nushell/crates/nu-protocol/src/pipeline/byte_stream.rs
Piepmatz 3d5f853b03
Start to Add WASM Support Again (#14418)
<!--
if this PR closes one or more issues, you can automatically link the PR
with
them by using one of the [*linking
keywords*](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword),
e.g.
- this PR should close #xxxx
- fixes #xxxx

you can also mention related issues, PRs or discussions!
-->

# Description
<!--
Thank you for improving Nushell. Please, check our [contributing
guide](../CONTRIBUTING.md) and talk to the core team before making major
changes.

Description of your pull request goes here. **Provide examples and/or
screenshots** if your changes affect the user experience.
-->
The [nushell/demo](https://github.com/nushell/demo) project successfully
demonstrated running Nushell in the browser using WASM. However, the
current version of Nushell cannot be easily built for the
`wasm32-unknown-unknown` target, the default for `wasm-bindgen`.

This PR introduces initial support for the `wasm32-unknown-unknown`
target by disabling OS-dependent features such as filesystem access, IO,
and platform/system-specific functionality. This separation is achieved
using a new `os` feature in the following crates:

 - `nu-cmd-lang`
 - `nu-command`
 - `nu-engine`
 - `nu-protocol`

The `os` feature includes all functionality that interacts with an
operating system. It is enabled by default, but can be disabled using
`--no-default-features`. All crates that depend on these core crates now
use `--no-default-features` to allow compilation for WASM.

To demonstrate compatibility, the following script builds all crates
expected to work with WASM. Direct user interaction, running external
commands, working with plugins, and features requiring `openssl` are out
of scope for now due to their complexity or reliance on C libraries,
which are difficult to compile and link in a WASM environment.

```nushell
[ # compatible crates
	"nu-cmd-base",
	"nu-cmd-extra",
	"nu-cmd-lang",
	"nu-color-config",
	"nu-command",
	"nu-derive-value",
	"nu-engine",
	"nu-glob",
	"nu-json",
	"nu-parser",
	"nu-path",
	"nu-pretty-hex",
	"nu-protocol",
	"nu-std",
	"nu-system",
	"nu-table",
	"nu-term-grid",
	"nu-utils",
	"nuon"
] | each {cargo build -p $in --target wasm32-unknown-unknown --no-default-features}
```

## Caveats
This PR has a few caveats:
1. **`miette` and `terminal-size` Dependency Issue**
`miette` depends on `terminal-size`, which uses `rustix` when the target
is not Windows. However, `rustix` requires `std::os::unix`, which is
unavailable in WASM. To address this, I opened a
[PR](https://github.com/eminence/terminal-size/pull/68) for
`terminal-size` to conditionally compile `rustix` only when the target
is Unix. For now, the `Cargo.toml` includes patches to:
    - Use my forked version of `terminal-size`.
- ~~Use an unreleased version of `miette` that depends on
`terminal-size@0.4`.~~

These patches are temporary and can be removed once the upstream changes
are merged and released.

2. **Test Output Adjustments**
Due to the slight bump in the `miette` version, one test required
adjustments to accommodate minor formatting changes in the error output,
such as shifted newlines.

# User-Facing Changes
<!-- List of all changes that impact the user experience here. This
helps us keep track of breaking changes. -->
This shouldn't break anything but allows using some crates for targeting
`wasm32-unknown-unknown` to revive the demo page eventually.

# Tests + Formatting
<!--
Don't forget to add tests that cover your changes.

Make sure you've run and fixed any issues with these commands:

- `cargo fmt --all -- --check` to check standard code formatting (`cargo
fmt --all` applies these changes)
- `cargo clippy --workspace -- -D warnings -D clippy::unwrap_used` to
check that you're using the standard code style
- `cargo test --workspace` to check that all tests pass (on Windows make
sure to [enable developer
mode](https://learn.microsoft.com/en-us/windows/apps/get-started/developer-mode-features-and-debugging))
- `cargo run -- -c "use toolkit.nu; toolkit test stdlib"` to run the
tests for the standard library

> **Note**
> from `nushell` you can also use the `toolkit` as follows
> ```bash
> use toolkit.nu # or use an `env_change` hook to activate it
automatically
> toolkit check pr
> ```
-->

- 🟢 `toolkit fmt`
- 🟢 `toolkit clippy`
- 🟢 `toolkit test`
- 🟢 `toolkit test stdlib`

I did not add any extra tests, I just checked that compiling works, also
when using the host target but unselecting the `os` feature.

# After Submitting
<!-- If your PR had any user-facing changes, update [the
documentation](https://github.com/nushell/nushell.github.io) after the
PR is merged, if necessary. This will help us keep the docs up to date.
-->
~~Breaking the wasm support can be easily done by adding some `use`s or
by adding a new dependency, we should definitely add some CI that also
at least builds against wasm to make sure that building for it keep
working.~~
I added a job to build wasm.

---------

Co-authored-by: Ian Manske <ian.manske@pm.me>
2024-11-30 07:57:11 -06:00

1126 lines
38 KiB
Rust

//! Module managing the streaming of raw bytes between pipeline elements
#[cfg(feature = "os")]
use crate::process::{ChildPipe, ChildProcess};
use crate::{ErrSpan, IntoSpanned, PipelineData, ShellError, Signals, Span, Type, Value};
use serde::{Deserialize, Serialize};
#[cfg(unix)]
use std::os::fd::OwnedFd;
#[cfg(windows)]
use std::os::windows::io::OwnedHandle;
use std::{
fmt::Debug,
fs::File,
io::{self, BufRead, BufReader, Cursor, ErrorKind, Read, Write},
process::Stdio,
};
/// The source of bytes for a [`ByteStream`].
///
/// Currently, there are only three possibilities:
/// 1. `Read` (any `dyn` type that implements [`Read`])
/// 2. [`File`]
/// 3. [`ChildProcess`]
pub enum ByteStreamSource {
Read(Box<dyn Read + Send + 'static>),
File(File),
#[cfg(feature = "os")]
Child(Box<ChildProcess>),
}
impl ByteStreamSource {
fn reader(self) -> Option<SourceReader> {
match self {
ByteStreamSource::Read(read) => Some(SourceReader::Read(read)),
ByteStreamSource::File(file) => Some(SourceReader::File(file)),
#[cfg(feature = "os")]
ByteStreamSource::Child(mut child) => child.stdout.take().map(|stdout| match stdout {
ChildPipe::Pipe(pipe) => SourceReader::File(convert_file(pipe)),
ChildPipe::Tee(tee) => SourceReader::Read(tee),
}),
}
}
/// Source is a `Child` or `File`, rather than `Read`. Currently affects trimming
#[cfg(feature = "os")]
pub fn is_external(&self) -> bool {
matches!(self, ByteStreamSource::Child(..))
}
#[cfg(not(feature = "os"))]
pub fn is_external(&self) -> bool {
// without os support we never have externals
false
}
}
impl Debug for ByteStreamSource {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ByteStreamSource::Read(_) => f.debug_tuple("Read").field(&"..").finish(),
ByteStreamSource::File(file) => f.debug_tuple("File").field(file).finish(),
#[cfg(feature = "os")]
ByteStreamSource::Child(child) => f.debug_tuple("Child").field(child).finish(),
}
}
}
enum SourceReader {
Read(Box<dyn Read + Send + 'static>),
File(File),
}
impl Read for SourceReader {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
match self {
SourceReader::Read(reader) => reader.read(buf),
SourceReader::File(file) => file.read(buf),
}
}
}
impl Debug for SourceReader {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
SourceReader::Read(_) => f.debug_tuple("Read").field(&"..").finish(),
SourceReader::File(file) => f.debug_tuple("File").field(file).finish(),
}
}
}
/// Optional type color for [`ByteStream`], which determines type compatibility.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize, Default)]
pub enum ByteStreamType {
/// Compatible with [`Type::Binary`], and should only be converted to binary, even when the
/// desired type is unknown.
Binary,
/// Compatible with [`Type::String`], and should only be converted to string, even when the
/// desired type is unknown.
///
/// This does not guarantee valid UTF-8 data, but it is conventionally so. Converting to
/// `String` still requires validation of the data.
String,
/// Unknown whether the stream should contain binary or string data. This usually is the result
/// of an external stream, e.g. an external command or file.
#[default]
Unknown,
}
impl ByteStreamType {
/// Returns the string that describes the byte stream type - i.e., the same as what `describe`
/// produces. This can be used in type mismatch error messages.
pub fn describe(self) -> &'static str {
match self {
ByteStreamType::Binary => "binary (stream)",
ByteStreamType::String => "string (stream)",
ByteStreamType::Unknown => "byte stream",
}
}
/// Returns true if the type is `Binary` or `Unknown`
pub fn is_binary_coercible(self) -> bool {
matches!(self, ByteStreamType::Binary | ByteStreamType::Unknown)
}
/// Returns true if the type is `String` or `Unknown`
pub fn is_string_coercible(self) -> bool {
matches!(self, ByteStreamType::String | ByteStreamType::Unknown)
}
}
impl From<ByteStreamType> for Type {
fn from(value: ByteStreamType) -> Self {
match value {
ByteStreamType::Binary => Type::Binary,
ByteStreamType::String => Type::String,
ByteStreamType::Unknown => Type::Any,
}
}
}
/// A potentially infinite, interruptible stream of bytes.
///
/// To create a [`ByteStream`], you can use any of the following methods:
/// - [`read`](ByteStream::read): takes any type that implements [`Read`].
/// - [`file`](ByteStream::file): takes a [`File`].
/// - [`from_iter`](ByteStream::from_iter): takes an [`Iterator`] whose items implement `AsRef<[u8]>`.
/// - [`from_result_iter`](ByteStream::from_result_iter): same as [`from_iter`](ByteStream::from_iter),
/// but each item is a `Result<T, ShellError>`.
/// - [`from_fn`](ByteStream::from_fn): uses a generator function to fill a buffer whenever it is
/// empty. This has high performance because it doesn't need to allocate for each chunk of data,
/// and can just reuse the same buffer.
///
/// Byte streams have a [type](.type_()) which is used to preserve type compatibility when they
/// are the result of an internal command. It is important that this be set to the correct value.
/// [`Unknown`](ByteStreamType::Unknown) is used only for external sources where the type can not
/// be inherently determined, and having it automatically act as a string or binary depending on
/// whether it parses as UTF-8 or not is desirable.
///
/// The data of a [`ByteStream`] can be accessed using one of the following methods:
/// - [`reader`](ByteStream::reader): returns a [`Read`]-able type to get the raw bytes in the stream.
/// - [`lines`](ByteStream::lines): splits the bytes on lines and returns an [`Iterator`]
/// where each item is a `Result<String, ShellError>`.
/// - [`chunks`](ByteStream::chunks): returns an [`Iterator`] of [`Value`]s where each value is
/// either a string or binary.
/// Try not to use this method if possible. Rather, please use [`reader`](ByteStream::reader)
/// (or [`lines`](ByteStream::lines) if it matches the situation).
///
/// Additionally, there are few methods to collect a [`ByteStream`] into memory:
/// - [`into_bytes`](ByteStream::into_bytes): collects all bytes into a [`Vec<u8>`].
/// - [`into_string`](ByteStream::into_string): collects all bytes into a [`String`], erroring if utf-8 decoding failed.
/// - [`into_value`](ByteStream::into_value): collects all bytes into a value typed appropriately
/// for the [type](.type_()) of this stream. If the type is [`Unknown`](ByteStreamType::Unknown),
/// it will produce a string value if the data is valid UTF-8, or a binary value otherwise.
///
/// There are also a few other methods to consume all the data of a [`ByteStream`]:
/// - [`drain`](ByteStream::drain): consumes all bytes and outputs nothing.
/// - [`write_to`](ByteStream::write_to): writes all bytes to the given [`Write`] destination.
/// - [`print`](ByteStream::print): a convenience wrapper around [`write_to`](ByteStream::write_to).
/// It prints all bytes to stdout or stderr.
///
/// Internally, [`ByteStream`]s currently come in three flavors according to [`ByteStreamSource`].
/// See its documentation for more information.
#[derive(Debug)]
pub struct ByteStream {
stream: ByteStreamSource,
span: Span,
signals: Signals,
type_: ByteStreamType,
known_size: Option<u64>,
}
impl ByteStream {
/// Create a new [`ByteStream`] from a [`ByteStreamSource`].
pub fn new(
stream: ByteStreamSource,
span: Span,
signals: Signals,
type_: ByteStreamType,
) -> Self {
Self {
stream,
span,
signals,
type_,
known_size: None,
}
}
/// Create a [`ByteStream`] from an arbitrary reader. The type must be provided.
pub fn read(
reader: impl Read + Send + 'static,
span: Span,
signals: Signals,
type_: ByteStreamType,
) -> Self {
Self::new(
ByteStreamSource::Read(Box::new(reader)),
span,
signals,
type_,
)
}
/// Create a [`ByteStream`] from a string. The type of the stream is always `String`.
pub fn read_string(string: String, span: Span, signals: Signals) -> Self {
let len = string.len();
ByteStream::read(
Cursor::new(string.into_bytes()),
span,
signals,
ByteStreamType::String,
)
.with_known_size(Some(len as u64))
}
/// Create a [`ByteStream`] from a byte vector. The type of the stream is always `Binary`.
pub fn read_binary(bytes: Vec<u8>, span: Span, signals: Signals) -> Self {
let len = bytes.len();
ByteStream::read(Cursor::new(bytes), span, signals, ByteStreamType::Binary)
.with_known_size(Some(len as u64))
}
/// Create a [`ByteStream`] from a file.
///
/// The type is implicitly `Unknown`, as it's not typically known whether files will
/// return text or binary.
pub fn file(file: File, span: Span, signals: Signals) -> Self {
Self::new(
ByteStreamSource::File(file),
span,
signals,
ByteStreamType::Unknown,
)
}
/// Create a [`ByteStream`] from a child process's stdout and stderr.
///
/// The type is implicitly `Unknown`, as it's not typically known whether child processes will
/// return text or binary.
#[cfg(feature = "os")]
pub fn child(child: ChildProcess, span: Span) -> Self {
Self::new(
ByteStreamSource::Child(Box::new(child)),
span,
Signals::empty(),
ByteStreamType::Unknown,
)
}
/// Create a [`ByteStream`] that reads from stdin.
///
/// The type is implicitly `Unknown`, as it's not typically known whether stdin is text or
/// binary.
#[cfg(feature = "os")]
pub fn stdin(span: Span) -> Result<Self, ShellError> {
let stdin = os_pipe::dup_stdin().err_span(span)?;
let source = ByteStreamSource::File(convert_file(stdin));
Ok(Self::new(
source,
span,
Signals::empty(),
ByteStreamType::Unknown,
))
}
#[cfg(not(feature = "os"))]
pub fn stdin(span: Span) -> Result<Self, ShellError> {
Err(ShellError::DisabledOsSupport {
msg: "Stdin is not supported".to_string(),
span: Some(span),
})
}
/// Create a [`ByteStream`] from a generator function that writes data to the given buffer
/// when called, and returns `Ok(false)` on end of stream.
pub fn from_fn(
span: Span,
signals: Signals,
type_: ByteStreamType,
generator: impl FnMut(&mut Vec<u8>) -> Result<bool, ShellError> + Send + 'static,
) -> Self {
Self::read(
ReadGenerator {
buffer: Cursor::new(Vec::new()),
generator,
},
span,
signals,
type_,
)
}
pub fn with_type(mut self, type_: ByteStreamType) -> Self {
self.type_ = type_;
self
}
/// Create a new [`ByteStream`] from an [`Iterator`] of bytes slices.
///
/// The returned [`ByteStream`] will have a [`ByteStreamSource`] of `Read`.
pub fn from_iter<I>(iter: I, span: Span, signals: Signals, type_: ByteStreamType) -> Self
where
I: IntoIterator,
I::IntoIter: Send + 'static,
I::Item: AsRef<[u8]> + Default + Send + 'static,
{
let iter = iter.into_iter();
let cursor = Some(Cursor::new(I::Item::default()));
Self::read(ReadIterator { iter, cursor }, span, signals, type_)
}
/// Create a new [`ByteStream`] from an [`Iterator`] of [`Result`] bytes slices.
///
/// The returned [`ByteStream`] will have a [`ByteStreamSource`] of `Read`.
pub fn from_result_iter<I, T>(
iter: I,
span: Span,
signals: Signals,
type_: ByteStreamType,
) -> Self
where
I: IntoIterator<Item = Result<T, ShellError>>,
I::IntoIter: Send + 'static,
T: AsRef<[u8]> + Default + Send + 'static,
{
let iter = iter.into_iter();
let cursor = Some(Cursor::new(T::default()));
Self::read(ReadResultIterator { iter, cursor }, span, signals, type_)
}
/// Set the known size, in number of bytes, of the [`ByteStream`].
pub fn with_known_size(mut self, size: Option<u64>) -> Self {
self.known_size = size;
self
}
/// Get a reference to the inner [`ByteStreamSource`] of the [`ByteStream`].
pub fn source(&self) -> &ByteStreamSource {
&self.stream
}
/// Get a mutable reference to the inner [`ByteStreamSource`] of the [`ByteStream`].
pub fn source_mut(&mut self) -> &mut ByteStreamSource {
&mut self.stream
}
/// Returns the [`Span`] associated with the [`ByteStream`].
pub fn span(&self) -> Span {
self.span
}
/// Changes the [`Span`] associated with the [`ByteStream`].
pub fn with_span(mut self, span: Span) -> Self {
self.span = span;
self
}
/// Returns the [`ByteStreamType`] associated with the [`ByteStream`].
pub fn type_(&self) -> ByteStreamType {
self.type_
}
/// Returns the known size, in number of bytes, of the [`ByteStream`].
pub fn known_size(&self) -> Option<u64> {
self.known_size
}
/// Convert the [`ByteStream`] into its [`Reader`] which allows one to [`Read`] the raw bytes of the stream.
///
/// [`Reader`] is buffered and also implements [`BufRead`].
///
/// If the source of the [`ByteStream`] is [`ByteStreamSource::Child`] and the child has no stdout,
/// then the stream is considered empty and `None` will be returned.
pub fn reader(self) -> Option<Reader> {
let reader = self.stream.reader()?;
Some(Reader {
reader: BufReader::new(reader),
span: self.span,
signals: self.signals,
})
}
/// Convert the [`ByteStream`] into a [`Lines`] iterator where each element is a `Result<String, ShellError>`.
///
/// There is no limit on how large each line will be. Ending new lines (`\n` or `\r\n`) are
/// stripped from each line. If a line fails to be decoded as utf-8, then it will become a [`ShellError`].
///
/// If the source of the [`ByteStream`] is [`ByteStreamSource::Child`] and the child has no stdout,
/// then the stream is considered empty and `None` will be returned.
pub fn lines(self) -> Option<Lines> {
let reader = self.stream.reader()?;
Some(Lines {
reader: BufReader::new(reader),
span: self.span,
signals: self.signals,
})
}
/// Convert the [`ByteStream`] into a [`Chunks`] iterator where each element is a `Result<Value, ShellError>`.
///
/// Each call to [`next`](Iterator::next) reads the currently available data from the byte stream source,
/// up to a maximum size. The values are typed according to the [type](.type_()) of the
/// stream, and if that type is [`Unknown`](ByteStreamType::Unknown), string values will be
/// produced as long as the stream continues to parse as valid UTF-8, but binary values will
/// be produced instead of the stream fails to parse as UTF-8 instead at any point.
/// Any and all newlines are kept intact in each chunk.
///
/// Where possible, prefer [`reader`](ByteStream::reader) or [`lines`](ByteStream::lines) over this method.
/// Those methods are more likely to be used in a semantically correct way
/// (and [`reader`](ByteStream::reader) is more efficient too).
///
/// If the source of the [`ByteStream`] is [`ByteStreamSource::Child`] and the child has no stdout,
/// then the stream is considered empty and `None` will be returned.
pub fn chunks(self) -> Option<Chunks> {
let reader = self.stream.reader()?;
Some(Chunks::new(reader, self.span, self.signals, self.type_))
}
/// Convert the [`ByteStream`] into its inner [`ByteStreamSource`].
pub fn into_source(self) -> ByteStreamSource {
self.stream
}
/// Attempt to convert the [`ByteStream`] into a [`Stdio`].
///
/// This will succeed if the [`ByteStreamSource`] of the [`ByteStream`] is either:
/// - [`File`](ByteStreamSource::File)
/// - [`Child`](ByteStreamSource::Child) and the child has a stdout that is `Some(ChildPipe::Pipe(..))`.
///
/// All other cases return an `Err` with the original [`ByteStream`] in it.
pub fn into_stdio(mut self) -> Result<Stdio, Self> {
match self.stream {
ByteStreamSource::Read(..) => Err(self),
ByteStreamSource::File(file) => Ok(file.into()),
#[cfg(feature = "os")]
ByteStreamSource::Child(child) => {
if let ChildProcess {
stdout: Some(ChildPipe::Pipe(stdout)),
stderr,
..
} = *child
{
debug_assert!(stderr.is_none(), "stderr should not exist");
Ok(stdout.into())
} else {
self.stream = ByteStreamSource::Child(child);
Err(self)
}
}
}
}
/// Attempt to convert the [`ByteStream`] into a [`ChildProcess`].
///
/// This will only succeed if the [`ByteStreamSource`] of the [`ByteStream`] is [`Child`](ByteStreamSource::Child).
/// All other cases return an `Err` with the original [`ByteStream`] in it.
#[cfg(feature = "os")]
pub fn into_child(self) -> Result<ChildProcess, Self> {
if let ByteStreamSource::Child(child) = self.stream {
Ok(*child)
} else {
Err(self)
}
}
/// Collect all the bytes of the [`ByteStream`] into a [`Vec<u8>`].
///
/// Any trailing new lines are kept in the returned [`Vec`].
pub fn into_bytes(self) -> Result<Vec<u8>, ShellError> {
// todo!() ctrlc
match self.stream {
ByteStreamSource::Read(mut read) => {
let mut buf = Vec::new();
read.read_to_end(&mut buf).err_span(self.span)?;
Ok(buf)
}
ByteStreamSource::File(mut file) => {
let mut buf = Vec::new();
file.read_to_end(&mut buf).err_span(self.span)?;
Ok(buf)
}
#[cfg(feature = "os")]
ByteStreamSource::Child(child) => child.into_bytes(),
}
}
/// Collect the stream into a `String` in-memory. This can only succeed if the data contained is
/// valid UTF-8.
///
/// The trailing new line (`\n` or `\r\n`), if any, is removed from the [`String`] prior to
/// being returned, if this is a stream coming from an external process or file.
///
/// If the [type](.type_()) is specified as `Binary`, this operation always fails, even if the
/// data would have been valid UTF-8.
pub fn into_string(self) -> Result<String, ShellError> {
let span = self.span;
if self.type_.is_string_coercible() {
let trim = self.stream.is_external();
let bytes = self.into_bytes()?;
let mut string = String::from_utf8(bytes).map_err(|err| ShellError::NonUtf8Custom {
span,
msg: err.to_string(),
})?;
if trim {
trim_end_newline(&mut string);
}
Ok(string)
} else {
Err(ShellError::TypeMismatch {
err_message: "expected string, but got binary".into(),
span,
})
}
}
/// Collect all the bytes of the [`ByteStream`] into a [`Value`].
///
/// If this is a `String` stream, the stream is decoded to UTF-8. If the stream came from an
/// external process or file, the trailing new line (`\n` or `\r\n`), if any, is removed from
/// the [`String`] prior to being returned.
///
/// If this is a `Binary` stream, a [`Value::Binary`] is returned with any trailing new lines
/// preserved.
///
/// If this is an `Unknown` stream, the behavior depends on whether the stream parses as valid
/// UTF-8 or not. If it does, this is uses the `String` behavior; if not, it uses the `Binary`
/// behavior.
pub fn into_value(self) -> Result<Value, ShellError> {
let span = self.span;
let trim = self.stream.is_external();
let value = match self.type_ {
// If the type is specified, then the stream should always become that type:
ByteStreamType::Binary => Value::binary(self.into_bytes()?, span),
ByteStreamType::String => Value::string(self.into_string()?, span),
// If the type is not specified, then it just depends on whether it parses or not:
ByteStreamType::Unknown => match String::from_utf8(self.into_bytes()?) {
Ok(mut str) => {
if trim {
trim_end_newline(&mut str);
}
Value::string(str, span)
}
Err(err) => Value::binary(err.into_bytes(), span),
},
};
Ok(value)
}
/// Consume and drop all bytes of the [`ByteStream`].
pub fn drain(self) -> Result<(), ShellError> {
match self.stream {
ByteStreamSource::Read(read) => {
copy_with_signals(read, io::sink(), self.span, &self.signals)?;
Ok(())
}
ByteStreamSource::File(_) => Ok(()),
#[cfg(feature = "os")]
ByteStreamSource::Child(child) => child.wait(),
}
}
/// Print all bytes of the [`ByteStream`] to stdout or stderr.
pub fn print(self, to_stderr: bool) -> Result<(), ShellError> {
if to_stderr {
self.write_to(&mut io::stderr())
} else {
self.write_to(&mut io::stdout())
}
}
/// Write all bytes of the [`ByteStream`] to `dest`.
pub fn write_to(self, dest: impl Write) -> Result<(), ShellError> {
let span = self.span;
let signals = &self.signals;
match self.stream {
ByteStreamSource::Read(read) => {
copy_with_signals(read, dest, span, signals)?;
}
ByteStreamSource::File(file) => {
copy_with_signals(file, dest, span, signals)?;
}
#[cfg(feature = "os")]
ByteStreamSource::Child(mut child) => {
// All `OutDest`s except `OutDest::PipeSeparate` will cause `stderr` to be `None`.
// Only `save`, `tee`, and `complete` set the stderr `OutDest` to `OutDest::PipeSeparate`,
// and those commands have proper simultaneous handling of stdout and stderr.
debug_assert!(child.stderr.is_none(), "stderr should not exist");
if let Some(stdout) = child.stdout.take() {
match stdout {
ChildPipe::Pipe(pipe) => {
copy_with_signals(pipe, dest, span, signals)?;
}
ChildPipe::Tee(tee) => {
copy_with_signals(tee, dest, span, signals)?;
}
}
}
child.wait()?;
}
}
Ok(())
}
}
impl From<ByteStream> for PipelineData {
fn from(stream: ByteStream) -> Self {
Self::ByteStream(stream, None)
}
}
struct ReadIterator<I>
where
I: Iterator,
I::Item: AsRef<[u8]>,
{
iter: I,
cursor: Option<Cursor<I::Item>>,
}
impl<I> Read for ReadIterator<I>
where
I: Iterator,
I::Item: AsRef<[u8]>,
{
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
while let Some(cursor) = self.cursor.as_mut() {
let read = cursor.read(buf)?;
if read == 0 {
self.cursor = self.iter.next().map(Cursor::new);
} else {
return Ok(read);
}
}
Ok(0)
}
}
struct ReadResultIterator<I, T>
where
I: Iterator<Item = Result<T, ShellError>>,
T: AsRef<[u8]>,
{
iter: I,
cursor: Option<Cursor<T>>,
}
impl<I, T> Read for ReadResultIterator<I, T>
where
I: Iterator<Item = Result<T, ShellError>>,
T: AsRef<[u8]>,
{
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
while let Some(cursor) = self.cursor.as_mut() {
let read = cursor.read(buf)?;
if read == 0 {
self.cursor = self.iter.next().transpose()?.map(Cursor::new);
} else {
return Ok(read);
}
}
Ok(0)
}
}
pub struct Reader {
reader: BufReader<SourceReader>,
span: Span,
signals: Signals,
}
impl Reader {
pub fn span(&self) -> Span {
self.span
}
}
impl Read for Reader {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.signals.check(self.span)?;
self.reader.read(buf)
}
}
impl BufRead for Reader {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
self.reader.fill_buf()
}
fn consume(&mut self, amt: usize) {
self.reader.consume(amt)
}
}
pub struct Lines {
reader: BufReader<SourceReader>,
span: Span,
signals: Signals,
}
impl Lines {
pub fn span(&self) -> Span {
self.span
}
}
impl Iterator for Lines {
type Item = Result<String, ShellError>;
fn next(&mut self) -> Option<Self::Item> {
if self.signals.interrupted() {
None
} else {
let mut buf = Vec::new();
match self.reader.read_until(b'\n', &mut buf) {
Ok(0) => None,
Ok(_) => {
let Ok(mut string) = String::from_utf8(buf) else {
return Some(Err(ShellError::NonUtf8 { span: self.span }));
};
trim_end_newline(&mut string);
Some(Ok(string))
}
Err(e) => Some(Err(e.into_spanned(self.span).into())),
}
}
}
}
/// Turn a readable stream into [`Value`]s.
///
/// The `Value` type depends on the type of the stream ([`ByteStreamType`]). If `Unknown`, the
/// stream will return strings as long as UTF-8 parsing succeeds, but will start returning binary
/// if it fails.
pub struct Chunks {
reader: BufReader<SourceReader>,
pos: u64,
error: bool,
span: Span,
signals: Signals,
type_: ByteStreamType,
}
impl Chunks {
fn new(reader: SourceReader, span: Span, signals: Signals, type_: ByteStreamType) -> Self {
Self {
reader: BufReader::new(reader),
pos: 0,
error: false,
span,
signals,
type_,
}
}
pub fn span(&self) -> Span {
self.span
}
fn next_string(&mut self) -> Result<Option<String>, (Vec<u8>, ShellError)> {
// Get some data from the reader
let buf = self
.reader
.fill_buf()
.err_span(self.span)
.map_err(|err| (vec![], ShellError::from(err)))?;
// If empty, this is EOF
if buf.is_empty() {
return Ok(None);
}
let mut buf = buf.to_vec();
let mut consumed = 0;
// If the buf length is under 4 bytes, it could be invalid, so try to get more
if buf.len() < 4 {
consumed += buf.len();
self.reader.consume(buf.len());
match self.reader.fill_buf().err_span(self.span) {
Ok(more_bytes) => buf.extend_from_slice(more_bytes),
Err(err) => return Err((buf, err.into())),
}
}
// Try to parse utf-8 and decide what to do
match String::from_utf8(buf) {
Ok(string) => {
self.reader.consume(string.len() - consumed);
self.pos += string.len() as u64;
Ok(Some(string))
}
Err(err) if err.utf8_error().error_len().is_none() => {
// There is some valid data at the beginning, and this is just incomplete, so just
// consume that and return it
let valid_up_to = err.utf8_error().valid_up_to();
if valid_up_to > consumed {
self.reader.consume(valid_up_to - consumed);
}
let mut buf = err.into_bytes();
buf.truncate(valid_up_to);
buf.shrink_to_fit();
let string = String::from_utf8(buf)
.expect("failed to parse utf-8 even after correcting error");
self.pos += string.len() as u64;
Ok(Some(string))
}
Err(err) => {
// There is an error at the beginning and we have no hope of parsing further.
let shell_error = ShellError::NonUtf8Custom {
msg: format!("invalid utf-8 sequence starting at index {}", self.pos),
span: self.span,
};
let buf = err.into_bytes();
// We are consuming the entire buf though, because we're returning it in case it
// will be cast to binary
if buf.len() > consumed {
self.reader.consume(buf.len() - consumed);
}
self.pos += buf.len() as u64;
Err((buf, shell_error))
}
}
}
}
impl Iterator for Chunks {
type Item = Result<Value, ShellError>;
fn next(&mut self) -> Option<Self::Item> {
if self.error || self.signals.interrupted() {
None
} else {
match self.type_ {
// Binary should always be binary
ByteStreamType::Binary => {
let buf = match self.reader.fill_buf().err_span(self.span) {
Ok(buf) => buf,
Err(err) => {
self.error = true;
return Some(Err(err.into()));
}
};
if !buf.is_empty() {
let len = buf.len();
let value = Value::binary(buf, self.span);
self.reader.consume(len);
self.pos += len as u64;
Some(Ok(value))
} else {
None
}
}
// String produces an error if UTF-8 can't be parsed
ByteStreamType::String => match self.next_string().transpose()? {
Ok(string) => Some(Ok(Value::string(string, self.span))),
Err((_, err)) => {
self.error = true;
Some(Err(err))
}
},
// For Unknown, we try to create strings, but we switch to binary mode if we
// fail
ByteStreamType::Unknown => {
match self.next_string().transpose()? {
Ok(string) => Some(Ok(Value::string(string, self.span))),
Err((buf, _)) if !buf.is_empty() => {
// Switch to binary mode
self.type_ = ByteStreamType::Binary;
Some(Ok(Value::binary(buf, self.span)))
}
Err((_, err)) => {
self.error = true;
Some(Err(err))
}
}
}
}
}
}
}
fn trim_end_newline(string: &mut String) {
if string.ends_with('\n') {
string.pop();
if string.ends_with('\r') {
string.pop();
}
}
}
#[cfg(unix)]
pub(crate) fn convert_file<T: From<OwnedFd>>(file: impl Into<OwnedFd>) -> T {
file.into().into()
}
#[cfg(windows)]
pub(crate) fn convert_file<T: From<OwnedHandle>>(file: impl Into<OwnedHandle>) -> T {
file.into().into()
}
const DEFAULT_BUF_SIZE: usize = 8192;
pub fn copy_with_signals(
mut reader: impl Read,
mut writer: impl Write,
span: Span,
signals: &Signals,
) -> Result<u64, ShellError> {
if signals.is_empty() {
match io::copy(&mut reader, &mut writer) {
Ok(n) => {
writer.flush().err_span(span)?;
Ok(n)
}
Err(err) => {
let _ = writer.flush();
Err(err.into_spanned(span).into())
}
}
} else {
// #[cfg(any(target_os = "linux", target_os = "android"))]
// {
// return crate::sys::kernel_copy::copy_spec(reader, writer);
// }
match generic_copy(&mut reader, &mut writer, span, signals) {
Ok(len) => {
writer.flush().err_span(span)?;
Ok(len)
}
Err(err) => {
let _ = writer.flush();
Err(err)
}
}
}
}
// Copied from [`std::io::copy`]
fn generic_copy(
mut reader: impl Read,
mut writer: impl Write,
span: Span,
signals: &Signals,
) -> Result<u64, ShellError> {
let buf = &mut [0; DEFAULT_BUF_SIZE];
let mut len = 0;
loop {
signals.check(span)?;
let n = match reader.read(buf) {
Ok(0) => break,
Ok(n) => n,
Err(e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e.into_spanned(span).into()),
};
len += n;
writer.write_all(&buf[..n]).err_span(span)?;
}
Ok(len as u64)
}
struct ReadGenerator<F>
where
F: FnMut(&mut Vec<u8>) -> Result<bool, ShellError> + Send + 'static,
{
buffer: Cursor<Vec<u8>>,
generator: F,
}
impl<F> BufRead for ReadGenerator<F>
where
F: FnMut(&mut Vec<u8>) -> Result<bool, ShellError> + Send + 'static,
{
fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
// We have to loop, because it's important that we don't leave the buffer empty unless we're
// truly at the end of the stream.
while self.buffer.fill_buf()?.is_empty() {
// Reset the cursor to the beginning and truncate
self.buffer.set_position(0);
self.buffer.get_mut().clear();
// Ask the generator to generate data
if !(self.generator)(self.buffer.get_mut())? {
// End of stream
break;
}
}
self.buffer.fill_buf()
}
fn consume(&mut self, amt: usize) {
self.buffer.consume(amt);
}
}
impl<F> Read for ReadGenerator<F>
where
F: FnMut(&mut Vec<u8>) -> Result<bool, ShellError> + Send + 'static,
{
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
// Straightforward implementation on top of BufRead
let slice = self.fill_buf()?;
let len = buf.len().min(slice.len());
buf[..len].copy_from_slice(&slice[..len]);
self.consume(len);
Ok(len)
}
}
#[cfg(test)]
mod tests {
use super::*;
fn test_chunks<T>(data: Vec<T>, type_: ByteStreamType) -> Chunks
where
T: AsRef<[u8]> + Default + Send + 'static,
{
let reader = ReadIterator {
iter: data.into_iter(),
cursor: Some(Cursor::new(T::default())),
};
Chunks::new(
SourceReader::Read(Box::new(reader)),
Span::test_data(),
Signals::empty(),
type_,
)
}
#[test]
fn chunks_read_binary_passthrough() {
let bins = vec![&[0, 1][..], &[2, 3][..]];
let iter = test_chunks(bins.clone(), ByteStreamType::Binary);
let bins_values: Vec<Value> = bins
.into_iter()
.map(|bin| Value::binary(bin, Span::test_data()))
.collect();
assert_eq!(
bins_values,
iter.collect::<Result<Vec<Value>, _>>().expect("error")
);
}
#[test]
fn chunks_read_string_clean() {
let strs = vec!["Nushell", "が好きです"];
let iter = test_chunks(strs.clone(), ByteStreamType::String);
let strs_values: Vec<Value> = strs
.into_iter()
.map(|string| Value::string(string, Span::test_data()))
.collect();
assert_eq!(
strs_values,
iter.collect::<Result<Vec<Value>, _>>().expect("error")
);
}
#[test]
fn chunks_read_string_split_boundary() {
let real = "Nushell最高!";
let chunks = vec![&b"Nushell\xe6"[..], &b"\x9c\x80\xe9"[..], &b"\xab\x98!"[..]];
let iter = test_chunks(chunks.clone(), ByteStreamType::String);
let mut string = String::new();
for value in iter {
let chunk_string = value.expect("error").into_string().expect("not a string");
string.push_str(&chunk_string);
}
assert_eq!(real, string);
}
#[test]
fn chunks_read_string_utf8_error() {
let chunks = vec![&b"Nushell\xe6"[..], &b"\x9c\x80\xe9"[..], &b"\xab"[..]];
let iter = test_chunks(chunks, ByteStreamType::String);
let mut string = String::new();
for value in iter {
match value {
Ok(value) => string.push_str(&value.into_string().expect("not a string")),
Err(err) => {
println!("string so far: {:?}", string);
println!("got error: {err:?}");
assert!(!string.is_empty());
assert!(matches!(err, ShellError::NonUtf8Custom { .. }));
return;
}
}
}
panic!("no error");
}
#[test]
fn chunks_read_unknown_fallback() {
let chunks = vec![&b"Nushell"[..], &b"\x9c\x80\xe9abcd"[..], &b"efgh"[..]];
let mut iter = test_chunks(chunks, ByteStreamType::Unknown);
let mut get = || iter.next().expect("end of iter").expect("error");
assert_eq!(Value::test_string("Nushell"), get());
assert_eq!(Value::test_binary(b"\x9c\x80\xe9abcd"), get());
// Once it's in binary mode it won't go back
assert_eq!(Value::test_binary(b"efgh"), get());
}
}