nushell/crates/nu-cmd-dataframe/src/dataframe/values/nu_dataframe/mod.rs
JT 6cdfee3573
Move Value to helpers, separate span call (#10121)
# Description

As part of the refactor to split spans off of Value, this moves to using
helper functions to create values, and using `.span()` instead of
matching span out of Value directly.

Hoping to get a few more helping hands to finish this, as there are a
lot of commands to update :)

# User-Facing Changes
<!-- List of all changes that impact the user experience here. This
helps us keep track of breaking changes. -->

# Tests + Formatting
<!--
Don't forget to add tests that cover your changes.

Make sure you've run and fixed any issues with these commands:

- `cargo fmt --all -- --check` to check standard code formatting (`cargo
fmt --all` applies these changes)
- `cargo clippy --workspace -- -D warnings -D clippy::unwrap_used` to
check that you're using the standard code style
- `cargo test --workspace` to check that all tests pass (on Windows make
sure to [enable developer
mode](https://learn.microsoft.com/en-us/windows/apps/get-started/developer-mode-features-and-debugging))
- `cargo run -- -c "use std testing; testing run-tests --path
crates/nu-std"` to run the tests for the standard library

> **Note**
> from `nushell` you can also use the `toolkit` as follows
> ```bash
> use toolkit.nu # or use an `env_change` hook to activate it
automatically
> toolkit check pr
> ```
-->

# After Submitting
<!-- If your PR had any user-facing changes, update [the
documentation](https://github.com/nushell/nushell.github.io) after the
PR is merged, if necessary. This will help us keep the docs up to date.
-->

---------

Co-authored-by: Darren Schroeder <343840+fdncred@users.noreply.github.com>
Co-authored-by: WindSoilder <windsoilder@outlook.com>
2023-09-03 07:27:29 -07:00

498 lines
15 KiB
Rust

mod between_values;
mod conversion;
mod custom_value;
mod operations;
pub use conversion::{Column, ColumnMap};
pub use operations::Axis;
use indexmap::map::IndexMap;
use nu_protocol::{did_you_mean, PipelineData, Record, ShellError, Span, Value};
use polars::prelude::{DataFrame, DataType, IntoLazy, LazyFrame, PolarsObject, Series};
use serde::{Deserialize, Serialize};
use std::{cmp::Ordering, fmt::Display, hash::Hasher};
use super::{utils::DEFAULT_ROWS, NuLazyFrame};
// DataFrameValue is an encapsulation of Nushell Value that can be used
// to define the PolarsObject Trait. The polars object trait allows to
// create dataframes with mixed datatypes
#[derive(Clone, Debug)]
pub struct DataFrameValue(Value);
impl DataFrameValue {
fn new(value: Value) -> Self {
Self(value)
}
fn get_value(&self) -> Value {
self.0.clone()
}
}
impl Display for DataFrameValue {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0.get_type())
}
}
impl Default for DataFrameValue {
fn default() -> Self {
Self(Value::nothing(Span::unknown()))
}
}
impl PartialEq for DataFrameValue {
fn eq(&self, other: &Self) -> bool {
self.0.partial_cmp(&other.0).map_or(false, Ordering::is_eq)
}
}
impl Eq for DataFrameValue {}
impl std::hash::Hash for DataFrameValue {
fn hash<H: Hasher>(&self, state: &mut H) {
match &self.0 {
Value::Nothing { .. } => 0.hash(state),
Value::Int { val, .. } => val.hash(state),
Value::String { val, .. } => val.hash(state),
// TODO. Define hash for the rest of types
_ => {}
}
}
}
impl PolarsObject for DataFrameValue {
fn type_name() -> &'static str {
"object"
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct NuDataFrame {
pub df: DataFrame,
pub from_lazy: bool,
}
impl AsRef<DataFrame> for NuDataFrame {
fn as_ref(&self) -> &polars::prelude::DataFrame {
&self.df
}
}
impl AsMut<DataFrame> for NuDataFrame {
fn as_mut(&mut self) -> &mut polars::prelude::DataFrame {
&mut self.df
}
}
impl From<DataFrame> for NuDataFrame {
fn from(df: DataFrame) -> Self {
Self {
df,
from_lazy: false,
}
}
}
impl NuDataFrame {
pub fn new(from_lazy: bool, df: DataFrame) -> Self {
Self { df, from_lazy }
}
pub fn lazy(&self) -> LazyFrame {
self.df.clone().lazy()
}
fn default_value(span: Span) -> Value {
let dataframe = DataFrame::default();
NuDataFrame::dataframe_into_value(dataframe, span)
}
pub fn dataframe_into_value(dataframe: DataFrame, span: Span) -> Value {
Value::custom_value(Box::new(Self::new(false, dataframe)), span)
}
pub fn into_value(self, span: Span) -> Value {
if self.from_lazy {
let lazy = NuLazyFrame::from_dataframe(self);
Value::custom_value(Box::new(lazy), span)
} else {
Value::custom_value(Box::new(self), span)
}
}
pub fn series_to_value(series: Series, span: Span) -> Result<Value, ShellError> {
match DataFrame::new(vec![series]) {
Ok(dataframe) => Ok(NuDataFrame::dataframe_into_value(dataframe, span)),
Err(e) => Err(ShellError::GenericError(
"Error creating dataframe".into(),
e.to_string(),
Some(span),
None,
Vec::new(),
)),
}
}
pub fn try_from_iter<T>(iter: T) -> Result<Self, ShellError>
where
T: Iterator<Item = Value>,
{
// Dictionary to store the columnar data extracted from
// the input. During the iteration we check if the values
// have different type
let mut column_values: ColumnMap = IndexMap::new();
for value in iter {
match value {
Value::CustomValue { .. } => return Self::try_from_value(value),
Value::List { vals, .. } => {
let cols = (0..vals.len())
.map(|i| format!("{i}"))
.collect::<Vec<String>>();
conversion::insert_record(&mut column_values, Record { cols, vals })?
}
Value::Record { val: record, .. } => {
conversion::insert_record(&mut column_values, record)?
}
_ => {
let key = "0".to_string();
conversion::insert_value(value, key, &mut column_values)?
}
}
}
conversion::from_parsed_columns(column_values)
}
pub fn try_from_series(columns: Vec<Series>, span: Span) -> Result<Self, ShellError> {
let dataframe = DataFrame::new(columns).map_err(|e| {
ShellError::GenericError(
"Error creating dataframe".into(),
format!("Unable to create DataFrame: {e}"),
Some(span),
None,
Vec::new(),
)
})?;
Ok(Self::new(false, dataframe))
}
pub fn try_from_columns(columns: Vec<Column>) -> Result<Self, ShellError> {
let mut column_values: ColumnMap = IndexMap::new();
for column in columns {
let name = column.name().to_string();
for value in column {
conversion::insert_value(value, name.clone(), &mut column_values)?;
}
}
conversion::from_parsed_columns(column_values)
}
pub fn fill_list_nan(list: Vec<Value>, list_span: Span, fill: Value) -> Value {
let newlist = list
.into_iter()
.map(|value| {
let span = value.span();
match value {
Value::Float { val, .. } => {
if val.is_nan() {
fill.clone()
} else {
value
}
}
Value::List { vals, .. } => Self::fill_list_nan(vals, span, fill.clone()),
_ => value,
}
})
.collect::<Vec<Value>>();
Value::list(newlist, list_span)
}
pub fn columns(&self, span: Span) -> Result<Vec<Column>, ShellError> {
let height = self.df.height();
self.df
.get_columns()
.iter()
.map(|col| conversion::create_column(col, 0, height, span))
.collect::<Result<Vec<Column>, ShellError>>()
}
pub fn try_from_value(value: Value) -> Result<Self, ShellError> {
if Self::can_downcast(&value) {
Ok(Self::get_df(value)?)
} else if NuLazyFrame::can_downcast(&value) {
let span = value.span();
let lazy = NuLazyFrame::try_from_value(value)?;
let df = lazy.collect(span)?;
Ok(df)
} else {
Err(ShellError::CantConvert {
to_type: "lazy or eager dataframe".into(),
from_type: value.get_type().to_string(),
span: value.span(),
help: None,
})
}
}
pub fn get_df(value: Value) -> Result<Self, ShellError> {
let span = value.span();
match value {
Value::CustomValue { val, .. } => match val.as_any().downcast_ref::<Self>() {
Some(df) => Ok(NuDataFrame {
df: df.df.clone(),
from_lazy: false,
}),
None => Err(ShellError::CantConvert {
to_type: "dataframe".into(),
from_type: "non-dataframe".into(),
span,
help: None,
}),
},
x => Err(ShellError::CantConvert {
to_type: "dataframe".into(),
from_type: x.get_type().to_string(),
span: x.span(),
help: None,
}),
}
}
pub fn try_from_pipeline(input: PipelineData, span: Span) -> Result<Self, ShellError> {
let value = input.into_value(span);
Self::try_from_value(value)
}
pub fn can_downcast(value: &Value) -> bool {
if let Value::CustomValue { val, .. } = value {
val.as_any().downcast_ref::<Self>().is_some()
} else {
false
}
}
pub fn column(&self, column: &str, span: Span) -> Result<Self, ShellError> {
let s = self.df.column(column).map_err(|_| {
let possibilities = self
.df
.get_column_names()
.iter()
.map(|name| name.to_string())
.collect::<Vec<String>>();
let option = did_you_mean(&possibilities, column).unwrap_or_else(|| column.to_string());
ShellError::DidYouMean(option, span)
})?;
let df = DataFrame::new(vec![s.clone()]).map_err(|e| {
ShellError::GenericError(
"Error creating dataframe".into(),
e.to_string(),
Some(span),
None,
Vec::new(),
)
})?;
Ok(Self {
df,
from_lazy: false,
})
}
pub fn is_series(&self) -> bool {
self.df.width() == 1
}
pub fn as_series(&self, span: Span) -> Result<Series, ShellError> {
if !self.is_series() {
return Err(ShellError::GenericError(
"Error using as series".into(),
"dataframe has more than one column".into(),
Some(span),
None,
Vec::new(),
));
}
let series = self
.df
.get_columns()
.get(0)
.expect("We have already checked that the width is 1");
Ok(series.clone())
}
pub fn get_value(&self, row: usize, span: Span) -> Result<Value, ShellError> {
let series = self.as_series(span)?;
let column = conversion::create_column(&series, row, row + 1, span)?;
if column.len() == 0 {
Err(ShellError::AccessEmptyContent { span })
} else {
let value = column
.into_iter()
.next()
.expect("already checked there is a value");
Ok(value)
}
}
// Print is made out a head and if the dataframe is too large, then a tail
pub fn print(&self, span: Span) -> Result<Vec<Value>, ShellError> {
let df = &self.df;
let size: usize = 20;
if df.height() > size {
let sample_size = size / 2;
let mut values = self.head(Some(sample_size), span)?;
conversion::add_separator(&mut values, df, span);
let remaining = df.height() - sample_size;
let tail_size = remaining.min(sample_size);
let mut tail_values = self.tail(Some(tail_size), span)?;
values.append(&mut tail_values);
Ok(values)
} else {
Ok(self.head(Some(size), span)?)
}
}
pub fn height(&self) -> usize {
self.df.height()
}
pub fn head(&self, rows: Option<usize>, span: Span) -> Result<Vec<Value>, ShellError> {
let to_row = rows.unwrap_or(5);
let values = self.to_rows(0, to_row, span)?;
Ok(values)
}
pub fn tail(&self, rows: Option<usize>, span: Span) -> Result<Vec<Value>, ShellError> {
let df = &self.df;
let to_row = df.height();
let size = rows.unwrap_or(DEFAULT_ROWS);
let from_row = to_row.saturating_sub(size);
let values = self.to_rows(from_row, to_row, span)?;
Ok(values)
}
pub fn to_rows(
&self,
from_row: usize,
to_row: usize,
span: Span,
) -> Result<Vec<Value>, ShellError> {
let df = &self.df;
let upper_row = to_row.min(df.height());
let mut size: usize = 0;
let columns = self
.df
.get_columns()
.iter()
.map(
|col| match conversion::create_column(col, from_row, upper_row, span) {
Ok(col) => {
size = col.len();
Ok(col)
}
Err(e) => Err(e),
},
)
.collect::<Result<Vec<Column>, ShellError>>()?;
let mut iterators = columns
.into_iter()
.map(|col| (col.name().to_string(), col.into_iter()))
.collect::<Vec<(String, std::vec::IntoIter<Value>)>>();
let values = (0..size)
.map(|i| {
let mut record = Record::new();
record.push("index", Value::int((i + from_row) as i64, span));
for (name, col) in &mut iterators {
record.push(name.clone(), col.next().unwrap_or(Value::nothing(span)));
}
Value::record(record, span)
})
.collect::<Vec<Value>>();
Ok(values)
}
// Dataframes are considered equal if they have the same shape, column name and values
pub fn is_equal(&self, other: &Self) -> Option<Ordering> {
if self.as_ref().width() == 0 {
// checking for empty dataframe
return None;
}
if self.as_ref().get_column_names() != other.as_ref().get_column_names() {
// checking both dataframes share the same names
return None;
}
if self.as_ref().height() != other.as_ref().height() {
// checking both dataframes have the same row size
return None;
}
// sorting dataframe by the first column
let column_names = self.as_ref().get_column_names();
let first_col = column_names
.first()
.expect("already checked that dataframe is different than 0");
// if unable to sort, then unable to compare
let lhs = match self.as_ref().sort(vec![*first_col], false, false) {
Ok(df) => df,
Err(_) => return None,
};
let rhs = match other.as_ref().sort(vec![*first_col], false, false) {
Ok(df) => df,
Err(_) => return None,
};
for name in self.as_ref().get_column_names() {
let self_series = lhs.column(name).expect("name from dataframe names");
let other_series = rhs
.column(name)
.expect("already checked that name in other");
let self_series = match self_series.dtype() {
// Casting needed to compare other numeric types with nushell numeric type.
// In nushell we only have i64 integer numeric types and any array created
// with nushell untagged primitives will be of type i64
DataType::UInt32 | DataType::Int32 => match self_series.cast(&DataType::Int64) {
Ok(series) => series,
Err(_) => return None,
},
_ => self_series.clone(),
};
if !self_series.series_equal(other_series) {
return None;
}
}
Some(Ordering::Equal)
}
}