mirror of
https://github.com/nushell/nushell.git
synced 2025-03-29 09:06:52 +01:00
# Description * release notes https://github.com/pola-rs/polars/releases/tag/rs-0.36.2 * dependencies remove `sysinfo` 0.29.11 add `polars-compute` 0.36.2 # User-Facing Changes [Change value_counts resulting column name from counts to count](https://github.com/pola-rs/polars/pull/12506) # Tests + Formatting <!-- Don't forget to add tests that cover your changes. Make sure you've run and fixed any issues with these commands: - `cargo fmt --all -- --check` to check standard code formatting (`cargo fmt --all` applies these changes) - `cargo clippy --workspace -- -D warnings -D clippy::unwrap_used` to check that you're using the standard code style - `cargo test --workspace` to check that all tests pass (on Windows make sure to [enable developer mode](https://learn.microsoft.com/en-us/windows/apps/get-started/developer-mode-features-and-debugging)) - `cargo run -- -c "use std testing; testing run-tests --path crates/nu-std"` to run the tests for the standard library > **Note** > from `nushell` you can also use the `toolkit` as follows > ```bash > use toolkit.nu # or use an `env_change` hook to activate it automatically > toolkit check pr > ``` --> # After Submitting <!-- If your PR had any user-facing changes, update [the documentation](https://github.com/nushell/nushell.github.io) after the PR is merged, if necessary. This will help us keep the docs up to date. -->
216 lines
7.6 KiB
Rust
216 lines
7.6 KiB
Rust
use crate::dataframe::values::{Column, NuDataFrame, NuExpression, NuLazyFrame, NuLazyGroupBy};
|
|
|
|
use nu_engine::CallExt;
|
|
use nu_protocol::{
|
|
ast::Call,
|
|
engine::{Command, EngineState, Stack},
|
|
Category, Example, PipelineData, ShellError, Signature, Span, SyntaxShape, Type, Value,
|
|
};
|
|
use polars::{datatypes::DataType, prelude::Expr};
|
|
|
|
#[derive(Clone)]
|
|
pub struct LazyAggregate;
|
|
|
|
impl Command for LazyAggregate {
|
|
fn name(&self) -> &str {
|
|
"dfr agg"
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"Performs a series of aggregations from a group-by."
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build(self.name())
|
|
.rest(
|
|
"Group-by expressions",
|
|
SyntaxShape::Any,
|
|
"Expression(s) that define the aggregations to be applied",
|
|
)
|
|
.input_output_type(
|
|
Type::Custom("dataframe".into()),
|
|
Type::Custom("dataframe".into()),
|
|
)
|
|
.category(Category::Custom("lazyframe".into()))
|
|
}
|
|
|
|
fn examples(&self) -> Vec<Example> {
|
|
vec![
|
|
Example {
|
|
description: "Group by and perform an aggregation",
|
|
example: r#"[[a b]; [1 2] [1 4] [2 6] [2 4]]
|
|
| dfr into-df
|
|
| dfr group-by a
|
|
| dfr agg [
|
|
(dfr col b | dfr min | dfr as "b_min")
|
|
(dfr col b | dfr max | dfr as "b_max")
|
|
(dfr col b | dfr sum | dfr as "b_sum")
|
|
]"#,
|
|
result: Some(
|
|
NuDataFrame::try_from_columns(vec![
|
|
Column::new(
|
|
"a".to_string(),
|
|
vec![Value::test_int(1), Value::test_int(2)],
|
|
),
|
|
Column::new(
|
|
"b_min".to_string(),
|
|
vec![Value::test_int(2), Value::test_int(4)],
|
|
),
|
|
Column::new(
|
|
"b_max".to_string(),
|
|
vec![Value::test_int(4), Value::test_int(6)],
|
|
),
|
|
Column::new(
|
|
"b_sum".to_string(),
|
|
vec![Value::test_int(6), Value::test_int(10)],
|
|
),
|
|
])
|
|
.expect("simple df for test should not fail")
|
|
.into_value(Span::test_data()),
|
|
),
|
|
},
|
|
Example {
|
|
description: "Group by and perform an aggregation",
|
|
example: r#"[[a b]; [1 2] [1 4] [2 6] [2 4]]
|
|
| dfr into-lazy
|
|
| dfr group-by a
|
|
| dfr agg [
|
|
(dfr col b | dfr min | dfr as "b_min")
|
|
(dfr col b | dfr max | dfr as "b_max")
|
|
(dfr col b | dfr sum | dfr as "b_sum")
|
|
]
|
|
| dfr collect"#,
|
|
result: Some(
|
|
NuDataFrame::try_from_columns(vec![
|
|
Column::new(
|
|
"a".to_string(),
|
|
vec![Value::test_int(1), Value::test_int(2)],
|
|
),
|
|
Column::new(
|
|
"b_min".to_string(),
|
|
vec![Value::test_int(2), Value::test_int(4)],
|
|
),
|
|
Column::new(
|
|
"b_max".to_string(),
|
|
vec![Value::test_int(4), Value::test_int(6)],
|
|
),
|
|
Column::new(
|
|
"b_sum".to_string(),
|
|
vec![Value::test_int(6), Value::test_int(10)],
|
|
),
|
|
])
|
|
.expect("simple df for test should not fail")
|
|
.into_value(Span::test_data()),
|
|
),
|
|
},
|
|
]
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
engine_state: &EngineState,
|
|
stack: &mut Stack,
|
|
call: &Call,
|
|
input: PipelineData,
|
|
) -> Result<PipelineData, ShellError> {
|
|
let vals: Vec<Value> = call.rest(engine_state, stack, 0)?;
|
|
let value = Value::list(vals, call.head);
|
|
let expressions = NuExpression::extract_exprs(value)?;
|
|
|
|
let group_by = NuLazyGroupBy::try_from_pipeline(input, call.head)?;
|
|
|
|
if let Some(schema) = &group_by.schema {
|
|
for expr in expressions.iter() {
|
|
if let Some(name) = get_col_name(expr) {
|
|
let dtype = schema.get(name.as_str());
|
|
|
|
if matches!(dtype, Some(DataType::Object(..))) {
|
|
return Err(ShellError::GenericError {
|
|
error: "Object type column not supported for aggregation".into(),
|
|
msg: format!("Column '{name}' is type Object"),
|
|
span: Some(call.head),
|
|
help: Some("Aggregations cannot be performed on Object type columns. Use dtype command to check column types".into()),
|
|
inner: vec![],
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let lazy = NuLazyFrame {
|
|
from_eager: group_by.from_eager,
|
|
lazy: Some(group_by.into_polars().agg(&expressions)),
|
|
schema: None,
|
|
};
|
|
|
|
let res = lazy.into_value(call.head)?;
|
|
Ok(PipelineData::Value(res, None))
|
|
}
|
|
}
|
|
|
|
fn get_col_name(expr: &Expr) -> Option<String> {
|
|
match expr {
|
|
Expr::Column(column) => Some(column.to_string()),
|
|
Expr::Agg(agg) => match agg {
|
|
polars::prelude::AggExpr::Min { input: e, .. }
|
|
| polars::prelude::AggExpr::Max { input: e, .. }
|
|
| polars::prelude::AggExpr::Median(e)
|
|
| polars::prelude::AggExpr::NUnique(e)
|
|
| polars::prelude::AggExpr::First(e)
|
|
| polars::prelude::AggExpr::Last(e)
|
|
| polars::prelude::AggExpr::Mean(e)
|
|
| polars::prelude::AggExpr::Implode(e)
|
|
| polars::prelude::AggExpr::Count(e, _)
|
|
| polars::prelude::AggExpr::Sum(e)
|
|
| polars::prelude::AggExpr::AggGroups(e)
|
|
| polars::prelude::AggExpr::Std(e, _)
|
|
| polars::prelude::AggExpr::Var(e, _) => get_col_name(e.as_ref()),
|
|
polars::prelude::AggExpr::Quantile { expr, .. } => get_col_name(expr.as_ref()),
|
|
},
|
|
Expr::Filter { input: expr, .. }
|
|
| Expr::Slice { input: expr, .. }
|
|
| Expr::Cast { expr, .. }
|
|
| Expr::Sort { expr, .. }
|
|
| Expr::Gather { expr, .. }
|
|
| Expr::SortBy { expr, .. }
|
|
| Expr::Exclude(expr, _)
|
|
| Expr::Alias(expr, _)
|
|
| Expr::KeepName(expr)
|
|
| Expr::Explode(expr) => get_col_name(expr.as_ref()),
|
|
Expr::Ternary { .. }
|
|
| Expr::AnonymousFunction { .. }
|
|
| Expr::Function { .. }
|
|
| Expr::Columns(_)
|
|
| Expr::DtypeColumn(_)
|
|
| Expr::Literal(_)
|
|
| Expr::BinaryExpr { .. }
|
|
| Expr::Window { .. }
|
|
| Expr::Wildcard
|
|
| Expr::RenameAlias { .. }
|
|
| Expr::Count
|
|
| Expr::Nth(_)
|
|
| Expr::SubPlan(_, _)
|
|
| Expr::Selector(_) => None,
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::super::super::test_dataframe::test_dataframe;
|
|
use super::*;
|
|
use crate::dataframe::expressions::{ExprAlias, ExprMax, ExprMin, ExprSum};
|
|
use crate::dataframe::lazy::groupby::ToLazyGroupBy;
|
|
|
|
#[test]
|
|
fn test_examples() {
|
|
test_dataframe(vec![
|
|
Box::new(LazyAggregate {}),
|
|
Box::new(ToLazyGroupBy {}),
|
|
Box::new(ExprAlias {}),
|
|
Box::new(ExprMin {}),
|
|
Box::new(ExprMax {}),
|
|
Box::new(ExprSum {}),
|
|
])
|
|
}
|
|
}
|