nushell/crates/nu-command/src/dataframe/eager/melt.rs
Fernando Herrera 6cc8402127
Standardise to commands (#5800)
* standarize to commands

* move from to to into
2022-06-17 07:51:50 -05:00

266 lines
7.9 KiB
Rust

use nu_engine::CallExt;
use nu_protocol::{
ast::Call,
engine::{Command, EngineState, Stack},
Category, Example, PipelineData, ShellError, Signature, Span, Spanned, SyntaxShape, Type,
Value,
};
use crate::dataframe::values::utils::convert_columns_string;
use super::super::values::{Column, NuDataFrame};
#[derive(Clone)]
pub struct MeltDF;
impl Command for MeltDF {
fn name(&self) -> &str {
"melt"
}
fn usage(&self) -> &str {
"Unpivot a DataFrame from wide to long format"
}
fn signature(&self) -> Signature {
Signature::build(self.name())
.required_named(
"columns",
SyntaxShape::Table,
"column names for melting",
Some('c'),
)
.required_named(
"values",
SyntaxShape::Table,
"column names used as value columns",
Some('v'),
)
.named(
"variable-name",
SyntaxShape::String,
"optional name for variable column",
Some('r'),
)
.named(
"value-name",
SyntaxShape::String,
"optional name for value column",
Some('l'),
)
.category(Category::Custom("dataframe".into()))
}
fn examples(&self) -> Vec<Example> {
vec![Example {
description: "melt dataframe",
example:
"[[a b c d]; [x 1 4 a] [y 2 5 b] [z 3 6 c]] | into df | melt -c [b c] -v [a d]",
result: Some(
NuDataFrame::try_from_columns(vec![
Column::new(
"b".to_string(),
vec![
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
],
),
Column::new(
"c".to_string(),
vec![
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
],
),
Column::new(
"variable".to_string(),
vec![
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("d"),
Value::test_string("d"),
Value::test_string("d"),
],
),
Column::new(
"value".to_string(),
vec![
Value::test_string("x"),
Value::test_string("y"),
Value::test_string("z"),
Value::test_string("a"),
Value::test_string("b"),
Value::test_string("c"),
],
),
])
.expect("simple df for test should not fail")
.into_value(Span::test_data()),
),
}]
}
fn input_type(&self) -> Type {
Type::Custom("dataframe".into())
}
fn output_type(&self) -> Type {
Type::Custom("dataframe".into())
}
fn run(
&self,
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
input: PipelineData,
) -> Result<PipelineData, ShellError> {
command(engine_state, stack, call, input)
}
}
fn command(
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
input: PipelineData,
) -> Result<PipelineData, ShellError> {
let id_col: Vec<Value> = call
.get_flag(engine_state, stack, "columns")?
.expect("required value");
let val_col: Vec<Value> = call
.get_flag(engine_state, stack, "values")?
.expect("required value");
let value_name: Option<Spanned<String>> = call.get_flag(engine_state, stack, "value-name")?;
let variable_name: Option<Spanned<String>> =
call.get_flag(engine_state, stack, "variable-name")?;
let (id_col_string, id_col_span) = convert_columns_string(id_col, call.head)?;
let (val_col_string, val_col_span) = convert_columns_string(val_col, call.head)?;
let df = NuDataFrame::try_from_pipeline(input, call.head)?;
check_column_datatypes(df.as_ref(), &id_col_string, id_col_span)?;
check_column_datatypes(df.as_ref(), &val_col_string, val_col_span)?;
let mut res = df
.as_ref()
.melt(&id_col_string, &val_col_string)
.map_err(|e| {
ShellError::GenericError(
"Error calculating melt".into(),
e.to_string(),
Some(call.head),
None,
Vec::new(),
)
})?;
if let Some(name) = &variable_name {
res.rename("variable", &name.item).map_err(|e| {
ShellError::GenericError(
"Error renaming column".into(),
e.to_string(),
Some(name.span),
None,
Vec::new(),
)
})?;
}
if let Some(name) = &value_name {
res.rename("value", &name.item).map_err(|e| {
ShellError::GenericError(
"Error renaming column".into(),
e.to_string(),
Some(name.span),
None,
Vec::new(),
)
})?;
}
Ok(PipelineData::Value(
NuDataFrame::dataframe_into_value(res, call.head),
None,
))
}
fn check_column_datatypes<T: AsRef<str>>(
df: &polars::prelude::DataFrame,
cols: &[T],
col_span: Span,
) -> Result<(), ShellError> {
if cols.is_empty() {
return Err(ShellError::GenericError(
"Merge error".into(),
"empty column list".into(),
Some(col_span),
None,
Vec::new(),
));
}
// Checking if they are same type
if cols.len() > 1 {
for w in cols.windows(2) {
let l_series = df.column(w[0].as_ref()).map_err(|e| {
ShellError::GenericError(
"Error selecting columns".into(),
e.to_string(),
Some(col_span),
None,
Vec::new(),
)
})?;
let r_series = df.column(w[1].as_ref()).map_err(|e| {
ShellError::GenericError(
"Error selecting columns".into(),
e.to_string(),
Some(col_span),
None,
Vec::new(),
)
})?;
if l_series.dtype() != r_series.dtype() {
return Err(ShellError::GenericError(
"Merge error".into(),
"found different column types in list".into(),
Some(col_span),
Some(format!(
"datatypes {} and {} are incompatible",
l_series.dtype(),
r_series.dtype()
)),
Vec::new(),
));
}
}
}
Ok(())
}
#[cfg(test)]
mod test {
use super::super::super::test_dataframe::test_dataframe;
use super::*;
#[test]
fn test_examples() {
test_dataframe(vec![Box::new(MeltDF {})])
}
}