, inner: vec![], })?; let name = format!("{}_{}", series.name(), roll_type.to_str()); res.rename(&name); NuDataFrame::try_from_series(vec![res.into_series()], call.head) .map(|df| PipelineData::Value(NuDataFrame::into_value(df, call.head), None)) } #[cfg(test)] mod test { use super::super::super::eager::DropNulls; use super::super::super::test_dataframe::test_dataframe; use super::*; #[test] fn test_examples() { test_dataframe(vec![Box::new(Rolling {}), Box::new(DropNulls {})]) } }