Files
nushell/crates/nu-parser/src/parse_shape_specs.rs
Bahex a0d7c1a4fd Add SyntaxShape::OneOf syntax users can use (#15646)
# Description
Built-in commands can have parameter of `SyntaxShape::OneOf`.
This PR changes `OneOf`'s string representation and gives users the
ability to use it in definitions.

> _Syntax updated after discussion on discord._

```nushell
def foo [
    param: oneof<binary, string>
] { .. }
```
```
Usage:
  > foo <param> 

Flags:
  -h, --help: Display the help message for this command

Parameters:
  param <oneof<binary, string>>

Input/output types:
  ╭───┬───────┬────────╮
  │ # │ input │ output │
  ├───┼───────┼────────┤
  │ 0 │ any   │ any    │
  ╰───┴───────┴────────╯
```

<details><summary>Previous iterations</summary>
<p>

> ```nushell
> def foo [
>     param: (binary | string)
> ] { .. }
> ```

> ---
>
> ```nushell
> def foo [
>     param: one_of(binary, string)
> ] { .. }
> ```

</p>
</details> 


# User-Facing Changes

# Tests + Formatting
Added some test cases.

- 🟢 toolkit fmt
- 🟢 toolkit clippy
- 🟢 toolkit test
- 🟢 toolkit test stdlib

# After Submitting
- Update the website to include the new syntax
[here](https://github.com/nushell/nushell.github.io/blob/main/book/custom_commands.md)
- Update [tree-sitter-nu](https://github.com/nushell/tree-sitter-nu)
- Update `std` and `std-rfc` where applicable

---------

Co-authored-by: Bahex <17417311+Bahex@users.noreply.github.com>
2025-05-07 15:43:01 -05:00

324 lines
11 KiB
Rust

#![allow(clippy::byte_char_slices)]
use crate::{lex::lex_signature, parser::parse_value, trim_quotes, TokenContents};
use nu_protocol::{
engine::StateWorkingSet, IntoSpanned, ParseError, Span, Spanned, SyntaxShape, Type,
};
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ShapeDescriptorUse {
/// Used in an argument position allowing the addition of custom completion
Argument,
/// Used to define the type of a variable or input/output types
Type,
}
/// equivalent to [`parse_shape_name`] with [`ShapeDescriptorUse::Type`] converting the
/// [`SyntaxShape`] to its [`Type`]
pub fn parse_type(working_set: &mut StateWorkingSet, bytes: &[u8], span: Span) -> Type {
parse_shape_name(working_set, bytes, span, ShapeDescriptorUse::Type).to_type()
}
/// Parse the literals of [`Type`]-like [`SyntaxShape`]s including inner types.
/// Also handles the specification of custom completions with `type@completer`.
///
/// Restrict the parsing with `use_loc`
/// Used in:
/// - [`ShapeDescriptorUse::Argument`]
/// - `: ` argument type (+completer) positions in signatures
/// - [`ShapeDescriptorUse::Type`]
/// - `type->type` input/output type pairs
/// - `let name: type` variable type infos
///
/// NOTE: Does not provide a mapping to every [`SyntaxShape`]
pub fn parse_shape_name(
working_set: &mut StateWorkingSet,
bytes: &[u8],
span: Span,
use_loc: ShapeDescriptorUse,
) -> SyntaxShape {
let result = match bytes {
b"any" => SyntaxShape::Any,
b"binary" => SyntaxShape::Binary,
b"block" => {
working_set.error(ParseError::LabeledErrorWithHelp {
error: "Blocks are not support as first-class values".into(),
label: "blocks are not supported as values".into(),
help: "Use 'closure' instead of 'block'".into(),
span,
});
SyntaxShape::Any
}
b"bool" => SyntaxShape::Boolean,
b"cell-path" => SyntaxShape::CellPath,
b"closure" => SyntaxShape::Closure(None), //FIXME: Blocks should have known output types
b"datetime" => SyntaxShape::DateTime,
b"directory" => SyntaxShape::Directory,
b"duration" => SyntaxShape::Duration,
b"error" => SyntaxShape::Error,
b"float" => SyntaxShape::Float,
b"filesize" => SyntaxShape::Filesize,
b"glob" => SyntaxShape::GlobPattern,
b"int" => SyntaxShape::Int,
b"nothing" => SyntaxShape::Nothing,
b"number" => SyntaxShape::Number,
b"path" => SyntaxShape::Filepath,
b"range" => SyntaxShape::Range,
b"string" => SyntaxShape::String,
_ if bytes.starts_with(b"oneof")
|| bytes.starts_with(b"list")
|| bytes.starts_with(b"record")
|| bytes.starts_with(b"table") =>
{
parse_generic_shape(working_set, bytes, span, use_loc)
}
_ => {
if bytes.contains(&b'@') {
let mut split = bytes.splitn(2, |b| b == &b'@');
let shape_name = split
.next()
.expect("If `bytes` contains `@` splitn returns 2 slices");
let shape_span = Span::new(span.start, span.start + shape_name.len());
let shape = parse_shape_name(working_set, shape_name, shape_span, use_loc);
if use_loc != ShapeDescriptorUse::Argument {
let illegal_span = Span::new(span.start + shape_name.len(), span.end);
working_set.error(ParseError::LabeledError(
"Unexpected custom completer in type spec".into(),
"Type specifications do not support custom completers".into(),
illegal_span,
));
return shape;
}
let cmd_span = Span::new(span.start + shape_name.len() + 1, span.end);
let cmd_name = split
.next()
.expect("If `bytes` contains `@` splitn returns 2 slices");
let cmd_name = trim_quotes(cmd_name);
if cmd_name.is_empty() {
working_set.error(ParseError::Expected(
"the command name of a completion function",
cmd_span,
));
return shape;
}
if let Some(decl_id) = working_set.find_decl(cmd_name) {
return SyntaxShape::CompleterWrapper(Box::new(shape), decl_id);
} else {
working_set.error(ParseError::UnknownCommand(cmd_span));
return shape;
}
} else {
//TODO: Handle error case for unknown shapes
working_set.error(ParseError::UnknownType(span));
return SyntaxShape::Any;
}
}
};
result
}
fn parse_generic_shape(
working_set: &mut StateWorkingSet<'_>,
bytes: &[u8],
span: Span,
use_loc: ShapeDescriptorUse,
) -> SyntaxShape {
let (type_name, type_params) = split_generic_params(working_set, bytes, span);
match type_name {
b"oneof" => SyntaxShape::OneOf(match type_params {
Some(params) => parse_type_params(working_set, params, use_loc),
None => vec![],
}),
b"list" => SyntaxShape::List(Box::new(match type_params {
Some(params) => {
let mut parsed_params = parse_type_params(working_set, params, use_loc);
if parsed_params.len() > 1 {
working_set.error(ParseError::LabeledError(
"expected a single type parameter".into(),
"only one parameter allowed".into(),
params.span,
));
SyntaxShape::Any
} else {
parsed_params.pop().unwrap_or(SyntaxShape::Any)
}
}
None => SyntaxShape::Any,
})),
b"record" => SyntaxShape::Record(match type_params {
Some(params) => parse_named_type_params(working_set, params, use_loc),
None => vec![],
}),
b"table" => SyntaxShape::Table(match type_params {
Some(params) => parse_named_type_params(working_set, params, use_loc),
None => vec![],
}),
_ => {
working_set.error(ParseError::UnknownType(span));
SyntaxShape::Any
}
}
}
fn split_generic_params<'a>(
working_set: &mut StateWorkingSet,
bytes: &'a [u8],
span: Span,
) -> (&'a [u8], Option<Spanned<&'a [u8]>>) {
let n = bytes.iter().position(|&c| c == b'<');
let (open_delim_pos, close_delim) = match n.and_then(|n| Some((n, bytes.get(n)?))) {
Some((n, b'<')) => (n, b'>'),
_ => return (bytes, None),
};
let type_name = &bytes[..(open_delim_pos)];
let params = &bytes[(open_delim_pos + 1)..];
let start = span.start + type_name.len() + 1;
if params.ends_with(&[close_delim]) {
let end = span.end - 1;
(
type_name,
Some((&params[..(params.len() - 1)]).into_spanned(Span::new(start, end))),
)
} else if let Some(close_delim_pos) = params.iter().position(|it| it == &close_delim) {
let span = Span::new(span.start + close_delim_pos, span.end);
working_set.error(ParseError::LabeledError(
"Extra characters in the parameter name".into(),
"extra characters".into(),
span,
));
(bytes, None)
} else {
working_set.error(ParseError::Unclosed((close_delim as char).into(), span));
(bytes, None)
}
}
fn parse_named_type_params(
working_set: &mut StateWorkingSet,
Spanned { item: source, span }: Spanned<&[u8]>,
use_loc: ShapeDescriptorUse,
) -> Vec<(String, SyntaxShape)> {
let (tokens, err) = lex_signature(source, span.start, &[b'\n', b'\r'], &[b':', b','], true);
if let Some(err) = err {
working_set.error(err);
return Vec::new();
}
let mut sig = Vec::new();
let mut idx = 0;
let key_error = |span| {
ParseError::LabeledError(
// format!("`{name}` type annotations key not string"),
"annotation key not string".into(),
"must be a string".into(),
span,
)
};
while idx < tokens.len() {
let TokenContents::Item = tokens[idx].contents else {
working_set.error(key_error(tokens[idx].span));
return Vec::new();
};
if working_set
.get_span_contents(tokens[idx].span)
.starts_with(b",")
{
idx += 1;
continue;
}
let Some(key) =
parse_value(working_set, tokens[idx].span, &SyntaxShape::String).as_string()
else {
working_set.error(key_error(tokens[idx].span));
return Vec::new();
};
// we want to allow such an annotation
// `record<name>` where the user leaves out the type
if idx + 1 == tokens.len() {
sig.push((key, SyntaxShape::Any));
break;
} else {
idx += 1;
}
let maybe_colon = working_set.get_span_contents(tokens[idx].span);
match maybe_colon {
b":" => {
if idx + 1 == tokens.len() {
working_set.error(ParseError::Expected("type after colon", tokens[idx].span));
break;
} else {
idx += 1;
}
}
// a key provided without a type
b"," => {
idx += 1;
sig.push((key, SyntaxShape::Any));
continue;
}
// a key provided without a type
_ => {
sig.push((key, SyntaxShape::Any));
continue;
}
}
let shape_bytes = working_set.get_span_contents(tokens[idx].span).to_vec();
let shape = parse_shape_name(working_set, &shape_bytes, tokens[idx].span, use_loc);
sig.push((key, shape));
idx += 1;
}
sig
}
fn parse_type_params(
working_set: &mut StateWorkingSet,
Spanned { item: source, span }: Spanned<&[u8]>,
use_loc: ShapeDescriptorUse,
) -> Vec<SyntaxShape> {
let (tokens, err) = lex_signature(source, span.start, &[b'\n', b'\r'], &[b':', b','], true);
if let Some(err) = err {
working_set.error(err);
return Vec::new();
}
let mut sig = vec![];
let mut idx = 0;
while idx < tokens.len() {
if working_set
.get_span_contents(tokens[idx].span)
.starts_with(b",")
{
idx += 1;
continue;
}
let shape_bytes = working_set.get_span_contents(tokens[idx].span).to_vec();
let shape = parse_shape_name(working_set, &shape_bytes, tokens[idx].span, use_loc);
sig.push(shape);
idx += 1;
}
sig
}