nushell/crates/nu-parser
Devyn Cairns 8e2917b9ae
Make assignment and const consistent with let/mut (#13385)
# Description

This makes assignment operations and `const` behave the same way `let`
and `mut` do, absorbing the rest of the pipeline.

Changes the lexer to be able to recognize assignment operators as a
separate token, and then makes the lite parser continue to push spans
into the same command regardless of any redirections or pipes if an
assignment operator is encountered. Because the pipeline is no longer
split up by the lite parser at this point, it's trivial to just parse
the right hand side as if it were a subexpression not contained within
parentheses.

# User-Facing Changes
Big breaking change. These are all now possible:

```nushell
const path = 'a' | path join 'b'

mut x = 2
$x = random int
$x = [1 2 3] | math sum

$env.FOO = random chars
```

In the past, these would have led to (an attempt at) bare word string
parsing. So while `$env.FOO = bar` would have previously set the
environment variable `FOO` to the string `"bar"`, it now tries to run
the command named `bar`, hence the major breaking change.

However, this is desirable because it is very consistent - if you see
the `=`, you can just assume it absorbs everything else to the right of
it.

# Tests + Formatting
Added tests for the new behaviour. Adjusted some existing tests that
depended on the right hand side of assignments being parsed as
barewords.

# After Submitting
- [ ] release notes (breaking change!)
2024-07-30 18:55:22 -05:00
..
fuzz Bump version to 0.94.0 (#12987) 2024-05-28 12:04:09 -07:00
src Make assignment and const consistent with let/mut (#13385) 2024-07-30 18:55:22 -05:00
tests Make assignment and const consistent with let/mut (#13385) 2024-07-30 18:55:22 -05:00
Cargo.toml Bump version to 0.96.2 (#13485) 2024-07-29 17:20:55 -07:00
LICENSE Fix rest of license year ranges (#8727) 2023-04-04 09:03:29 +12:00
README.md Add top-level crate documentation/READMEs (#12907) 2024-07-14 10:10:41 +02:00

nu-parser, the Nushell parser

Nushell's parser is a type-directed parser, meaning that the parser will use type information available during parse time to configure the parser. This allows it to handle a broader range of techniques to handle the arguments of a command.

Nushell's base language is whitespace-separated tokens with the command (Nushell's term for a function) name in the head position:

head1 arg1 arg2 | head2

Lexing

The first job of the parser is to a lexical analysis to find where the tokens start and end in the input. This turns the above into:

<item: "head1">, <item: "arg1">, <item: "arg2">, <pipe>, <item: "head2">

At this point, the parser has little to no understanding of the shape of the command or how to parse its arguments.

Lite parsing

As Nushell is a language of pipelines, pipes form a key role in both separating commands from each other as well as denoting the flow of information between commands. The lite parse phase, as the name suggests, helps to group the lexed tokens into units.

The above tokens are converted the following during the lite parse phase:

Pipeline:
  Command #1:
    <item: "head1">, <item: "arg1">, <item: "arg2">
  Command #2:
    <item: "head2">

Parsing

The real magic begins to happen when the parse moves on to the parsing stage. At this point, it traverses the lite parse tree and for each command makes a decision:

  • If the command looks like an internal/external command literal: e.g. foo or /usr/bin/ls, it parses it as an internal or external command
  • Otherwise, it parses the command as part of a mathematical expression

Types/shapes

Each command has a shape assigned to each of the arguments it reads in. These shapes help define how the parser will handle the parse.

For example, if the command is written as:

where $x > 10

When the parsing happens, the parser will look up the where command and find its Signature. The Signature states what flags are allowed and what positional arguments are allowed (both required and optional). Each argument comes with a Shape that defines how to parse values to get that position.

In the above example, if the Signature of where said that it took three String values, the result would be:

CallInfo:
  Name: `where`
  Args:
    Expression($x), a String
    Expression(>), a String
    Expression(10), a String

Or, the Signature could state that it takes in three positional arguments: a Variable, an Operator, and a Number, which would give:

CallInfo:
  Name: `where`
  Args:
    Expression($x), a Variable
    Expression(>), an Operator
    Expression(10), a Number

Note that in this case, each would be checked at compile time to confirm that the expression has the shape requested. For example, "foo" would fail to parse as a Number.

Finally, some Shapes can consume more than one token. In the above, if the where command stated it took in a single required argument, and that the Shape of this argument was a MathExpression, then the parser would treat the remaining tokens as part of the math expression.

CallInfo:
  Name: `where`
  Args:
    MathExpression:
      Op: >
      LHS: Expression($x)
      RHS: Expression(10)

When the command runs, it will now be able to evaluate the whole math expression as a single step rather than doing any additional parsing to understand the relationship between the parameters.

Making space

As some Shapes can consume multiple tokens, it's important that the parser allow for multiple Shapes to coexist as peacefully as possible.

The simplest way it does this is to ensure there is at least one token for each required parameter. If the Signature of the command says that it takes a MathExpression and a Number as two required arguments, then the parser will stop the math parser one token short. This allows the second Shape to consume the final token.

Another way that the parser makes space is to look for Keyword shapes in the Signature. A Keyword is a word that's special to this command. For example in the if command, else is a keyword. When it is found in the arguments, the parser will use it as a signpost for where to make space for each Shape. The tokens leading up to the else will then feed into the parts of the Signature before the else, and the tokens following are consumed by the else and the Shapes that follow.