mirror of
https://github.com/nushell/nushell.git
synced 2025-05-29 06:17:54 +02:00
# Description This is just some cleanup. I moved to_pipeline_data and to_cache_value to the CustomValueSupport trait, where I should've put them to begin with. Co-authored-by: Jack Wright <jack.wright@disqo.com>
544 lines
17 KiB
Rust
544 lines
17 KiB
Rust
use crate::{
|
|
dataframe::values::NuSchema,
|
|
values::{CustomValueSupport, NuLazyFrame},
|
|
PolarsPlugin,
|
|
};
|
|
use nu_path::expand_path_with;
|
|
|
|
use super::super::values::NuDataFrame;
|
|
use nu_plugin::PluginCommand;
|
|
use nu_protocol::{
|
|
Category, Example, LabeledError, PipelineData, ShellError, Signature, Span, Spanned,
|
|
SyntaxShape, Type, Value,
|
|
};
|
|
|
|
use std::{
|
|
fs::File,
|
|
io::BufReader,
|
|
path::{Path, PathBuf},
|
|
};
|
|
|
|
use polars::prelude::{
|
|
CsvEncoding, CsvReader, IpcReader, JsonFormat, JsonReader, LazyCsvReader, LazyFileListReader,
|
|
LazyFrame, ParquetReader, ScanArgsIpc, ScanArgsParquet, SerReader,
|
|
};
|
|
|
|
use polars_io::{avro::AvroReader, prelude::ParallelStrategy};
|
|
|
|
#[derive(Clone)]
|
|
pub struct OpenDataFrame;
|
|
|
|
impl PluginCommand for OpenDataFrame {
|
|
type Plugin = PolarsPlugin;
|
|
|
|
fn name(&self) -> &str {
|
|
"polars open"
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"Opens CSV, JSON, JSON lines, arrow, avro, or parquet file to create dataframe."
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build(self.name())
|
|
.required(
|
|
"file",
|
|
SyntaxShape::Filepath,
|
|
"file path to load values from",
|
|
)
|
|
.switch("lazy", "creates a lazy dataframe", Some('l'))
|
|
.named(
|
|
"type",
|
|
SyntaxShape::String,
|
|
"File type: csv, tsv, json, parquet, arrow, avro. If omitted, derive from file extension",
|
|
Some('t'),
|
|
)
|
|
.named(
|
|
"delimiter",
|
|
SyntaxShape::String,
|
|
"file delimiter character. CSV file",
|
|
Some('d'),
|
|
)
|
|
.switch(
|
|
"no-header",
|
|
"Indicates if file doesn't have header. CSV file",
|
|
None,
|
|
)
|
|
.named(
|
|
"infer-schema",
|
|
SyntaxShape::Number,
|
|
"Number of rows to infer the schema of the file. CSV file",
|
|
None,
|
|
)
|
|
.named(
|
|
"skip-rows",
|
|
SyntaxShape::Number,
|
|
"Number of rows to skip from file. CSV file",
|
|
None,
|
|
)
|
|
.named(
|
|
"columns",
|
|
SyntaxShape::List(Box::new(SyntaxShape::String)),
|
|
"Columns to be selected from csv file. CSV and Parquet file",
|
|
None,
|
|
)
|
|
.named(
|
|
"schema",
|
|
SyntaxShape::Record(vec![]),
|
|
r#"Polars Schema in format [{name: str}]. CSV, JSON, and JSONL files"#,
|
|
Some('s')
|
|
)
|
|
.input_output_type(Type::Any, Type::Custom("dataframe".into()))
|
|
.category(Category::Custom("dataframe".into()))
|
|
}
|
|
|
|
fn examples(&self) -> Vec<Example> {
|
|
vec![Example {
|
|
description: "Takes a file name and creates a dataframe",
|
|
example: "polars open test.csv",
|
|
result: None,
|
|
}]
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
plugin: &Self::Plugin,
|
|
engine: &nu_plugin::EngineInterface,
|
|
call: &nu_plugin::EvaluatedCall,
|
|
_input: nu_protocol::PipelineData,
|
|
) -> Result<nu_protocol::PipelineData, LabeledError> {
|
|
command(plugin, engine, call).map_err(|e| e.into())
|
|
}
|
|
}
|
|
|
|
fn command(
|
|
plugin: &PolarsPlugin,
|
|
engine: &nu_plugin::EngineInterface,
|
|
call: &nu_plugin::EvaluatedCall,
|
|
) -> Result<PipelineData, ShellError> {
|
|
let spanned_file: Spanned<PathBuf> = call.req(0)?;
|
|
let file_path = expand_path_with(&spanned_file.item, engine.get_current_dir()?, true);
|
|
let file_span = spanned_file.span;
|
|
|
|
let type_option: Option<Spanned<String>> = call.get_flag("type")?;
|
|
|
|
let type_id = match &type_option {
|
|
Some(ref t) => Some((t.item.to_owned(), "Invalid type", t.span)),
|
|
None => file_path.extension().map(|e| {
|
|
(
|
|
e.to_string_lossy().into_owned(),
|
|
"Invalid extension",
|
|
spanned_file.span,
|
|
)
|
|
}),
|
|
};
|
|
|
|
match type_id {
|
|
Some((e, msg, blamed)) => match e.as_str() {
|
|
"csv" | "tsv" => from_csv(plugin, engine, call, &file_path, file_span),
|
|
"parquet" | "parq" => from_parquet(plugin, engine, call, &file_path, file_span),
|
|
"ipc" | "arrow" => from_ipc(plugin, engine, call, &file_path, file_span),
|
|
"json" => from_json(plugin, engine, call, &file_path, file_span),
|
|
"jsonl" => from_jsonl(plugin, engine, call, &file_path, file_span),
|
|
"avro" => from_avro(plugin, engine, call, &file_path, file_span),
|
|
_ => Err(ShellError::FileNotFoundCustom {
|
|
msg: format!(
|
|
"{msg}. Supported values: csv, tsv, parquet, ipc, arrow, json, jsonl, avro"
|
|
),
|
|
span: blamed,
|
|
}),
|
|
},
|
|
None => Err(ShellError::FileNotFoundCustom {
|
|
msg: "File without extension".into(),
|
|
span: spanned_file.span,
|
|
}),
|
|
}
|
|
.map(|value| PipelineData::Value(value, None))
|
|
}
|
|
|
|
fn from_parquet(
|
|
plugin: &PolarsPlugin,
|
|
engine: &nu_plugin::EngineInterface,
|
|
call: &nu_plugin::EvaluatedCall,
|
|
file_path: &Path,
|
|
file_span: Span,
|
|
) -> Result<Value, ShellError> {
|
|
if call.has_flag("lazy")? {
|
|
let file: String = call.req(0)?;
|
|
let args = ScanArgsParquet {
|
|
n_rows: None,
|
|
cache: true,
|
|
parallel: ParallelStrategy::Auto,
|
|
rechunk: false,
|
|
row_index: None,
|
|
low_memory: false,
|
|
cloud_options: None,
|
|
use_statistics: false,
|
|
hive_partitioning: false,
|
|
};
|
|
|
|
let df: NuLazyFrame = LazyFrame::scan_parquet(file, args)
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "Parquet reader error".into(),
|
|
msg: format!("{e:?}"),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?
|
|
.into();
|
|
|
|
df.cache_and_to_value(plugin, engine, call.head)
|
|
} else {
|
|
let columns: Option<Vec<String>> = call.get_flag("columns")?;
|
|
|
|
let r = File::open(file_path).map_err(|e| ShellError::GenericError {
|
|
error: "Error opening file".into(),
|
|
msg: e.to_string(),
|
|
span: Some(file_span),
|
|
help: None,
|
|
inner: vec![],
|
|
})?;
|
|
let reader = ParquetReader::new(r);
|
|
|
|
let reader = match columns {
|
|
None => reader,
|
|
Some(columns) => reader.with_columns(Some(columns)),
|
|
};
|
|
|
|
let df: NuDataFrame = reader
|
|
.finish()
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "Parquet reader error".into(),
|
|
msg: format!("{e:?}"),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?
|
|
.into();
|
|
|
|
df.cache_and_to_value(plugin, engine, call.head)
|
|
}
|
|
}
|
|
|
|
fn from_avro(
|
|
plugin: &PolarsPlugin,
|
|
engine: &nu_plugin::EngineInterface,
|
|
call: &nu_plugin::EvaluatedCall,
|
|
file_path: &Path,
|
|
file_span: Span,
|
|
) -> Result<Value, ShellError> {
|
|
let columns: Option<Vec<String>> = call.get_flag("columns")?;
|
|
|
|
let r = File::open(file_path).map_err(|e| ShellError::GenericError {
|
|
error: "Error opening file".into(),
|
|
msg: e.to_string(),
|
|
span: Some(file_span),
|
|
help: None,
|
|
inner: vec![],
|
|
})?;
|
|
let reader = AvroReader::new(r);
|
|
|
|
let reader = match columns {
|
|
None => reader,
|
|
Some(columns) => reader.with_columns(Some(columns)),
|
|
};
|
|
|
|
let df: NuDataFrame = reader
|
|
.finish()
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "Avro reader error".into(),
|
|
msg: format!("{e:?}"),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?
|
|
.into();
|
|
|
|
df.cache_and_to_value(plugin, engine, call.head)
|
|
}
|
|
|
|
fn from_ipc(
|
|
plugin: &PolarsPlugin,
|
|
engine: &nu_plugin::EngineInterface,
|
|
call: &nu_plugin::EvaluatedCall,
|
|
file_path: &Path,
|
|
file_span: Span,
|
|
) -> Result<Value, ShellError> {
|
|
if call.has_flag("lazy")? {
|
|
let file: String = call.req(0)?;
|
|
let args = ScanArgsIpc {
|
|
n_rows: None,
|
|
cache: true,
|
|
rechunk: false,
|
|
row_index: None,
|
|
memmap: true,
|
|
};
|
|
|
|
let df: NuLazyFrame = LazyFrame::scan_ipc(file, args)
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "IPC reader error".into(),
|
|
msg: format!("{e:?}"),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?
|
|
.into();
|
|
|
|
df.cache_and_to_value(plugin, engine, call.head)
|
|
} else {
|
|
let columns: Option<Vec<String>> = call.get_flag("columns")?;
|
|
|
|
let r = File::open(file_path).map_err(|e| ShellError::GenericError {
|
|
error: "Error opening file".into(),
|
|
msg: e.to_string(),
|
|
span: Some(file_span),
|
|
help: None,
|
|
inner: vec![],
|
|
})?;
|
|
let reader = IpcReader::new(r);
|
|
|
|
let reader = match columns {
|
|
None => reader,
|
|
Some(columns) => reader.with_columns(Some(columns)),
|
|
};
|
|
|
|
let df: NuDataFrame = reader
|
|
.finish()
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "IPC reader error".into(),
|
|
msg: format!("{e:?}"),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?
|
|
.into();
|
|
|
|
df.cache_and_to_value(plugin, engine, call.head)
|
|
}
|
|
}
|
|
|
|
fn from_json(
|
|
plugin: &PolarsPlugin,
|
|
engine: &nu_plugin::EngineInterface,
|
|
call: &nu_plugin::EvaluatedCall,
|
|
file_path: &Path,
|
|
file_span: Span,
|
|
) -> Result<Value, ShellError> {
|
|
let file = File::open(file_path).map_err(|e| ShellError::GenericError {
|
|
error: "Error opening file".into(),
|
|
msg: e.to_string(),
|
|
span: Some(file_span),
|
|
help: None,
|
|
inner: vec![],
|
|
})?;
|
|
let maybe_schema = call
|
|
.get_flag("schema")?
|
|
.map(|schema| NuSchema::try_from(&schema))
|
|
.transpose()?;
|
|
|
|
let buf_reader = BufReader::new(file);
|
|
let reader = JsonReader::new(buf_reader);
|
|
|
|
let reader = match maybe_schema {
|
|
Some(schema) => reader.with_schema(schema.into()),
|
|
None => reader,
|
|
};
|
|
|
|
let df: NuDataFrame = reader
|
|
.finish()
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "Json reader error".into(),
|
|
msg: format!("{e:?}"),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?
|
|
.into();
|
|
|
|
df.cache_and_to_value(plugin, engine, call.head)
|
|
}
|
|
|
|
fn from_jsonl(
|
|
plugin: &PolarsPlugin,
|
|
engine: &nu_plugin::EngineInterface,
|
|
call: &nu_plugin::EvaluatedCall,
|
|
file_path: &Path,
|
|
file_span: Span,
|
|
) -> Result<Value, ShellError> {
|
|
let infer_schema: Option<usize> = call.get_flag("infer-schema")?;
|
|
let maybe_schema = call
|
|
.get_flag("schema")?
|
|
.map(|schema| NuSchema::try_from(&schema))
|
|
.transpose()?;
|
|
let file = File::open(file_path).map_err(|e| ShellError::GenericError {
|
|
error: "Error opening file".into(),
|
|
msg: e.to_string(),
|
|
span: Some(file_span),
|
|
help: None,
|
|
inner: vec![],
|
|
})?;
|
|
|
|
let buf_reader = BufReader::new(file);
|
|
let reader = JsonReader::new(buf_reader)
|
|
.with_json_format(JsonFormat::JsonLines)
|
|
.infer_schema_len(infer_schema);
|
|
|
|
let reader = match maybe_schema {
|
|
Some(schema) => reader.with_schema(schema.into()),
|
|
None => reader,
|
|
};
|
|
|
|
let df: NuDataFrame = reader
|
|
.finish()
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "Json lines reader error".into(),
|
|
msg: format!("{e:?}"),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?
|
|
.into();
|
|
|
|
df.cache_and_to_value(plugin, engine, call.head)
|
|
}
|
|
|
|
fn from_csv(
|
|
plugin: &PolarsPlugin,
|
|
engine: &nu_plugin::EngineInterface,
|
|
call: &nu_plugin::EvaluatedCall,
|
|
file_path: &Path,
|
|
file_span: Span,
|
|
) -> Result<Value, ShellError> {
|
|
let delimiter: Option<Spanned<String>> = call.get_flag("delimiter")?;
|
|
let no_header: bool = call.has_flag("no-header")?;
|
|
let infer_schema: Option<usize> = call.get_flag("infer-schema")?;
|
|
let skip_rows: Option<usize> = call.get_flag("skip-rows")?;
|
|
let columns: Option<Vec<String>> = call.get_flag("columns")?;
|
|
|
|
let maybe_schema = call
|
|
.get_flag("schema")?
|
|
.map(|schema| NuSchema::try_from(&schema))
|
|
.transpose()?;
|
|
|
|
if call.has_flag("lazy")? {
|
|
let csv_reader = LazyCsvReader::new(file_path);
|
|
|
|
let csv_reader = match delimiter {
|
|
None => csv_reader,
|
|
Some(d) => {
|
|
if d.item.len() != 1 {
|
|
return Err(ShellError::GenericError {
|
|
error: "Incorrect delimiter".into(),
|
|
msg: "Delimiter has to be one character".into(),
|
|
span: Some(d.span),
|
|
help: None,
|
|
inner: vec![],
|
|
});
|
|
} else {
|
|
let delimiter = match d.item.chars().next() {
|
|
Some(d) => d as u8,
|
|
None => unreachable!(),
|
|
};
|
|
csv_reader.with_separator(delimiter)
|
|
}
|
|
}
|
|
};
|
|
|
|
let csv_reader = csv_reader.has_header(!no_header);
|
|
|
|
let csv_reader = match maybe_schema {
|
|
Some(schema) => csv_reader.with_schema(Some(schema.into())),
|
|
None => csv_reader,
|
|
};
|
|
|
|
let csv_reader = match infer_schema {
|
|
None => csv_reader,
|
|
Some(r) => csv_reader.with_infer_schema_length(Some(r)),
|
|
};
|
|
|
|
let csv_reader = match skip_rows {
|
|
None => csv_reader,
|
|
Some(r) => csv_reader.with_skip_rows(r),
|
|
};
|
|
|
|
let df: NuLazyFrame = csv_reader
|
|
.finish()
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "Parquet reader error".into(),
|
|
msg: format!("{e:?}"),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?
|
|
.into();
|
|
|
|
df.cache_and_to_value(plugin, engine, call.head)
|
|
} else {
|
|
let csv_reader = CsvReader::from_path(file_path)
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "Error creating CSV reader".into(),
|
|
msg: e.to_string(),
|
|
span: Some(file_span),
|
|
help: None,
|
|
inner: vec![],
|
|
})?
|
|
.with_encoding(CsvEncoding::LossyUtf8);
|
|
|
|
let csv_reader = match delimiter {
|
|
None => csv_reader,
|
|
Some(d) => {
|
|
if d.item.len() != 1 {
|
|
return Err(ShellError::GenericError {
|
|
error: "Incorrect delimiter".into(),
|
|
msg: "Delimiter has to be one character".into(),
|
|
span: Some(d.span),
|
|
help: None,
|
|
inner: vec![],
|
|
});
|
|
} else {
|
|
let delimiter = match d.item.chars().next() {
|
|
Some(d) => d as u8,
|
|
None => unreachable!(),
|
|
};
|
|
csv_reader.with_separator(delimiter)
|
|
}
|
|
}
|
|
};
|
|
|
|
let csv_reader = csv_reader.has_header(!no_header);
|
|
|
|
let csv_reader = match maybe_schema {
|
|
Some(schema) => csv_reader.with_schema(Some(schema.into())),
|
|
None => csv_reader,
|
|
};
|
|
|
|
let csv_reader = match infer_schema {
|
|
None => csv_reader,
|
|
Some(r) => csv_reader.infer_schema(Some(r)),
|
|
};
|
|
|
|
let csv_reader = match skip_rows {
|
|
None => csv_reader,
|
|
Some(r) => csv_reader.with_skip_rows(r),
|
|
};
|
|
|
|
let csv_reader = match columns {
|
|
None => csv_reader,
|
|
Some(columns) => csv_reader.with_columns(Some(columns)),
|
|
};
|
|
|
|
let df: NuDataFrame = csv_reader
|
|
.finish()
|
|
.map_err(|e| ShellError::GenericError {
|
|
error: "Parquet reader error".into(),
|
|
msg: format!("{e:?}"),
|
|
span: Some(call.head),
|
|
help: None,
|
|
inner: vec![],
|
|
})?
|
|
.into();
|
|
|
|
df.cache_and_to_value(plugin, engine, call.head)
|
|
}
|
|
}
|