nushell/crates/nu-parser/src/flatten.rs
Stefan Holderbach acca56f77c
Remove unused FlatShapes And/Or (#14476)
# Description
This removes the need for the `shape_and` and `shape_or` entries in the
themes. We did not color those underlying FlatShapes or operators
differently.

Closes #14372
# User-Facing Changes
Our theme handling currently doesn't reject invalid entries so should
not cause an error. The non-functional nature was already documented.
2024-11-29 22:23:40 +01:00

690 lines
26 KiB
Rust

use nu_protocol::{
ast::{
Argument, Block, Expr, Expression, ExternalArgument, ImportPatternMember, ListItem,
MatchPattern, PathMember, Pattern, Pipeline, PipelineElement, PipelineRedirection,
RecordItem,
},
engine::StateWorkingSet,
DeclId, Span, SyntaxShape, VarId,
};
use std::fmt::{Display, Formatter, Result};
#[derive(Debug, Eq, PartialEq, Ord, Clone, PartialOrd)]
pub enum FlatShape {
Binary,
Block,
Bool,
Closure,
Custom(DeclId),
DateTime,
Directory,
External,
ExternalArg,
ExternalResolved,
Filepath,
Flag,
Float,
Garbage,
GlobInterpolation,
GlobPattern,
Int,
InternalCall(DeclId),
Keyword,
List,
Literal,
MatchPattern,
Nothing,
Operator,
Pipe,
Range,
RawString,
Record,
Redirection,
Signature,
String,
StringInterpolation,
Table,
Variable(VarId),
VarDecl(VarId),
}
impl FlatShape {
pub fn as_str(&self) -> &str {
match self {
FlatShape::Binary => "shape_binary",
FlatShape::Block => "shape_block",
FlatShape::Bool => "shape_bool",
FlatShape::Closure => "shape_closure",
FlatShape::Custom(_) => "shape_custom",
FlatShape::DateTime => "shape_datetime",
FlatShape::Directory => "shape_directory",
FlatShape::External => "shape_external",
FlatShape::ExternalArg => "shape_externalarg",
FlatShape::ExternalResolved => "shape_external_resolved",
FlatShape::Filepath => "shape_filepath",
FlatShape::Flag => "shape_flag",
FlatShape::Float => "shape_float",
FlatShape::Garbage => "shape_garbage",
FlatShape::GlobInterpolation => "shape_glob_interpolation",
FlatShape::GlobPattern => "shape_globpattern",
FlatShape::Int => "shape_int",
FlatShape::InternalCall(_) => "shape_internalcall",
FlatShape::Keyword => "shape_keyword",
FlatShape::List => "shape_list",
FlatShape::Literal => "shape_literal",
FlatShape::MatchPattern => "shape_match_pattern",
FlatShape::Nothing => "shape_nothing",
FlatShape::Operator => "shape_operator",
FlatShape::Pipe => "shape_pipe",
FlatShape::Range => "shape_range",
FlatShape::RawString => "shape_raw_string",
FlatShape::Record => "shape_record",
FlatShape::Redirection => "shape_redirection",
FlatShape::Signature => "shape_signature",
FlatShape::String => "shape_string",
FlatShape::StringInterpolation => "shape_string_interpolation",
FlatShape::Table => "shape_table",
FlatShape::Variable(_) => "shape_variable",
FlatShape::VarDecl(_) => "shape_vardecl",
}
}
}
impl Display for FlatShape {
fn fmt(&self, f: &mut Formatter) -> Result {
f.write_str(self.as_str())
}
}
/*
The `_into` functions below (e.g., `flatten_block_into`) take an existing `output` `Vec`
and append more data to it. This is to reduce the number of intermediate `Vec`s.
The non-`into` functions (e.g., `flatten_block`) are part of the crate's public API
and return a new `Vec` instead of modifying an existing one.
*/
fn flatten_block_into(
working_set: &StateWorkingSet,
block: &Block,
output: &mut Vec<(Span, FlatShape)>,
) {
for pipeline in &block.pipelines {
flatten_pipeline_into(working_set, pipeline, output);
}
}
fn flatten_pipeline_into(
working_set: &StateWorkingSet,
pipeline: &Pipeline,
output: &mut Vec<(Span, FlatShape)>,
) {
for expr in &pipeline.elements {
flatten_pipeline_element_into(working_set, expr, output)
}
}
fn flatten_pipeline_element_into(
working_set: &StateWorkingSet,
pipeline_element: &PipelineElement,
output: &mut Vec<(Span, FlatShape)>,
) {
if let Some(span) = pipeline_element.pipe {
output.push((span, FlatShape::Pipe));
}
flatten_expression_into(working_set, &pipeline_element.expr, output);
if let Some(redirection) = pipeline_element.redirection.as_ref() {
match redirection {
PipelineRedirection::Single { target, .. } => {
output.push((target.span(), FlatShape::Redirection));
if let Some(expr) = target.expr() {
flatten_expression_into(working_set, expr, output);
}
}
PipelineRedirection::Separate { out, err } => {
let (out, err) = if out.span() <= err.span() {
(out, err)
} else {
(err, out)
};
output.push((out.span(), FlatShape::Redirection));
if let Some(expr) = out.expr() {
flatten_expression_into(working_set, expr, output);
}
output.push((err.span(), FlatShape::Redirection));
if let Some(expr) = err.expr() {
flatten_expression_into(working_set, expr, output);
}
}
}
}
}
fn flatten_positional_arg_into(
working_set: &StateWorkingSet,
positional: &Expression,
shape: &SyntaxShape,
output: &mut Vec<(Span, FlatShape)>,
) {
if matches!(shape, SyntaxShape::ExternalArgument)
&& matches!(positional.expr, Expr::String(..) | Expr::GlobPattern(..))
{
// Make known external arguments look more like external arguments
output.push((positional.span, FlatShape::ExternalArg));
} else {
flatten_expression_into(working_set, positional, output)
}
}
fn flatten_expression_into(
working_set: &StateWorkingSet,
expr: &Expression,
output: &mut Vec<(Span, FlatShape)>,
) {
if let Some(custom_completion) = &expr.custom_completion {
output.push((expr.span, FlatShape::Custom(*custom_completion)));
return;
}
match &expr.expr {
Expr::BinaryOp(lhs, op, rhs) => {
flatten_expression_into(working_set, lhs, output);
flatten_expression_into(working_set, op, output);
flatten_expression_into(working_set, rhs, output);
}
Expr::UnaryNot(not) => {
output.push((
Span::new(expr.span.start, expr.span.start + 3),
FlatShape::Operator,
));
flatten_expression_into(working_set, not, output);
}
Expr::Collect(_, expr) => {
flatten_expression_into(working_set, expr, output);
}
Expr::Closure(block_id) => {
let outer_span = expr.span;
let block = working_set.get_block(*block_id);
let flattened = flatten_block(working_set, block);
if let Some(first) = flattened.first() {
if first.0.start > outer_span.start {
output.push((
Span::new(outer_span.start, first.0.start),
FlatShape::Closure,
));
}
}
let last = if let Some(last) = flattened.last() {
if last.0.end < outer_span.end {
Some((Span::new(last.0.end, outer_span.end), FlatShape::Closure))
} else {
None
}
} else {
None
};
output.extend(flattened);
if let Some(last) = last {
output.push(last);
}
}
Expr::Block(block_id) | Expr::RowCondition(block_id) | Expr::Subexpression(block_id) => {
let outer_span = expr.span;
let flattened = flatten_block(working_set, working_set.get_block(*block_id));
if let Some(first) = flattened.first() {
if first.0.start > outer_span.start {
output.push((Span::new(outer_span.start, first.0.start), FlatShape::Block));
}
}
let last = if let Some(last) = flattened.last() {
if last.0.end < outer_span.end {
Some((Span::new(last.0.end, outer_span.end), FlatShape::Block))
} else {
None
}
} else {
None
};
output.extend(flattened);
if let Some(last) = last {
output.push(last);
}
}
Expr::Call(call) => {
let decl = working_set.get_decl(call.decl_id);
if call.head.end != 0 {
// Make sure we don't push synthetic calls
output.push((call.head, FlatShape::InternalCall(call.decl_id)));
}
// Follow positional arguments from the signature.
let signature = decl.signature();
let mut positional_args = signature
.required_positional
.iter()
.chain(&signature.optional_positional);
let arg_start = output.len();
for arg in &call.arguments {
match arg {
Argument::Positional(positional) => {
let positional_arg = positional_args.next();
let shape = positional_arg
.or(signature.rest_positional.as_ref())
.map(|arg| &arg.shape)
.unwrap_or(&SyntaxShape::Any);
flatten_positional_arg_into(working_set, positional, shape, output)
}
Argument::Unknown(positional) => {
let shape = signature
.rest_positional
.as_ref()
.map(|arg| &arg.shape)
.unwrap_or(&SyntaxShape::Any);
flatten_positional_arg_into(working_set, positional, shape, output)
}
Argument::Named(named) => {
if named.0.span.end != 0 {
// Ignore synthetic flags
output.push((named.0.span, FlatShape::Flag));
}
if let Some(expr) = &named.2 {
flatten_expression_into(working_set, expr, output);
}
}
Argument::Spread(expr) => {
output.push((
Span::new(expr.span.start - 3, expr.span.start),
FlatShape::Operator,
));
flatten_expression_into(working_set, expr, output);
}
}
}
// sort these since flags and positional args can be intermixed
output[arg_start..].sort();
}
Expr::ExternalCall(head, args) => {
if let Expr::String(..) | Expr::GlobPattern(..) = &head.expr {
output.push((head.span, FlatShape::External));
} else {
flatten_expression_into(working_set, head, output);
}
for arg in args.as_ref() {
match arg {
ExternalArgument::Regular(expr) => {
if let Expr::String(..) | Expr::GlobPattern(..) = &expr.expr {
output.push((expr.span, FlatShape::ExternalArg));
} else {
flatten_expression_into(working_set, expr, output);
}
}
ExternalArgument::Spread(expr) => {
output.push((
Span::new(expr.span.start - 3, expr.span.start),
FlatShape::Operator,
));
flatten_expression_into(working_set, expr, output);
}
}
}
}
Expr::Garbage => output.push((expr.span, FlatShape::Garbage)),
Expr::Nothing => output.push((expr.span, FlatShape::Nothing)),
Expr::DateTime(_) => output.push((expr.span, FlatShape::DateTime)),
Expr::Binary(_) => output.push((expr.span, FlatShape::Binary)),
Expr::Int(_) => output.push((expr.span, FlatShape::Int)),
Expr::Float(_) => output.push((expr.span, FlatShape::Float)),
Expr::MatchBlock(matches) => {
for (pattern, expr) in matches {
flatten_pattern_into(pattern, output);
flatten_expression_into(working_set, expr, output);
}
}
Expr::ValueWithUnit(value) => {
flatten_expression_into(working_set, &value.expr, output);
output.push((value.unit.span, FlatShape::String));
}
Expr::CellPath(cell_path) => {
output.extend(cell_path.members.iter().map(|member| match *member {
PathMember::String { span, .. } => (span, FlatShape::String),
PathMember::Int { span, .. } => (span, FlatShape::Int),
}));
}
Expr::FullCellPath(cell_path) => {
flatten_expression_into(working_set, &cell_path.head, output);
output.extend(cell_path.tail.iter().map(|member| match *member {
PathMember::String { span, .. } => (span, FlatShape::String),
PathMember::Int { span, .. } => (span, FlatShape::Int),
}));
}
Expr::ImportPattern(import_pattern) => {
output.push((import_pattern.head.span, FlatShape::String));
for member in &import_pattern.members {
match member {
ImportPatternMember::Glob { span } => output.push((*span, FlatShape::String)),
ImportPatternMember::Name { span, .. } => {
output.push((*span, FlatShape::String))
}
ImportPatternMember::List { names } => {
output.extend(names.iter().map(|&(_, span)| (span, FlatShape::String)))
}
}
}
}
Expr::Overlay(_) => output.push((expr.span, FlatShape::String)),
Expr::Range(range) => {
if let Some(f) = &range.from {
flatten_expression_into(working_set, f, output);
}
if let Some(s) = &range.next {
output.push((range.operator.next_op_span, FlatShape::Operator));
flatten_expression_into(working_set, s, output);
}
output.push((range.operator.span, FlatShape::Operator));
if let Some(t) = &range.to {
flatten_expression_into(working_set, t, output);
}
}
Expr::Bool(_) => output.push((expr.span, FlatShape::Bool)),
Expr::Filepath(_, _) => output.push((expr.span, FlatShape::Filepath)),
Expr::Directory(_, _) => output.push((expr.span, FlatShape::Directory)),
Expr::GlobPattern(_, _) => output.push((expr.span, FlatShape::GlobPattern)),
Expr::List(list) => {
let outer_span = expr.span;
let mut last_end = outer_span.start;
for item in list {
match item {
ListItem::Item(expr) => {
let flattened = flatten_expression(working_set, expr);
if let Some(first) = flattened.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::List));
}
}
if let Some(last) = flattened.last() {
last_end = last.0.end;
}
output.extend(flattened);
}
ListItem::Spread(op_span, expr) => {
if op_span.start > last_end {
output.push((Span::new(last_end, op_span.start), FlatShape::List));
}
output.push((*op_span, FlatShape::Operator));
last_end = op_span.end;
let flattened_inner = flatten_expression(working_set, expr);
if let Some(first) = flattened_inner.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::List));
}
}
if let Some(last) = flattened_inner.last() {
last_end = last.0.end;
}
output.extend(flattened_inner);
}
}
}
if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::List));
}
}
Expr::StringInterpolation(exprs) => {
let mut flattened = vec![];
for expr in exprs {
flatten_expression_into(working_set, expr, &mut flattened);
}
if let Some(first) = flattened.first() {
if first.0.start != expr.span.start {
// If we aren't a bare word interpolation, also highlight the outer quotes
output.push((
Span::new(expr.span.start, expr.span.start + 2),
FlatShape::StringInterpolation,
));
flattened.push((
Span::new(expr.span.end - 1, expr.span.end),
FlatShape::StringInterpolation,
));
}
}
output.extend(flattened);
}
Expr::GlobInterpolation(exprs, quoted) => {
let mut flattened = vec![];
for expr in exprs {
flatten_expression_into(working_set, expr, &mut flattened);
}
if *quoted {
// If we aren't a bare word interpolation, also highlight the outer quotes
output.push((
Span::new(expr.span.start, expr.span.start + 2),
FlatShape::GlobInterpolation,
));
flattened.push((
Span::new(expr.span.end - 1, expr.span.end),
FlatShape::GlobInterpolation,
));
}
output.extend(flattened);
}
Expr::Record(list) => {
let outer_span = expr.span;
let mut last_end = outer_span.start;
for l in list {
match l {
RecordItem::Pair(key, val) => {
let flattened_lhs = flatten_expression(working_set, key);
let flattened_rhs = flatten_expression(working_set, val);
if let Some(first) = flattened_lhs.first() {
if first.0.start > last_end {
output
.push((Span::new(last_end, first.0.start), FlatShape::Record));
}
}
if let Some(last) = flattened_lhs.last() {
last_end = last.0.end;
}
output.extend(flattened_lhs);
if let Some(first) = flattened_rhs.first() {
if first.0.start > last_end {
output
.push((Span::new(last_end, first.0.start), FlatShape::Record));
}
}
if let Some(last) = flattened_rhs.last() {
last_end = last.0.end;
}
output.extend(flattened_rhs);
}
RecordItem::Spread(op_span, record) => {
if op_span.start > last_end {
output.push((Span::new(last_end, op_span.start), FlatShape::Record));
}
output.push((*op_span, FlatShape::Operator));
last_end = op_span.end;
let flattened = flatten_expression(working_set, record);
if let Some(first) = flattened.first() {
if first.0.start > last_end {
output
.push((Span::new(last_end, first.0.start), FlatShape::Record));
}
}
if let Some(last) = flattened.last() {
last_end = last.0.end;
}
output.extend(flattened);
}
}
}
if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::Record));
}
}
Expr::Keyword(kw) => {
output.push((kw.span, FlatShape::Keyword));
flatten_expression_into(working_set, &kw.expr, output);
}
Expr::Operator(_) => output.push((expr.span, FlatShape::Operator)),
Expr::Signature(_) => output.push((expr.span, FlatShape::Signature)),
Expr::String(_) => output.push((expr.span, FlatShape::String)),
Expr::RawString(_) => output.push((expr.span, FlatShape::RawString)),
Expr::Table(table) => {
let outer_span = expr.span;
let mut last_end = outer_span.start;
for col in table.columns.as_ref() {
let flattened = flatten_expression(working_set, col);
if let Some(first) = flattened.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::Table));
}
}
if let Some(last) = flattened.last() {
last_end = last.0.end;
}
output.extend(flattened);
}
for row in table.rows.as_ref() {
for expr in row.as_ref() {
let flattened = flatten_expression(working_set, expr);
if let Some(first) = flattened.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::Table));
}
}
if let Some(last) = flattened.last() {
last_end = last.0.end;
}
output.extend(flattened);
}
}
if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::Table));
}
}
Expr::Var(var_id) => output.push((expr.span, FlatShape::Variable(*var_id))),
Expr::VarDecl(var_id) => output.push((expr.span, FlatShape::VarDecl(*var_id))),
}
}
fn flatten_pattern_into(match_pattern: &MatchPattern, output: &mut Vec<(Span, FlatShape)>) {
match &match_pattern.pattern {
Pattern::Garbage => output.push((match_pattern.span, FlatShape::Garbage)),
Pattern::IgnoreValue => output.push((match_pattern.span, FlatShape::Nothing)),
Pattern::IgnoreRest => output.push((match_pattern.span, FlatShape::Nothing)),
Pattern::List(items) => {
if let Some(first) = items.first() {
if let Some(last) = items.last() {
output.push((
Span::new(match_pattern.span.start, first.span.start),
FlatShape::MatchPattern,
));
for item in items {
flatten_pattern_into(item, output);
}
output.push((
Span::new(last.span.end, match_pattern.span.end),
FlatShape::MatchPattern,
))
}
} else {
output.push((match_pattern.span, FlatShape::MatchPattern));
}
}
Pattern::Record(items) => {
if let Some(first) = items.first() {
if let Some(last) = items.last() {
output.push((
Span::new(match_pattern.span.start, first.1.span.start),
FlatShape::MatchPattern,
));
for (_, pattern) in items {
flatten_pattern_into(pattern, output);
}
output.push((
Span::new(last.1.span.end, match_pattern.span.end),
FlatShape::MatchPattern,
))
}
} else {
output.push((match_pattern.span, FlatShape::MatchPattern));
}
}
Pattern::Value(_) => output.push((match_pattern.span, FlatShape::MatchPattern)),
Pattern::Variable(var_id) => output.push((match_pattern.span, FlatShape::VarDecl(*var_id))),
Pattern::Rest(var_id) => output.push((match_pattern.span, FlatShape::VarDecl(*var_id))),
Pattern::Or(patterns) => {
for pattern in patterns {
flatten_pattern_into(pattern, output);
}
}
}
}
pub fn flatten_block(working_set: &StateWorkingSet, block: &Block) -> Vec<(Span, FlatShape)> {
let mut output = Vec::new();
flatten_block_into(working_set, block, &mut output);
output
}
pub fn flatten_pipeline(
working_set: &StateWorkingSet,
pipeline: &Pipeline,
) -> Vec<(Span, FlatShape)> {
let mut output = Vec::new();
flatten_pipeline_into(working_set, pipeline, &mut output);
output
}
pub fn flatten_pipeline_element(
working_set: &StateWorkingSet,
pipeline_element: &PipelineElement,
) -> Vec<(Span, FlatShape)> {
let mut output = Vec::new();
flatten_pipeline_element_into(working_set, pipeline_element, &mut output);
output
}
pub fn flatten_expression(
working_set: &StateWorkingSet,
expr: &Expression,
) -> Vec<(Span, FlatShape)> {
let mut output = Vec::new();
flatten_expression_into(working_set, expr, &mut output);
output
}