nushell/crates/nu-std/std/iter/mod.nu
Douglas 2a3805c164
Virtual std module subdirectories (#14040)
# Description

Uses "normal" module `std/<submodule>/mod.nu` instead of renaming the
files (as requested in #13842).

# User-Facing Changes

No user-facing changes other than in `view files` results. Imports
remain the same after this PR.

# Tests + Formatting

- 🟢 `toolkit fmt`
- 🟢 `toolkit clippy`
- 🟢 `toolkit test`
- 🟢 `toolkit test stdlib`

Also manually confirmed that it does not interfere with nupm, since we
did have a conflict at one point (and it's not possible to test here).

# Performance Tests

## Linux

### Nushell Startup - No config

```nu
bench --pretty -n 200  { <path_to>/nu -c "exit" }
```

| Release | Startup Time |
| --- | --- |
| 0.98.0 | 22ms 730µs 768ns +/- 1ms 515µs 942ns
| This commit | 9ms 312µs 68ns +/- 709µs 378ns
| Yesterday's nightly | 9ms 230µs 953ns +/- 9ms 67µs 689ns

### Nushell Startup - Load full standard library

Measures relative impact of a full `use std *`, which isn't recommended,
but worth tracking.

```nu
bench --pretty -n 200  { <path_to>/nu -c "use std *; exit" }
```

| Release | Startup Time |
| --- | --- |
| 0.98.0 | 23ms 10µs 636ns +/- 1ms 277µs 854ns
| This commit | 26ms 922µs 769ns +/- 562µs 538ns
| Yesterday's nightly | 28ms 133µs 95ns +/- 761µs 943ns
| `deprecated_dirs` removal PR * | 23ms 610µs 333ns +/- 369µs 436ns

\* Current increase is partially due to double-loading `dirs` with
removal warning in older version.

# After Submitting

Still TODO - Update standard library doc
2024-10-10 06:56:37 -05:00

223 lines
5.2 KiB
Plaintext

# | Filter Extensions
#
# This module implements extensions to the `filters` commands
#
# They are prefixed with `iter` so as to avoid conflicts with
# the inbuilt filters
# Returns the first element of the list that matches the
# closure predicate, `null` otherwise
#
# # Invariant
# > The closure has to be a predicate (returning a bool value)
# > else `null` is returned
# > The closure also has to be valid for the types it receives
# > These will be flagged as errors later as closure annotations
# > are implemented
#
# # Example
# ```
# use std ["assert equal" "iter find"]
#
# let haystack = ["shell", "abc", "around", "nushell", "std"]
#
# let found = ($haystack | iter find {|it| $it starts-with "a" })
# let not_found = ($haystack | iter find {|it| $it mod 2 == 0})
#
# assert equal $found "abc"
# assert equal $not_found null
# ```
export def find [ # -> any | null
fn: closure # the closure used to perform the search
] {
try {
filter $fn | get 0?
} catch {
null
}
}
# Returns the index of the first element that matches the predicate or
# -1 if none
#
# # Invariant
# > The closure has to return a bool
#
# # Example
# ```nu
# use std ["assert equal" "iter find-index"]
#
# let res = (
# ["iter", "abc", "shell", "around", "nushell", "std"]
# | iter find-index {|x| $x starts-with 's'}
# )
# assert equal $res 2
#
# let is_even = {|x| $x mod 2 == 0}
# let res = ([3 5 13 91] | iter find-index $is_even)
# assert equal $res -1
# ```
export def find-index [ # -> int
fn: closure # the closure used to perform the search
] {
let matches = (
enumerate
| each {|it|
if (do $fn $it.item) {
$it.index
}
}
)
if ($matches | is-empty) {
-1
} else {
$matches | first
}
}
# Returns a new list with the separator between adjacent
# items of the original list
#
# # Example
# ```
# use std ["assert equal" "iter intersperse"]
#
# let res = ([1 2 3 4] | iter intersperse 0)
# assert equal $res [1 0 2 0 3 0 4]
# ```
export def intersperse [ # -> list<any>
separator: any # the separator to be used
] {
reduce --fold [] {|it, acc|
$acc ++ [$it, $separator]
}
| match $in {
[] => [],
$xs => ($xs | take (($xs | length) - 1 ))
}
}
# Returns a list of intermediate steps performed by `reduce`
# (`fold`). It takes two arguments, an initial value to seed the
# initial state and a closure that takes two arguments, the first
# being the internal state and the second the list element in the
# current iteration.
#
# # Example
# ```
# use std ["assert equal" "iter scan"]
# let scanned = ([1 2 3] | iter scan 0 {|x, y| $x + $y})
#
# assert equal $scanned [0, 1, 3, 6]
#
# # use the --noinit(-n) flag to remove the initial value from
# # the final result
# let scanned = ([1 2 3] | iter scan 0 {|x, y| $x + $y} -n)
#
# assert equal $scanned [1, 3, 6]
# ```
export def scan [ # -> list<any>
init: any # initial value to seed the initial state
fn: closure # the closure to perform the scan
--noinit(-n) # remove the initial value from the result
] {
reduce --fold [$init] {|it, acc|
$acc ++ [(do $fn ($acc | last) $it)]
}
| if $noinit {
$in | skip
} else {
$in
}
}
# Returns a list of values for which the supplied closure does not
# return `null` or an error. It is equivalent to
# `$in | each $fn | filter $fn`
#
# # Example
# ```nu
# use std ["assert equal" "iter filter-map"]
#
# let res = ([2 5 "4" 7] | iter filter-map {|it| $it ** 2})
#
# assert equal $res [4 25 49]
# ```
export def filter-map [ # -> list<any>
fn: closure # the closure to apply to the input
] {
each {|$it|
try {
do $fn $it
} catch {
null
}
}
| filter {|it|
$it != null
}
}
# Maps a closure to each nested structure and flattens the result
#
# # Example
# ```nu
# use std ["assert equal" "iter flat-map"]
#
# let res = (
# [[1 2 3] [2 3 4] [5 6 7]] | iter flat-map {|it| $it | math sum}
# )
# assert equal $res [6 9 18]
# ```
export def flat-map [ # -> list<any>
fn: closure # the closure to map to the nested structures
] {
each {|it| do $fn $it } | flatten
}
# Zips two structures and applies a closure to each of the zips
#
# # Example
# ```nu
# use std ["assert equal" "iter iter zip-with"]
#
# let res = (
# [1 2 3] | iter zip-with [2 3 4] {|a, b| $a + $b }
# )
#
# assert equal $res [3 5 7]
# ```
export def zip-with [ # -> list<any>
other: any # the structure to zip with
fn: closure # the closure to apply to the zips
] {
zip $other
| each {|it|
reduce {|it, acc| do $fn $acc $it }
}
}
# Zips two lists and returns a record with the first list as headers
#
# # Example
# ```nu
# use std ["assert equal" "iter iter zip-into-record"]
#
# let res = (
# [1 2 3] | iter zip-into-record [2 3 4]
# )
#
# assert equal $res [
# [1 2 3];
# [2 3 4]
# ]
# ```
export def zip-into-record [ # -> table<any>
other: list # the values to zip with
] {
zip $other
| into record
| [$in]
}