nushell/crates/nu-parser/src/parser.rs
Darren Schroeder a7fa6d00c1
fix 64-bit hex number parsing (#14571)
# Description

Closes #14521 

This PR tweaks the way 64-bit hex numbers are parsed.

### Before
```nushell
❯ 0xffffffffffffffef
Error: nu:🐚:external_command

  × External command failed
   ╭─[entry #1:1:1]
 1 │ 0xffffffffffffffef
   · ─────────┬────────
   ·          ╰── Command `0xffffffffffffffef` not found
   ╰────
  help: `0xffffffffffffffef` is neither a Nushell built-in or a known external command
```

### After
```nushell
❯ 0xffffffffffffffef
-17
```

# User-Facing Changes
<!-- List of all changes that impact the user experience here. This
helps us keep track of breaking changes. -->

# Tests + Formatting
<!--
Don't forget to add tests that cover your changes.

Make sure you've run and fixed any issues with these commands:

- `cargo fmt --all -- --check` to check standard code formatting (`cargo
fmt --all` applies these changes)
- `cargo clippy --workspace -- -D warnings -D clippy::unwrap_used` to
check that you're using the standard code style
- `cargo test --workspace` to check that all tests pass (on Windows make
sure to [enable developer
mode](https://learn.microsoft.com/en-us/windows/apps/get-started/developer-mode-features-and-debugging))
- `cargo run -- -c "use toolkit.nu; toolkit test stdlib"` to run the
tests for the standard library

> **Note**
> from `nushell` you can also use the `toolkit` as follows
> ```bash
> use toolkit.nu # or use an `env_change` hook to activate it
automatically
> toolkit check pr
> ```
-->

# After Submitting
<!-- If your PR had any user-facing changes, update [the
documentation](https://github.com/nushell/nushell.github.io) after the
PR is merged, if necessary. This will help us keep the docs up to date.
-->
2024-12-13 07:00:53 -06:00

6755 lines
240 KiB
Rust

#![allow(clippy::byte_char_slices)]
use crate::{
lex::{is_assignment_operator, lex, lex_n_tokens, lex_signature, LexState},
lite_parser::{lite_parse, LiteCommand, LitePipeline, LiteRedirection, LiteRedirectionTarget},
parse_keywords::*,
parse_patterns::parse_pattern,
parse_shape_specs::{parse_shape_name, parse_type, ShapeDescriptorUse},
type_check::{self, check_range_types, math_result_type, type_compatible},
Token, TokenContents,
};
use itertools::Itertools;
use log::trace;
use nu_engine::DIR_VAR_PARSER_INFO;
use nu_protocol::{
ast::*, engine::StateWorkingSet, eval_const::eval_constant, BlockId, DeclId, DidYouMean,
FilesizeUnit, Flag, ParseError, PositionalArg, Signature, Span, Spanned, SyntaxShape, Type,
VarId, ENV_VARIABLE_ID, IN_VARIABLE_ID,
};
use std::{
collections::{HashMap, HashSet},
num::ParseIntError,
str,
sync::Arc,
};
pub fn garbage(working_set: &mut StateWorkingSet, span: Span) -> Expression {
Expression::garbage(working_set, span)
}
pub fn garbage_pipeline(working_set: &mut StateWorkingSet, spans: &[Span]) -> Pipeline {
Pipeline::from_vec(vec![garbage(working_set, Span::concat(spans))])
}
fn is_identifier_byte(b: u8) -> bool {
b != b'.'
&& b != b'['
&& b != b'('
&& b != b'{'
&& b != b'+'
&& b != b'-'
&& b != b'*'
&& b != b'^'
&& b != b'/'
&& b != b'='
&& b != b'!'
&& b != b'<'
&& b != b'>'
&& b != b'&'
&& b != b'|'
}
pub fn is_math_expression_like(working_set: &mut StateWorkingSet, span: Span) -> bool {
let bytes = working_set.get_span_contents(span);
if bytes.is_empty() {
return false;
}
if bytes == b"true"
|| bytes == b"false"
|| bytes == b"null"
|| bytes == b"not"
|| bytes == b"if"
|| bytes == b"match"
{
return true;
}
let b = bytes[0];
// check for raw string
if bytes.starts_with(b"r#") {
return true;
}
if b == b'(' || b == b'{' || b == b'[' || b == b'$' || b == b'"' || b == b'\'' || b == b'-' {
return true;
}
let starting_error_count = working_set.parse_errors.len();
// Number
parse_number(working_set, span);
if working_set.parse_errors.len() == starting_error_count {
return true;
}
working_set.parse_errors.truncate(starting_error_count);
// Filesize
parse_filesize(working_set, span);
if working_set.parse_errors.len() == starting_error_count {
return true;
}
working_set.parse_errors.truncate(starting_error_count);
parse_duration(working_set, span);
if working_set.parse_errors.len() == starting_error_count {
return true;
}
working_set.parse_errors.truncate(starting_error_count);
parse_datetime(working_set, span);
if working_set.parse_errors.len() == starting_error_count {
return true;
}
working_set.parse_errors.truncate(starting_error_count);
parse_binary(working_set, span);
if working_set.parse_errors.len() == starting_error_count {
return true;
}
working_set.parse_errors.truncate(starting_error_count);
let is_range = parse_range(working_set, span).is_some();
working_set.parse_errors.truncate(starting_error_count);
is_range
}
fn is_identifier(bytes: &[u8]) -> bool {
bytes.iter().all(|x| is_identifier_byte(*x))
}
pub fn is_variable(bytes: &[u8]) -> bool {
if bytes.len() > 1 && bytes[0] == b'$' {
is_identifier(&bytes[1..])
} else {
is_identifier(bytes)
}
}
pub fn trim_quotes(bytes: &[u8]) -> &[u8] {
if (bytes.starts_with(b"\"") && bytes.ends_with(b"\"") && bytes.len() > 1)
|| (bytes.starts_with(b"\'") && bytes.ends_with(b"\'") && bytes.len() > 1)
|| (bytes.starts_with(b"`") && bytes.ends_with(b"`") && bytes.len() > 1)
{
&bytes[1..(bytes.len() - 1)]
} else {
bytes
}
}
pub fn trim_quotes_str(s: &str) -> &str {
if (s.starts_with('"') && s.ends_with('"') && s.len() > 1)
|| (s.starts_with('\'') && s.ends_with('\'') && s.len() > 1)
|| (s.starts_with('`') && s.ends_with('`') && s.len() > 1)
{
&s[1..(s.len() - 1)]
} else {
s
}
}
pub(crate) fn check_call(
working_set: &mut StateWorkingSet,
command: Span,
sig: &Signature,
call: &Call,
) {
// Allow the call to pass if they pass in the help flag
if call.named_iter().any(|(n, _, _)| n.item == "help") {
return;
}
if call.positional_len() < sig.required_positional.len() {
// Comparing the types of all signature positional arguments against the parsed
// expressions found in the call. If one type is not found then it could be assumed
// that that positional argument is missing from the parsed call
for argument in &sig.required_positional {
let found = call.positional_iter().fold(false, |ac, expr| {
if argument.shape.to_type() == expr.ty || argument.shape == SyntaxShape::Any {
true
} else {
ac
}
});
if !found {
if let Some(last) = call.positional_iter().last() {
working_set.error(ParseError::MissingPositional(
argument.name.clone(),
Span::new(last.span.end, last.span.end),
sig.call_signature(),
));
return;
} else {
working_set.error(ParseError::MissingPositional(
argument.name.clone(),
Span::new(command.end, command.end),
sig.call_signature(),
));
return;
}
}
}
let missing = &sig.required_positional[call.positional_len()];
if let Some(last) = call.positional_iter().last() {
working_set.error(ParseError::MissingPositional(
missing.name.clone(),
Span::new(last.span.end, last.span.end),
sig.call_signature(),
))
} else {
working_set.error(ParseError::MissingPositional(
missing.name.clone(),
Span::new(command.end, command.end),
sig.call_signature(),
))
}
} else {
for req_flag in sig.named.iter().filter(|x| x.required) {
if call.named_iter().all(|(n, _, _)| n.item != req_flag.long) {
working_set.error(ParseError::MissingRequiredFlag(
req_flag.long.clone(),
command,
));
}
}
}
}
/// Parses an unknown argument for the given signature. This handles the parsing as appropriate to
/// the rest type of the command.
fn parse_unknown_arg(
working_set: &mut StateWorkingSet,
span: Span,
signature: &Signature,
) -> Expression {
let shape = signature
.rest_positional
.as_ref()
.map(|arg| arg.shape.clone())
.unwrap_or(SyntaxShape::Any);
parse_value(working_set, span, &shape)
}
/// Parses a string in the arg or head position of an external call.
///
/// If the string begins with `r#`, it is parsed as a raw string. If it doesn't contain any quotes
/// or parentheses, it is parsed as a glob pattern so that tilde and glob expansion can be handled
/// by `run-external`. Otherwise, we use a custom state machine to put together an interpolated
/// string, where each balanced pair of quotes is parsed as a separate part of the string, and then
/// concatenated together.
///
/// For example, `-foo="bar\nbaz"` becomes `$"-foo=bar\nbaz"`
fn parse_external_string(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let contents = working_set.get_span_contents(span);
if contents.starts_with(b"r#") {
parse_raw_string(working_set, span)
} else if contents
.iter()
.any(|b| matches!(b, b'"' | b'\'' | b'(' | b')' | b'`'))
{
enum State {
Bare {
from: usize,
},
BackTickQuote {
from: usize,
},
Quote {
from: usize,
quote_char: u8,
escaped: bool,
},
}
// Find the spans of parts of the string that can be parsed as their own strings for
// concatenation.
//
// By passing each of these parts to `parse_string()`, we can eliminate the quotes and also
// handle string interpolation.
let make_span = |from: usize, index: usize| Span {
start: span.start + from,
end: span.start + index,
};
let mut spans = vec![];
let mut state = State::Bare { from: 0 };
let mut index = 0;
while index < contents.len() {
let ch = contents[index];
match &mut state {
State::Bare { from } => match ch {
b'"' | b'\'' => {
// Push bare string
if index != *from {
spans.push(make_span(*from, index));
}
// then transition to other state
state = State::Quote {
from: index,
quote_char: ch,
escaped: false,
};
}
b'$' => {
if let Some(&quote_char @ (b'"' | b'\'')) = contents.get(index + 1) {
// Start a dollar quote (interpolated string)
if index != *from {
spans.push(make_span(*from, index));
}
state = State::Quote {
from: index,
quote_char,
escaped: false,
};
// Skip over two chars (the dollar sign and the quote)
index += 2;
continue;
}
}
b'`' => {
if index != *from {
spans.push(make_span(*from, index))
}
state = State::BackTickQuote { from: index }
}
// Continue to consume
_ => (),
},
State::Quote {
from,
quote_char,
escaped,
} => match ch {
ch if ch == *quote_char && !*escaped => {
// quoted string ended, just make a new span for it.
spans.push(make_span(*from, index + 1));
// go back to Bare state.
state = State::Bare { from: index + 1 };
}
b'\\' if !*escaped && *quote_char == b'"' => {
// The next token is escaped so it doesn't count (only for double quote)
*escaped = true;
}
_ => {
*escaped = false;
}
},
State::BackTickQuote { from } => {
if ch == b'`' {
spans.push(make_span(*from, index + 1));
state = State::Bare { from: index + 1 };
}
}
}
index += 1;
}
// Add the final span
match state {
State::Bare { from }
| State::Quote { from, .. }
| State::BackTickQuote { from, .. } => {
if from < contents.len() {
spans.push(make_span(from, contents.len()));
}
}
}
// Log the spans that will be parsed
if log::log_enabled!(log::Level::Trace) {
let contents = spans
.iter()
.map(|span| String::from_utf8_lossy(working_set.get_span_contents(*span)))
.collect::<Vec<_>>();
trace!("parsing: external string, parts: {contents:?}")
}
// Check if the whole thing is quoted. If not, it should be a glob
let quoted =
(contents.len() >= 3 && contents.starts_with(b"$\"") && contents.ends_with(b"\""))
|| is_quoted(contents);
// Parse each as its own string
let exprs: Vec<Expression> = spans
.into_iter()
.map(|span| parse_string(working_set, span))
.collect();
if exprs
.iter()
.all(|expr| matches!(expr.expr, Expr::String(..)))
{
// If the exprs are all strings anyway, just collapse into a single string.
let string = exprs
.into_iter()
.map(|expr| {
let Expr::String(contents) = expr.expr else {
unreachable!("already checked that this was a String")
};
contents
})
.collect::<String>();
if quoted {
Expression::new(working_set, Expr::String(string), span, Type::String)
} else {
Expression::new(
working_set,
Expr::GlobPattern(string, false),
span,
Type::Glob,
)
}
} else {
// Flatten any string interpolations contained with the exprs.
let exprs = exprs
.into_iter()
.flat_map(|expr| match expr.expr {
Expr::StringInterpolation(subexprs) => subexprs,
_ => vec![expr],
})
.collect();
// Make an interpolation out of the expressions. Use `GlobInterpolation` if it's a bare
// word, so that the unquoted state can get passed through to `run-external`.
if quoted {
Expression::new(
working_set,
Expr::StringInterpolation(exprs),
span,
Type::String,
)
} else {
Expression::new(
working_set,
Expr::GlobInterpolation(exprs, false),
span,
Type::Glob,
)
}
}
} else {
parse_glob_pattern(working_set, span)
}
}
fn parse_external_arg(working_set: &mut StateWorkingSet, span: Span) -> ExternalArgument {
let contents = working_set.get_span_contents(span);
if contents.len() > 3
&& contents.starts_with(b"...")
&& (contents[3] == b'$' || contents[3] == b'[' || contents[3] == b'(')
{
ExternalArgument::Spread(parse_value(
working_set,
Span::new(span.start + 3, span.end),
&SyntaxShape::List(Box::new(SyntaxShape::Any)),
))
} else {
ExternalArgument::Regular(parse_regular_external_arg(working_set, span))
}
}
fn parse_regular_external_arg(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let contents = working_set.get_span_contents(span);
if contents.starts_with(b"$") || contents.starts_with(b"(") {
parse_dollar_expr(working_set, span)
} else if contents.starts_with(b"[") {
parse_list_expression(working_set, span, &SyntaxShape::Any)
} else {
parse_external_string(working_set, span)
}
}
pub fn parse_external_call(working_set: &mut StateWorkingSet, spans: &[Span]) -> Expression {
trace!("parse external");
let head_contents = working_set.get_span_contents(spans[0]);
let head_span = if head_contents.starts_with(b"^") {
Span::new(spans[0].start + 1, spans[0].end)
} else {
spans[0]
};
let head_contents = working_set.get_span_contents(head_span).to_vec();
let head = if head_contents.starts_with(b"$") || head_contents.starts_with(b"(") {
// the expression is inside external_call, so it's a subexpression
let arg = parse_expression(working_set, &[head_span]);
Box::new(arg)
} else {
Box::new(parse_external_string(working_set, head_span))
};
let args = spans[1..]
.iter()
.map(|&span| parse_external_arg(working_set, span))
.collect();
Expression::new(
working_set,
Expr::ExternalCall(head, args),
Span::concat(spans),
Type::Any,
)
}
fn ensure_flag_arg_type(
working_set: &mut StateWorkingSet,
arg_name: String,
arg: Expression,
arg_shape: &SyntaxShape,
long_name_span: Span,
) -> (Spanned<String>, Expression) {
if !type_compatible(&arg.ty, &arg_shape.to_type()) {
working_set.error(ParseError::TypeMismatch(
arg_shape.to_type(),
arg.ty,
arg.span,
));
(
Spanned {
item: arg_name,
span: long_name_span,
},
Expression::garbage(working_set, arg.span),
)
} else {
(
Spanned {
item: arg_name,
span: long_name_span,
},
arg,
)
}
}
fn parse_long_flag(
working_set: &mut StateWorkingSet,
spans: &[Span],
spans_idx: &mut usize,
sig: &Signature,
) -> (Option<Spanned<String>>, Option<Expression>) {
let arg_span = spans[*spans_idx];
let arg_contents = working_set.get_span_contents(arg_span);
if arg_contents.starts_with(b"--") {
// FIXME: only use the first flag you find?
let split: Vec<_> = arg_contents.split(|x| *x == b'=').collect();
let long_name = String::from_utf8(split[0].into());
if let Ok(long_name) = long_name {
let long_name = long_name[2..].to_string();
if let Some(flag) = sig.get_long_flag(&long_name) {
if let Some(arg_shape) = &flag.arg {
if split.len() > 1 {
// and we also have the argument
let long_name_len = long_name.len();
let mut span = arg_span;
span.start += long_name_len + 3; //offset by long flag and '='
let arg = parse_value(working_set, span, arg_shape);
let (arg_name, val_expression) = ensure_flag_arg_type(
working_set,
long_name,
arg,
arg_shape,
Span::new(arg_span.start, arg_span.start + long_name_len + 2),
);
(Some(arg_name), Some(val_expression))
} else if let Some(arg) = spans.get(*spans_idx + 1) {
let arg = parse_value(working_set, *arg, arg_shape);
*spans_idx += 1;
let (arg_name, val_expression) =
ensure_flag_arg_type(working_set, long_name, arg, arg_shape, arg_span);
(Some(arg_name), Some(val_expression))
} else {
working_set.error(ParseError::MissingFlagParam(
arg_shape.to_string(),
arg_span,
));
(
Some(Spanned {
item: long_name,
span: arg_span,
}),
None,
)
}
} else {
// A flag with no argument
// It can also takes a boolean value like --x=true
if split.len() > 1 {
// and we also have the argument
let long_name_len = long_name.len();
let mut span = arg_span;
span.start += long_name_len + 3; //offset by long flag and '='
let arg = parse_value(working_set, span, &SyntaxShape::Boolean);
let (arg_name, val_expression) = ensure_flag_arg_type(
working_set,
long_name,
arg,
&SyntaxShape::Boolean,
Span::new(arg_span.start, arg_span.start + long_name_len + 2),
);
(Some(arg_name), Some(val_expression))
} else {
(
Some(Spanned {
item: long_name,
span: arg_span,
}),
None,
)
}
}
} else {
working_set.error(ParseError::UnknownFlag(
sig.name.clone(),
long_name.clone(),
arg_span,
sig.clone().formatted_flags(),
));
(
Some(Spanned {
item: long_name.clone(),
span: arg_span,
}),
None,
)
}
} else {
working_set.error(ParseError::NonUtf8(arg_span));
(
Some(Spanned {
item: "--".into(),
span: arg_span,
}),
None,
)
}
} else {
(None, None)
}
}
fn parse_short_flags(
working_set: &mut StateWorkingSet,
spans: &[Span],
spans_idx: &mut usize,
positional_idx: usize,
sig: &Signature,
) -> Option<Vec<Flag>> {
let arg_span = spans[*spans_idx];
let arg_contents = working_set.get_span_contents(arg_span);
if let Ok(arg_contents_uft8_ref) = str::from_utf8(arg_contents) {
if arg_contents_uft8_ref.starts_with('-') && arg_contents_uft8_ref.len() > 1 {
let short_flags = &arg_contents_uft8_ref[1..];
let num_chars = short_flags.chars().count();
let mut found_short_flags = vec![];
let mut unmatched_short_flags = vec![];
for (offset, short_flag) in short_flags.char_indices() {
let short_flag_span = Span::new(
arg_span.start + 1 + offset,
arg_span.start + 1 + offset + short_flag.len_utf8(),
);
if let Some(flag) = sig.get_short_flag(short_flag) {
// Allow args in short flag batches as long as it is the last flag.
if flag.arg.is_some() && offset < num_chars - 1 {
working_set
.error(ParseError::OnlyLastFlagInBatchCanTakeArg(short_flag_span));
break;
}
found_short_flags.push(flag);
} else {
unmatched_short_flags.push(short_flag_span);
}
}
if found_short_flags.is_empty()
// check to see if we have a negative number
&& matches!(
sig.get_positional(positional_idx),
Some(PositionalArg {
shape: SyntaxShape::Int | SyntaxShape::Number | SyntaxShape::Float,
..
})
)
&& String::from_utf8_lossy(working_set.get_span_contents(arg_span))
.parse::<f64>()
.is_ok()
{
return None;
} else if let Some(first) = unmatched_short_flags.first() {
let contents = working_set.get_span_contents(*first);
working_set.error(ParseError::UnknownFlag(
sig.name.clone(),
format!("-{}", String::from_utf8_lossy(contents)),
*first,
sig.clone().formatted_flags(),
));
}
Some(found_short_flags)
} else {
None
}
} else {
working_set.error(ParseError::NonUtf8(arg_span));
None
}
}
fn first_kw_idx(
working_set: &StateWorkingSet,
signature: &Signature,
spans: &[Span],
spans_idx: usize,
positional_idx: usize,
) -> (Option<usize>, usize) {
for idx in (positional_idx + 1)..signature.num_positionals() {
if let Some(PositionalArg {
shape: SyntaxShape::Keyword(kw, ..),
..
}) = signature.get_positional(idx)
{
for (span_idx, &span) in spans.iter().enumerate().skip(spans_idx) {
let contents = working_set.get_span_contents(span);
if contents == kw {
return (Some(idx), span_idx);
}
}
}
}
(None, spans.len())
}
fn calculate_end_span(
working_set: &StateWorkingSet,
signature: &Signature,
spans: &[Span],
spans_idx: usize,
positional_idx: usize,
) -> usize {
if signature.rest_positional.is_some() {
spans.len()
} else {
let (kw_pos, kw_idx) =
first_kw_idx(working_set, signature, spans, spans_idx, positional_idx);
if let Some(kw_pos) = kw_pos {
// We found a keyword. Keywords, once found, create a guidepost to
// show us where the positionals will lay into the arguments. Because they're
// keywords, they get to set this by being present
let positionals_between = kw_pos - positional_idx - 1;
if positionals_between >= (kw_idx - spans_idx) {
kw_idx
} else {
kw_idx - positionals_between
}
} else {
// Make space for the remaining require positionals, if we can
// spans_idx < spans.len() is an invariant
let remaining_spans = spans.len() - (spans_idx + 1);
// positional_idx can be larger than required_positional.len() if we have optional args
let remaining_positional = signature
.required_positional
.len()
.saturating_sub(positional_idx + 1);
// Saturates to 0 when we have too few args
let extra_spans = remaining_spans.saturating_sub(remaining_positional);
spans_idx + 1 + extra_spans
}
}
}
fn parse_oneof(
working_set: &mut StateWorkingSet,
spans: &[Span],
spans_idx: &mut usize,
possible_shapes: &Vec<SyntaxShape>,
multispan: bool,
) -> Expression {
for shape in possible_shapes {
let starting_error_count = working_set.parse_errors.len();
let value = match multispan {
true => parse_multispan_value(working_set, spans, spans_idx, shape),
false => parse_value(working_set, spans[*spans_idx], shape),
};
if starting_error_count == working_set.parse_errors.len() {
return value;
}
// while trying the possible shapes, ignore Expected type errors
// unless they're inside a block, closure, or expression
let propagate_error = match working_set.parse_errors.last() {
Some(ParseError::Expected(_, error_span))
| Some(ParseError::ExpectedWithStringMsg(_, error_span)) => {
matches!(
shape,
SyntaxShape::Block | SyntaxShape::Closure(_) | SyntaxShape::Expression
) && *error_span != spans[*spans_idx]
}
_ => true,
};
if !propagate_error {
working_set.parse_errors.truncate(starting_error_count);
}
}
if working_set.parse_errors.is_empty() {
working_set.error(ParseError::ExpectedWithStringMsg(
format!("one of a list of accepted shapes: {possible_shapes:?}"),
spans[*spans_idx],
));
}
Expression::garbage(working_set, spans[*spans_idx])
}
pub fn parse_multispan_value(
working_set: &mut StateWorkingSet,
spans: &[Span],
spans_idx: &mut usize,
shape: &SyntaxShape,
) -> Expression {
trace!("parse multispan value");
match shape {
SyntaxShape::VarWithOptType => {
trace!("parsing: var with opt type");
parse_var_with_opt_type(working_set, spans, spans_idx, false).0
}
SyntaxShape::RowCondition => {
trace!("parsing: row condition");
let arg = parse_row_condition(working_set, &spans[*spans_idx..]);
*spans_idx = spans.len() - 1;
arg
}
SyntaxShape::MathExpression => {
trace!("parsing: math expression");
let arg = parse_math_expression(working_set, &spans[*spans_idx..], None);
*spans_idx = spans.len() - 1;
arg
}
SyntaxShape::OneOf(possible_shapes) => {
parse_oneof(working_set, spans, spans_idx, possible_shapes, true)
}
SyntaxShape::Expression => {
trace!("parsing: expression");
// is it subexpression?
// Not sure, but let's make it not, so the behavior is the same as previous version of nushell.
let arg = parse_expression(working_set, &spans[*spans_idx..]);
*spans_idx = spans.len() - 1;
arg
}
SyntaxShape::Signature => {
trace!("parsing: signature");
let sig = parse_full_signature(working_set, &spans[*spans_idx..]);
*spans_idx = spans.len() - 1;
sig
}
SyntaxShape::Keyword(keyword, arg) => {
trace!(
"parsing: keyword({}) {:?}",
String::from_utf8_lossy(keyword),
arg
);
let arg_span = spans[*spans_idx];
let arg_contents = working_set.get_span_contents(arg_span);
if arg_contents != keyword {
// When keywords mismatch, this is a strong indicator of something going wrong.
// We won't often override the current error, but as this is a strong indicator
// go ahead and override the current error and tell the user about the missing
// keyword/literal.
working_set.error(ParseError::ExpectedKeyword(
String::from_utf8_lossy(keyword).into(),
arg_span,
))
}
*spans_idx += 1;
if *spans_idx >= spans.len() {
working_set.error(ParseError::KeywordMissingArgument(
arg.to_string(),
String::from_utf8_lossy(keyword).into(),
Span::new(spans[*spans_idx - 1].end, spans[*spans_idx - 1].end),
));
let keyword = Keyword {
keyword: keyword.as_slice().into(),
span: spans[*spans_idx - 1],
expr: Expression::garbage(working_set, arg_span),
};
return Expression::new(
working_set,
Expr::Keyword(Box::new(keyword)),
arg_span,
Type::Any,
);
}
let keyword = Keyword {
keyword: keyword.as_slice().into(),
span: spans[*spans_idx - 1],
expr: parse_multispan_value(working_set, spans, spans_idx, arg),
};
Expression::new(
working_set,
Expr::Keyword(Box::new(keyword.clone())),
arg_span,
keyword.expr.ty,
)
}
_ => {
// All other cases are single-span values
let arg_span = spans[*spans_idx];
parse_value(working_set, arg_span, shape)
}
}
}
pub struct ParsedInternalCall {
pub call: Box<Call>,
pub output: Type,
}
pub fn parse_internal_call(
working_set: &mut StateWorkingSet,
command_span: Span,
spans: &[Span],
decl_id: DeclId,
) -> ParsedInternalCall {
trace!("parsing: internal call (decl id: {})", decl_id.get());
let mut call = Call::new(command_span);
call.decl_id = decl_id;
call.head = command_span;
let _ = working_set.add_span(call.head);
let decl = working_set.get_decl(decl_id);
let signature = working_set.get_signature(decl);
let output = signature.get_output_type();
// storing the var ID for later due to borrowing issues
let lib_dirs_var_id = match decl.name() {
"use" | "overlay use" | "source-env" if decl.is_keyword() => {
find_dirs_var(working_set, LIB_DIRS_VAR)
}
"nu-check" if decl.is_builtin() => find_dirs_var(working_set, LIB_DIRS_VAR),
_ => None,
};
// The index into the positional parameter in the definition
let mut positional_idx = 0;
// The index into the spans of argument data given to parse
// Starting at the first argument
let mut spans_idx = 0;
if let Some(alias) = decl.as_alias() {
if let Expression {
expr: Expr::Call(wrapped_call),
..
} = &alias.wrapped_call
{
// Replace this command's call with the aliased call, but keep the alias name
call = *wrapped_call.clone();
call.head = command_span;
// Skip positionals passed to aliased call
positional_idx = call.positional_len();
} else {
working_set.error(ParseError::UnknownState(
"Alias does not point to internal call.".to_string(),
command_span,
));
return ParsedInternalCall {
call: Box::new(call),
output: Type::Any,
};
}
}
if let Some(var_id) = lib_dirs_var_id {
call.set_parser_info(
DIR_VAR_PARSER_INFO.to_owned(),
Expression::new(working_set, Expr::Var(var_id), call.head, Type::Any),
);
}
if signature.creates_scope {
working_set.enter_scope();
}
while spans_idx < spans.len() {
let arg_span = spans[spans_idx];
let starting_error_count = working_set.parse_errors.len();
// Check if we're on a long flag, if so, parse
let (long_name, arg) = parse_long_flag(working_set, spans, &mut spans_idx, &signature);
if let Some(long_name) = long_name {
// We found a long flag, like --bar
if working_set.parse_errors[starting_error_count..]
.iter()
.any(|x| matches!(x, ParseError::UnknownFlag(_, _, _, _)))
&& signature.allows_unknown_args
{
working_set.parse_errors.truncate(starting_error_count);
let arg = parse_unknown_arg(working_set, arg_span, &signature);
call.add_unknown(arg);
} else {
call.add_named((long_name, None, arg));
}
spans_idx += 1;
continue;
}
let starting_error_count = working_set.parse_errors.len();
// Check if we're on a short flag or group of short flags, if so, parse
let short_flags = parse_short_flags(
working_set,
spans,
&mut spans_idx,
positional_idx,
&signature,
);
if let Some(mut short_flags) = short_flags {
if short_flags.is_empty() {
// workaround for completions (PR #6067)
short_flags.push(Flag {
long: "".to_string(),
short: Some('a'),
arg: None,
required: false,
desc: "".to_string(),
var_id: None,
default_value: None,
})
}
if working_set.parse_errors[starting_error_count..]
.iter()
.any(|x| matches!(x, ParseError::UnknownFlag(_, _, _, _)))
&& signature.allows_unknown_args
{
working_set.parse_errors.truncate(starting_error_count);
let arg = parse_unknown_arg(working_set, arg_span, &signature);
call.add_unknown(arg);
} else {
for flag in short_flags {
let _ = working_set.add_span(spans[spans_idx]);
if let Some(arg_shape) = flag.arg {
if let Some(arg) = spans.get(spans_idx + 1) {
let arg = parse_value(working_set, *arg, &arg_shape);
let (arg_name, val_expression) = ensure_flag_arg_type(
working_set,
flag.long.clone(),
arg.clone(),
&arg_shape,
spans[spans_idx],
);
if flag.long.is_empty() {
if let Some(short) = flag.short {
call.add_named((
arg_name,
Some(Spanned {
item: short.to_string(),
span: spans[spans_idx],
}),
Some(val_expression),
));
}
} else {
call.add_named((arg_name, None, Some(val_expression)));
}
spans_idx += 1;
} else {
working_set.error(ParseError::MissingFlagParam(
arg_shape.to_string(),
arg_span,
))
}
} else if flag.long.is_empty() {
if let Some(short) = flag.short {
call.add_named((
Spanned {
item: String::new(),
span: spans[spans_idx],
},
Some(Spanned {
item: short.to_string(),
span: spans[spans_idx],
}),
None,
));
}
} else {
call.add_named((
Spanned {
item: flag.long.clone(),
span: spans[spans_idx],
},
None,
None,
));
}
}
}
spans_idx += 1;
continue;
}
{
let contents = working_set.get_span_contents(spans[spans_idx]);
if contents.len() > 3
&& contents.starts_with(b"...")
&& (contents[3] == b'$' || contents[3] == b'[' || contents[3] == b'(')
{
if signature.rest_positional.is_none() && !signature.allows_unknown_args {
working_set.error(ParseError::UnexpectedSpreadArg(
signature.call_signature(),
arg_span,
));
call.add_positional(Expression::garbage(working_set, arg_span));
} else if positional_idx < signature.required_positional.len() {
working_set.error(ParseError::MissingPositional(
signature.required_positional[positional_idx].name.clone(),
Span::new(spans[spans_idx].start, spans[spans_idx].start),
signature.call_signature(),
));
call.add_positional(Expression::garbage(working_set, arg_span));
} else {
let rest_shape = match &signature.rest_positional {
Some(arg) if matches!(arg.shape, SyntaxShape::ExternalArgument) => {
// External args aren't parsed inside lists in spread position.
SyntaxShape::Any
}
Some(arg) => arg.shape.clone(),
None => SyntaxShape::Any,
};
// Parse list of arguments to be spread
let args = parse_value(
working_set,
Span::new(arg_span.start + 3, arg_span.end),
&SyntaxShape::List(Box::new(rest_shape)),
);
call.add_spread(args);
// Let the parser know that it's parsing rest arguments now
positional_idx =
signature.required_positional.len() + signature.optional_positional.len();
}
spans_idx += 1;
continue;
}
}
// Parse a positional arg if there is one
if let Some(positional) = signature.get_positional(positional_idx) {
let end = calculate_end_span(working_set, &signature, spans, spans_idx, positional_idx);
// Missing arguments before next keyword
if end == spans_idx {
let prev_span = if spans_idx == 0 {
command_span
} else {
spans[spans_idx - 1]
};
let whitespace_span = Span::new(prev_span.end, spans[spans_idx].start);
working_set.error(ParseError::MissingPositional(
positional.name.clone(),
whitespace_span,
signature.call_signature(),
));
call.add_positional(Expression::garbage(working_set, whitespace_span));
positional_idx += 1;
continue;
}
debug_assert!(end <= spans.len());
if spans[..end].is_empty() || spans_idx == end {
working_set.error(ParseError::MissingPositional(
positional.name.clone(),
Span::new(spans[spans_idx].end, spans[spans_idx].end),
signature.call_signature(),
));
positional_idx += 1;
continue;
}
let arg = parse_multispan_value(
working_set,
&spans[..end],
&mut spans_idx,
&positional.shape,
);
let arg = if !type_compatible(&positional.shape.to_type(), &arg.ty) {
working_set.error(ParseError::TypeMismatch(
positional.shape.to_type(),
arg.ty,
arg.span,
));
Expression::garbage(working_set, arg.span)
} else {
arg
};
call.add_positional(arg);
positional_idx += 1;
} else if signature.allows_unknown_args {
let arg = parse_unknown_arg(working_set, arg_span, &signature);
call.add_unknown(arg);
} else {
call.add_positional(Expression::garbage(working_set, arg_span));
working_set.error(ParseError::ExtraPositional(
signature.call_signature(),
arg_span,
))
}
spans_idx += 1;
}
check_call(working_set, command_span, &signature, &call);
if signature.creates_scope {
working_set.exit_scope();
}
ParsedInternalCall {
call: Box::new(call),
output,
}
}
pub fn parse_call(working_set: &mut StateWorkingSet, spans: &[Span], head: Span) -> Expression {
trace!("parsing: call");
if spans.is_empty() {
working_set.error(ParseError::UnknownState(
"Encountered command with zero spans".into(),
Span::concat(spans),
));
return garbage(working_set, head);
}
let mut pos = 0;
let cmd_start = pos;
let mut name_spans = vec![];
let mut name = vec![];
for word_span in spans[cmd_start..].iter() {
// Find the longest group of words that could form a command
name_spans.push(*word_span);
let name_part = working_set.get_span_contents(*word_span);
if name.is_empty() {
name.extend(name_part);
} else {
name.push(b' ');
name.extend(name_part);
}
pos += 1;
}
let mut maybe_decl_id = working_set.find_decl(&name);
while maybe_decl_id.is_none() {
// Find the longest command match
if name_spans.len() <= 1 {
// Keep the first word even if it does not match -- could be external command
break;
}
name_spans.pop();
pos -= 1;
let mut name = vec![];
for name_span in &name_spans {
let name_part = working_set.get_span_contents(*name_span);
if name.is_empty() {
name.extend(name_part);
} else {
name.push(b' ');
name.extend(name_part);
}
}
maybe_decl_id = working_set.find_decl(&name);
}
if let Some(decl_id) = maybe_decl_id {
// Before the internal parsing we check if there is no let or alias declarations
// that are missing their name, e.g.: let = 1 or alias = 2
if spans.len() > 1 {
let test_equal = working_set.get_span_contents(spans[1]);
if test_equal == [b'='] {
trace!("incomplete statement");
working_set.error(ParseError::UnknownState(
"Incomplete statement".into(),
Span::concat(spans),
));
return garbage(working_set, Span::concat(spans));
}
}
// TODO: Try to remove the clone
let decl = working_set.get_decl(decl_id);
let parsed_call = if let Some(alias) = decl.as_alias() {
if let Expression {
expr: Expr::ExternalCall(head, args),
span: _,
span_id: _,
ty,
custom_completion,
} = &alias.clone().wrapped_call
{
trace!("parsing: alias of external call");
let mut head = head.clone();
head.span = Span::concat(&spans[cmd_start..pos]); // replacing the spans preserves syntax highlighting
let mut final_args = args.clone().into_vec();
for arg_span in &spans[pos..] {
let arg = parse_external_arg(working_set, *arg_span);
final_args.push(arg);
}
let mut expression = Expression::new(
working_set,
Expr::ExternalCall(head, final_args.into()),
Span::concat(spans),
ty.clone(),
);
expression.custom_completion = *custom_completion;
return expression;
} else {
trace!("parsing: alias of internal call");
parse_internal_call(
working_set,
Span::concat(&spans[cmd_start..pos]),
&spans[pos..],
decl_id,
)
}
} else {
trace!("parsing: internal call");
parse_internal_call(
working_set,
Span::concat(&spans[cmd_start..pos]),
&spans[pos..],
decl_id,
)
};
Expression::new(
working_set,
Expr::Call(parsed_call.call),
Span::concat(spans),
parsed_call.output,
)
} else {
// We might be parsing left-unbounded range ("..10")
let bytes = working_set.get_span_contents(spans[0]);
trace!("parsing: range {:?} ", bytes);
if let (Some(b'.'), Some(b'.')) = (bytes.first(), bytes.get(1)) {
trace!("-- found leading range indicator");
let starting_error_count = working_set.parse_errors.len();
if let Some(range_expr) = parse_range(working_set, spans[0]) {
trace!("-- successfully parsed range");
return range_expr;
}
working_set.parse_errors.truncate(starting_error_count);
}
trace!("parsing: external call");
// Otherwise, try external command
parse_external_call(working_set, spans)
}
}
pub fn parse_binary(working_set: &mut StateWorkingSet, span: Span) -> Expression {
trace!("parsing: binary");
let contents = working_set.get_span_contents(span);
if contents.starts_with(b"0x[") {
parse_binary_with_base(working_set, span, 16, 2, b"0x[", b"]")
} else if contents.starts_with(b"0o[") {
parse_binary_with_base(working_set, span, 8, 3, b"0o[", b"]")
} else if contents.starts_with(b"0b[") {
parse_binary_with_base(working_set, span, 2, 8, b"0b[", b"]")
} else {
working_set.error(ParseError::Expected("binary", span));
garbage(working_set, span)
}
}
fn parse_binary_with_base(
working_set: &mut StateWorkingSet,
span: Span,
base: u32,
min_digits_per_byte: usize,
prefix: &[u8],
suffix: &[u8],
) -> Expression {
let token = working_set.get_span_contents(span);
if let Some(token) = token.strip_prefix(prefix) {
if let Some(token) = token.strip_suffix(suffix) {
let (lexed, err) = lex(
token,
span.start + prefix.len(),
&[b',', b'\r', b'\n'],
&[],
true,
);
if let Some(err) = err {
working_set.error(err);
}
let mut binary_value = vec![];
for token in lexed {
match token.contents {
TokenContents::Item => {
let contents = working_set.get_span_contents(token.span);
binary_value.extend_from_slice(contents);
}
TokenContents::Pipe
| TokenContents::PipePipe
| TokenContents::ErrGreaterPipe
| TokenContents::OutGreaterThan
| TokenContents::OutErrGreaterPipe
| TokenContents::OutGreaterGreaterThan
| TokenContents::ErrGreaterThan
| TokenContents::ErrGreaterGreaterThan
| TokenContents::OutErrGreaterThan
| TokenContents::OutErrGreaterGreaterThan
| TokenContents::AssignmentOperator => {
working_set.error(ParseError::Expected("binary", span));
return garbage(working_set, span);
}
TokenContents::Comment | TokenContents::Semicolon | TokenContents::Eol => {}
}
}
let required_padding = (min_digits_per_byte - binary_value.len() % min_digits_per_byte)
% min_digits_per_byte;
if required_padding != 0 {
binary_value = {
let mut tail = binary_value;
let mut binary_value: Vec<u8> = vec![b'0'; required_padding];
binary_value.append(&mut tail);
binary_value
};
}
let str = String::from_utf8_lossy(&binary_value).to_string();
match decode_with_base(&str, base, min_digits_per_byte) {
Ok(v) => return Expression::new(working_set, Expr::Binary(v), span, Type::Binary),
Err(x) => {
working_set.error(ParseError::IncorrectValue(
"not a binary value".into(),
span,
x.to_string(),
));
return garbage(working_set, span);
}
}
}
}
working_set.error(ParseError::Expected("binary", span));
garbage(working_set, span)
}
fn decode_with_base(s: &str, base: u32, digits_per_byte: usize) -> Result<Vec<u8>, ParseIntError> {
s.chars()
.chunks(digits_per_byte)
.into_iter()
.map(|chunk| {
let str: String = chunk.collect();
u8::from_str_radix(&str, base)
})
.collect()
}
fn strip_underscores(token: &[u8]) -> String {
String::from_utf8_lossy(token)
.chars()
.filter(|c| *c != '_')
.collect()
}
pub fn parse_int(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let token = working_set.get_span_contents(span);
fn extract_int(
working_set: &mut StateWorkingSet,
token: &str,
span: Span,
radix: u32,
) -> Expression {
// Parse as a u64, then cast to i64, otherwise, for numbers like "0xffffffffffffffef",
// you'll get `Error parsing hex string: number too large to fit in target type`.
if let Ok(num) = u64::from_str_radix(token, radix).map(|val| val as i64) {
Expression::new(working_set, Expr::Int(num), span, Type::Int)
} else {
working_set.error(ParseError::InvalidLiteral(
format!("invalid digits for radix {}", radix),
"int".into(),
span,
));
garbage(working_set, span)
}
}
let token = strip_underscores(token);
if token.is_empty() {
working_set.error(ParseError::Expected("int", span));
return garbage(working_set, span);
}
if let Some(num) = token.strip_prefix("0b") {
extract_int(working_set, num, span, 2)
} else if let Some(num) = token.strip_prefix("0o") {
extract_int(working_set, num, span, 8)
} else if let Some(num) = token.strip_prefix("0x") {
extract_int(working_set, num, span, 16)
} else if let Ok(num) = token.parse::<i64>() {
Expression::new(working_set, Expr::Int(num), span, Type::Int)
} else {
working_set.error(ParseError::Expected("int", span));
garbage(working_set, span)
}
}
pub fn parse_float(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let token = working_set.get_span_contents(span);
let token = strip_underscores(token);
if let Ok(x) = token.parse::<f64>() {
Expression::new(working_set, Expr::Float(x), span, Type::Float)
} else {
working_set.error(ParseError::Expected("float", span));
garbage(working_set, span)
}
}
pub fn parse_number(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let starting_error_count = working_set.parse_errors.len();
let result = parse_int(working_set, span);
if starting_error_count == working_set.parse_errors.len() {
return result;
} else if !matches!(
working_set.parse_errors.last(),
Some(ParseError::Expected(_, _))
) {
} else {
working_set.parse_errors.truncate(starting_error_count);
}
let result = parse_float(working_set, span);
if starting_error_count == working_set.parse_errors.len() {
return result;
}
working_set.parse_errors.truncate(starting_error_count);
working_set.error(ParseError::Expected("number", span));
garbage(working_set, span)
}
pub fn parse_range(working_set: &mut StateWorkingSet, span: Span) -> Option<Expression> {
trace!("parsing: range");
let starting_error_count = working_set.parse_errors.len();
// Range follows the following syntax: [<from>][<next_operator><next>]<range_operator>[<to>]
// where <next_operator> is ".."
// and <range_operator> is "..", "..=" or "..<"
// and one of the <from> or <to> bounds must be present (just '..' is not allowed since it
// looks like parent directory)
//bugbug range cannot be [..] because that looks like parent directory
let contents = working_set.get_span_contents(span);
let token = if let Ok(s) = String::from_utf8(contents.into()) {
s
} else {
working_set.error(ParseError::NonUtf8(span));
return None;
};
if token.starts_with("...") {
working_set.error(ParseError::Expected(
"range operator ('..'), got spread ('...')",
span,
));
return None;
}
if !token.contains("..") {
working_set.error(ParseError::Expected("at least one range bound set", span));
return None;
}
// First, figure out what exact operators are used and determine their positions
let dotdot_pos: Vec<_> = token.match_indices("..").map(|(pos, _)| pos).collect();
let (next_op_pos, range_op_pos) = match dotdot_pos.len() {
1 => (None, dotdot_pos[0]),
2 => (Some(dotdot_pos[0]), dotdot_pos[1]),
_ => {
working_set.error(ParseError::Expected(
"one range operator ('..' or '..<') and optionally one next operator ('..')",
span,
));
return None;
}
};
// Avoid calling sub-parsers on unmatched parens, to prevent quadratic time on things like ((((1..2))))
// No need to call the expensive parse_value on "((((1"
if dotdot_pos[0] > 0 {
let (_tokens, err) = lex(
&contents[..dotdot_pos[0]],
span.start,
&[],
&[b'.', b'?'],
true,
);
if let Some(_err) = err {
working_set.error(ParseError::Expected("Valid expression before ..", span));
return None;
}
}
let (inclusion, range_op_str, range_op_span) = if let Some(pos) = token.find("..<") {
if pos == range_op_pos {
let op_str = "..<";
let op_span = Span::new(
span.start + range_op_pos,
span.start + range_op_pos + op_str.len(),
);
(RangeInclusion::RightExclusive, "..<", op_span)
} else {
working_set.error(ParseError::Expected(
"inclusive operator preceding second range bound",
span,
));
return None;
}
} else {
let op_str = if token.contains("..=") { "..=" } else { ".." };
let op_span = Span::new(
span.start + range_op_pos,
span.start + range_op_pos + op_str.len(),
);
(RangeInclusion::Inclusive, op_str, op_span)
};
// Now, based on the operator positions, figure out where the bounds & next are located and
// parse them
// TODO: Actually parse the next number in the range
let from = if token.starts_with("..") {
// token starts with either next operator, or range operator -- we don't care which one
None
} else {
let from_span = Span::new(span.start, span.start + dotdot_pos[0]);
Some(parse_value(working_set, from_span, &SyntaxShape::Number))
};
let to = if token.ends_with(range_op_str) {
None
} else {
let to_span = Span::new(range_op_span.end, span.end);
Some(parse_value(working_set, to_span, &SyntaxShape::Number))
};
trace!("-- from: {:?} to: {:?}", from, to);
if let (None, None) = (&from, &to) {
working_set.error(ParseError::Expected("at least one range bound set", span));
return None;
}
let (next, next_op_span) = if let Some(pos) = next_op_pos {
let next_op_span = Span::new(span.start + pos, span.start + pos + "..".len());
let next_span = Span::new(next_op_span.end, range_op_span.start);
(
Some(parse_value(working_set, next_span, &SyntaxShape::Number)),
next_op_span,
)
} else {
(None, span)
};
if working_set.parse_errors.len() != starting_error_count {
return None;
}
let operator = RangeOperator {
inclusion,
span: range_op_span,
next_op_span,
};
let mut range = Range {
from,
next,
to,
operator,
};
check_range_types(working_set, &mut range);
Some(Expression::new(
working_set,
Expr::Range(Box::new(range)),
span,
Type::Range,
))
}
pub(crate) fn parse_dollar_expr(working_set: &mut StateWorkingSet, span: Span) -> Expression {
trace!("parsing: dollar expression");
let contents = working_set.get_span_contents(span);
if contents.starts_with(b"$\"") || contents.starts_with(b"$'") {
parse_string_interpolation(working_set, span)
} else if contents.starts_with(b"$.") {
parse_simple_cell_path(working_set, Span::new(span.start + 2, span.end))
} else {
let starting_error_count = working_set.parse_errors.len();
if let Some(expr) = parse_range(working_set, span) {
expr
} else {
working_set.parse_errors.truncate(starting_error_count);
parse_full_cell_path(working_set, None, span)
}
}
}
pub fn parse_raw_string(working_set: &mut StateWorkingSet, span: Span) -> Expression {
trace!("parsing: raw-string, with required delimiters");
let bytes = working_set.get_span_contents(span);
let prefix_sharp_cnt = if bytes.starts_with(b"r#") {
// actually `sharp_cnt` is always `index - 1`
// but create a variable here to make it clearer.
let mut sharp_cnt = 1;
let mut index = 2;
while index < bytes.len() && bytes[index] == b'#' {
index += 1;
sharp_cnt += 1;
}
sharp_cnt
} else {
working_set.error(ParseError::Expected("r#", span));
return garbage(working_set, span);
};
let expect_postfix_sharp_cnt = prefix_sharp_cnt;
// check the length of whole raw string.
// the whole raw string should contains at least
// 1(r) + prefix_sharp_cnt + 1(') + 1(') + postfix_sharp characters
if bytes.len() < prefix_sharp_cnt + expect_postfix_sharp_cnt + 3 {
working_set.error(ParseError::Unclosed('\''.into(), span));
return garbage(working_set, span);
}
// check for unbalanced # and single quotes.
let postfix_bytes = &bytes[bytes.len() - expect_postfix_sharp_cnt..bytes.len()];
if postfix_bytes.iter().any(|b| *b != b'#') {
working_set.error(ParseError::Unbalanced(
"prefix #".to_string(),
"postfix #".to_string(),
span,
));
return garbage(working_set, span);
}
// check for unblanaced single quotes.
if bytes[1 + prefix_sharp_cnt] != b'\''
|| bytes[bytes.len() - expect_postfix_sharp_cnt - 1] != b'\''
{
working_set.error(ParseError::Unclosed('\''.into(), span));
return garbage(working_set, span);
}
let bytes = &bytes[prefix_sharp_cnt + 1 + 1..bytes.len() - 1 - prefix_sharp_cnt];
if let Ok(token) = String::from_utf8(bytes.into()) {
Expression::new(working_set, Expr::RawString(token), span, Type::String)
} else {
working_set.error(ParseError::Expected("utf8 raw-string", span));
garbage(working_set, span)
}
}
pub fn parse_paren_expr(
working_set: &mut StateWorkingSet,
span: Span,
shape: &SyntaxShape,
) -> Expression {
let starting_error_count = working_set.parse_errors.len();
if let Some(expr) = parse_range(working_set, span) {
expr
} else {
working_set.parse_errors.truncate(starting_error_count);
if matches!(shape, SyntaxShape::Signature) {
parse_signature(working_set, span)
} else {
parse_full_cell_path(working_set, None, span)
}
}
}
pub fn parse_brace_expr(
working_set: &mut StateWorkingSet,
span: Span,
shape: &SyntaxShape,
) -> Expression {
// Try to detect what kind of value we're about to parse
// FIXME: In the future, we should work over the token stream so we only have to do this once
// before parsing begins
// FIXME: we're still using the shape because we rely on it to know how to handle syntax where
// the parse is ambiguous. We'll need to update the parts of the grammar where this is ambiguous
// and then revisit the parsing.
if span.end <= (span.start + 1) {
working_set.error(ParseError::ExpectedWithStringMsg(
format!("non-block value: {shape}"),
span,
));
return Expression::garbage(working_set, span);
}
let bytes = working_set.get_span_contents(Span::new(span.start + 1, span.end - 1));
let (tokens, _) = lex(bytes, span.start + 1, &[b'\r', b'\n', b'\t'], &[b':'], true);
let second_token = tokens
.first()
.map(|token| working_set.get_span_contents(token.span));
let second_token_contents = tokens.first().map(|token| token.contents);
let third_token = tokens
.get(1)
.map(|token| working_set.get_span_contents(token.span));
if second_token.is_none() {
// If we're empty, that means an empty record or closure
if matches!(shape, SyntaxShape::Closure(_)) {
parse_closure_expression(working_set, shape, span)
} else if matches!(shape, SyntaxShape::Block) {
parse_block_expression(working_set, span)
} else if matches!(shape, SyntaxShape::MatchBlock) {
parse_match_block_expression(working_set, span)
} else {
parse_record(working_set, span)
}
} else if matches!(second_token_contents, Some(TokenContents::Pipe))
|| matches!(second_token_contents, Some(TokenContents::PipePipe))
{
parse_closure_expression(working_set, shape, span)
} else if matches!(third_token, Some(b":")) {
parse_full_cell_path(working_set, None, span)
} else if matches!(shape, SyntaxShape::Closure(_)) {
parse_closure_expression(working_set, shape, span)
} else if matches!(shape, SyntaxShape::Block) {
parse_block_expression(working_set, span)
} else if matches!(shape, SyntaxShape::MatchBlock) {
parse_match_block_expression(working_set, span)
} else if second_token.is_some_and(|c| {
c.len() > 3 && c.starts_with(b"...") && (c[3] == b'$' || c[3] == b'{' || c[3] == b'(')
}) {
parse_record(working_set, span)
} else if matches!(shape, SyntaxShape::Any) {
parse_closure_expression(working_set, shape, span)
} else {
working_set.error(ParseError::ExpectedWithStringMsg(
format!("non-block value: {shape}"),
span,
));
Expression::garbage(working_set, span)
}
}
pub fn parse_string_interpolation(working_set: &mut StateWorkingSet, span: Span) -> Expression {
#[derive(PartialEq, Eq, Debug)]
enum InterpolationMode {
String,
Expression,
}
let contents = working_set.get_span_contents(span);
let mut double_quote = false;
let (start, end) = if contents.starts_with(b"$\"") {
double_quote = true;
let end = if contents.ends_with(b"\"") && contents.len() > 2 {
span.end - 1
} else {
span.end
};
(span.start + 2, end)
} else if contents.starts_with(b"$'") {
let end = if contents.ends_with(b"'") && contents.len() > 2 {
span.end - 1
} else {
span.end
};
(span.start + 2, end)
} else {
(span.start, span.end)
};
let inner_span = Span::new(start, end);
let contents = working_set.get_span_contents(inner_span).to_vec();
let mut output = vec![];
let mut mode = InterpolationMode::String;
let mut token_start = start;
let mut delimiter_stack = vec![];
let mut consecutive_backslashes: usize = 0;
let mut b = start;
while b != end {
let current_byte = contents[b - start];
if mode == InterpolationMode::String {
let preceding_consecutive_backslashes = consecutive_backslashes;
let is_backslash = current_byte == b'\\';
consecutive_backslashes = if is_backslash {
preceding_consecutive_backslashes + 1
} else {
0
};
if current_byte == b'(' && (!double_quote || preceding_consecutive_backslashes % 2 == 0)
{
mode = InterpolationMode::Expression;
if token_start < b {
let span = Span::new(token_start, b);
let str_contents = working_set.get_span_contents(span);
let (str_contents, err) = if double_quote {
unescape_string(str_contents, span)
} else {
(str_contents.to_vec(), None)
};
if let Some(err) = err {
working_set.error(err);
}
output.push(Expression::new(
working_set,
Expr::String(String::from_utf8_lossy(&str_contents).to_string()),
span,
Type::String,
));
token_start = b;
}
}
}
if mode == InterpolationMode::Expression {
let byte = current_byte;
if let Some(b'\'') = delimiter_stack.last() {
if byte == b'\'' {
delimiter_stack.pop();
}
} else if let Some(b'"') = delimiter_stack.last() {
if byte == b'"' {
delimiter_stack.pop();
}
} else if let Some(b'`') = delimiter_stack.last() {
if byte == b'`' {
delimiter_stack.pop();
}
} else if byte == b'\'' {
delimiter_stack.push(b'\'')
} else if byte == b'"' {
delimiter_stack.push(b'"');
} else if byte == b'`' {
delimiter_stack.push(b'`')
} else if byte == b'(' {
delimiter_stack.push(b')');
} else if byte == b')' {
if let Some(b')') = delimiter_stack.last() {
delimiter_stack.pop();
}
if delimiter_stack.is_empty() {
mode = InterpolationMode::String;
if token_start < b {
let span = Span::new(token_start, b + 1);
let expr = parse_full_cell_path(working_set, None, span);
output.push(expr);
}
token_start = b + 1;
continue;
}
}
}
b += 1;
}
match mode {
InterpolationMode::String => {
if token_start < end {
let span = Span::new(token_start, end);
let str_contents = working_set.get_span_contents(span);
let (str_contents, err) = if double_quote {
unescape_string(str_contents, span)
} else {
(str_contents.to_vec(), None)
};
if let Some(err) = err {
working_set.error(err);
}
output.push(Expression::new(
working_set,
Expr::String(String::from_utf8_lossy(&str_contents).to_string()),
span,
Type::String,
));
}
}
InterpolationMode::Expression => {
if token_start < end {
let span = Span::new(token_start, end);
let expr = parse_full_cell_path(working_set, None, span);
output.push(expr);
}
}
}
Expression::new(
working_set,
Expr::StringInterpolation(output),
span,
Type::String,
)
}
pub fn parse_variable_expr(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let contents = working_set.get_span_contents(span);
if contents == b"$nu" {
return Expression::new(
working_set,
Expr::Var(nu_protocol::NU_VARIABLE_ID),
span,
Type::Any,
);
} else if contents == b"$in" {
return Expression::new(
working_set,
Expr::Var(nu_protocol::IN_VARIABLE_ID),
span,
Type::Any,
);
} else if contents == b"$env" {
return Expression::new(
working_set,
Expr::Var(nu_protocol::ENV_VARIABLE_ID),
span,
Type::Any,
);
}
let name = if contents.starts_with(b"$") {
String::from_utf8_lossy(&contents[1..]).to_string()
} else {
String::from_utf8_lossy(contents).to_string()
};
let bytes = working_set.get_span_contents(span);
let suggestion = || {
DidYouMean::new(
&working_set.list_variables(),
working_set.get_span_contents(span),
)
};
if !is_variable(bytes) {
working_set.error(ParseError::ExpectedWithDidYouMean(
"valid variable name",
suggestion(),
span,
));
garbage(working_set, span)
} else if let Some(id) = working_set.find_variable(bytes) {
Expression::new(
working_set,
Expr::Var(id),
span,
working_set.get_variable(id).ty.clone(),
)
} else if working_set.get_env_var(&name).is_some() {
working_set.error(ParseError::EnvVarNotVar(name, span));
garbage(working_set, span)
} else {
working_set.error(ParseError::VariableNotFound(suggestion(), span));
garbage(working_set, span)
}
}
pub fn parse_cell_path(
working_set: &mut StateWorkingSet,
tokens: impl Iterator<Item = Token>,
expect_dot: bool,
) -> Vec<PathMember> {
enum TokenType {
Dot, // .
QuestionOrDot, // ? or .
PathMember, // an int or string, like `1` or `foo`
}
// Parsing a cell path is essentially a state machine, and this is the state
let mut expected_token = if expect_dot {
TokenType::Dot
} else {
TokenType::PathMember
};
let mut tail = vec![];
for path_element in tokens {
let bytes = working_set.get_span_contents(path_element.span);
match expected_token {
TokenType::Dot => {
if bytes.len() != 1 || bytes[0] != b'.' {
working_set.error(ParseError::Expected(".", path_element.span));
return tail;
}
expected_token = TokenType::PathMember;
}
TokenType::QuestionOrDot => {
if bytes.len() == 1 && bytes[0] == b'.' {
expected_token = TokenType::PathMember;
} else if bytes.len() == 1 && bytes[0] == b'?' {
if let Some(last) = tail.last_mut() {
match last {
PathMember::String {
ref mut optional, ..
} => *optional = true,
PathMember::Int {
ref mut optional, ..
} => *optional = true,
}
}
expected_token = TokenType::Dot;
} else {
working_set.error(ParseError::Expected(". or ?", path_element.span));
return tail;
}
}
TokenType::PathMember => {
let starting_error_count = working_set.parse_errors.len();
let expr = parse_int(working_set, path_element.span);
working_set.parse_errors.truncate(starting_error_count);
match expr {
Expression {
expr: Expr::Int(val),
span,
..
} => tail.push(PathMember::Int {
val: val as usize,
span,
optional: false,
}),
_ => {
let result = parse_string(working_set, path_element.span);
match result {
Expression {
expr: Expr::String(string),
span,
..
} => {
tail.push(PathMember::String {
val: string,
span,
optional: false,
});
}
_ => {
working_set
.error(ParseError::Expected("string", path_element.span));
return tail;
}
}
}
}
expected_token = TokenType::QuestionOrDot;
}
}
}
tail
}
pub fn parse_simple_cell_path(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let source = working_set.get_span_contents(span);
let (tokens, err) = lex(source, span.start, &[b'\n', b'\r'], &[b'.', b'?'], true);
if let Some(err) = err {
working_set.error(err)
}
let tokens = tokens.into_iter().peekable();
let cell_path = parse_cell_path(working_set, tokens, false);
Expression::new(
working_set,
Expr::CellPath(CellPath { members: cell_path }),
span,
Type::CellPath,
)
}
pub fn parse_full_cell_path(
working_set: &mut StateWorkingSet,
implicit_head: Option<VarId>,
span: Span,
) -> Expression {
trace!("parsing: full cell path");
let full_cell_span = span;
let source = working_set.get_span_contents(span);
let (tokens, err) = lex(source, span.start, &[b'\n', b'\r'], &[b'.', b'?'], true);
if let Some(err) = err {
working_set.error(err)
}
let mut tokens = tokens.into_iter().peekable();
if let Some(head) = tokens.peek() {
let bytes = working_set.get_span_contents(head.span);
let (head, expect_dot) = if bytes.starts_with(b"(") {
trace!("parsing: paren-head of full cell path");
let head_span = head.span;
let mut start = head.span.start;
let mut end = head.span.end;
if bytes.starts_with(b"(") {
start += 1;
}
if bytes.ends_with(b")") {
end -= 1;
} else {
working_set.error(ParseError::Unclosed(")".into(), Span::new(end, end)));
}
let span = Span::new(start, end);
let source = working_set.get_span_contents(span);
let (output, err) = lex(source, span.start, &[b'\n', b'\r'], &[], true);
if let Some(err) = err {
working_set.error(err)
}
// Creating a Type scope to parse the new block. This will keep track of
// the previous input type found in that block
let output = parse_block(working_set, &output, span, true, true);
let ty = output.output_type();
let block_id = working_set.add_block(Arc::new(output));
tokens.next();
(
Expression::new(working_set, Expr::Subexpression(block_id), head_span, ty),
true,
)
} else if bytes.starts_with(b"[") {
trace!("parsing: table head of full cell path");
let output = parse_table_expression(working_set, head.span, &SyntaxShape::Any);
tokens.next();
(output, true)
} else if bytes.starts_with(b"{") {
trace!("parsing: record head of full cell path");
let output = parse_record(working_set, head.span);
tokens.next();
(output, true)
} else if bytes.starts_with(b"$") {
trace!("parsing: $variable head of full cell path");
let out = parse_variable_expr(working_set, head.span);
tokens.next();
(out, true)
} else if let Some(var_id) = implicit_head {
trace!("parsing: implicit head of full cell path");
(
Expression::new(working_set, Expr::Var(var_id), head.span, Type::Any),
false,
)
} else {
working_set.error(ParseError::Mismatch(
"variable or subexpression".into(),
String::from_utf8_lossy(bytes).to_string(),
span,
));
return garbage(working_set, span);
};
let tail = parse_cell_path(working_set, tokens, expect_dot);
// FIXME: Get the type of the data at the tail using follow_cell_path() (or something)
let ty = if !tail.is_empty() {
// Until the aforementioned fix is implemented, this is necessary to allow mutable list upserts
// such as $a.1 = 2 to work correctly.
Type::Any
} else {
head.ty.clone()
};
Expression::new(
working_set,
Expr::FullCellPath(Box::new(FullCellPath { head, tail })),
full_cell_span,
ty,
)
} else {
garbage(working_set, span)
}
}
pub fn parse_directory(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let bytes = working_set.get_span_contents(span);
let quoted = is_quoted(bytes);
let (token, err) = unescape_unquote_string(bytes, span);
trace!("parsing: directory");
if err.is_none() {
trace!("-- found {}", token);
Expression::new(
working_set,
Expr::Directory(token, quoted),
span,
Type::String,
)
} else {
working_set.error(ParseError::Expected("directory", span));
garbage(working_set, span)
}
}
pub fn parse_filepath(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let bytes = working_set.get_span_contents(span);
let quoted = is_quoted(bytes);
let (token, err) = unescape_unquote_string(bytes, span);
trace!("parsing: filepath");
if err.is_none() {
trace!("-- found {}", token);
Expression::new(
working_set,
Expr::Filepath(token, quoted),
span,
Type::String,
)
} else {
working_set.error(ParseError::Expected("filepath", span));
garbage(working_set, span)
}
}
/// Parse a datetime type, eg '2022-02-02'
pub fn parse_datetime(working_set: &mut StateWorkingSet, span: Span) -> Expression {
trace!("parsing: datetime");
let bytes = working_set.get_span_contents(span);
if bytes.len() < 6
|| !bytes[0].is_ascii_digit()
|| !bytes[1].is_ascii_digit()
|| !bytes[2].is_ascii_digit()
|| !bytes[3].is_ascii_digit()
|| bytes[4] != b'-'
{
working_set.error(ParseError::Expected("datetime", span));
return garbage(working_set, span);
}
let token = String::from_utf8_lossy(bytes).to_string();
if let Ok(datetime) = chrono::DateTime::parse_from_rfc3339(&token) {
return Expression::new(working_set, Expr::DateTime(datetime), span, Type::Date);
}
// Just the date
let just_date = token.clone() + "T00:00:00+00:00";
if let Ok(datetime) = chrono::DateTime::parse_from_rfc3339(&just_date) {
return Expression::new(working_set, Expr::DateTime(datetime), span, Type::Date);
}
// Date and time, assume UTC
let datetime = token + "+00:00";
if let Ok(datetime) = chrono::DateTime::parse_from_rfc3339(&datetime) {
return Expression::new(working_set, Expr::DateTime(datetime), span, Type::Date);
}
working_set.error(ParseError::Expected("datetime", span));
garbage(working_set, span)
}
/// Parse a duration type, eg '10day'
pub fn parse_duration(working_set: &mut StateWorkingSet, span: Span) -> Expression {
trace!("parsing: duration");
let bytes = working_set.get_span_contents(span);
match parse_unit_value(bytes, span, DURATION_UNIT_GROUPS, Type::Duration, |x| x) {
Some(Ok(expr)) => {
let span_id = working_set.add_span(span);
expr.with_span_id(span_id)
}
Some(Err(mk_err_for)) => {
working_set.error(mk_err_for("duration"));
garbage(working_set, span)
}
None => {
working_set.error(ParseError::Expected("duration with valid units", span));
garbage(working_set, span)
}
}
}
/// Parse a unit type, eg '10kb'
pub fn parse_filesize(working_set: &mut StateWorkingSet, span: Span) -> Expression {
trace!("parsing: filesize");
let bytes = working_set.get_span_contents(span);
// the hex digit `b` might be mistaken for the unit `b`, so check that first
if bytes.starts_with(b"0x") {
working_set.error(ParseError::Expected("filesize with valid units", span));
return garbage(working_set, span);
}
match parse_unit_value(bytes, span, FILESIZE_UNIT_GROUPS, Type::Filesize, |x| {
x.to_ascii_uppercase()
}) {
Some(Ok(expr)) => {
let span_id = working_set.add_span(span);
expr.with_span_id(span_id)
}
Some(Err(mk_err_for)) => {
working_set.error(mk_err_for("filesize"));
garbage(working_set, span)
}
None => {
working_set.error(ParseError::Expected("filesize with valid units", span));
garbage(working_set, span)
}
}
}
type ParseUnitResult<'res> = Result<Expression, Box<dyn Fn(&'res str) -> ParseError>>;
type UnitGroup<'unit> = (Unit, &'unit str, Option<(Unit, i64)>);
pub fn parse_unit_value<'res>(
bytes: &[u8],
span: Span,
unit_groups: &[UnitGroup],
ty: Type,
transform: fn(String) -> String,
) -> Option<ParseUnitResult<'res>> {
if bytes.len() < 2
|| !(bytes[0].is_ascii_digit() || (bytes[0] == b'-' && bytes[1].is_ascii_digit()))
{
return None;
}
let value = transform(String::from_utf8_lossy(bytes).into());
if let Some((unit, name, convert)) = unit_groups.iter().find(|x| value.ends_with(x.1)) {
let lhs_len = value.len() - name.len();
let lhs = strip_underscores(value[..lhs_len].as_bytes());
let lhs_span = Span::new(span.start, span.start + lhs_len);
let unit_span = Span::new(span.start + lhs_len, span.end);
if lhs.ends_with('$') {
// If `parse_unit_value` has higher precedence over `parse_range`,
// a variable with the name of a unit could otherwise not be used as the end of a range.
return None;
}
let (decimal_part, number_part) = modf(match lhs.parse::<f64>() {
Ok(it) => it,
Err(_) => {
let mk_err = move |name| {
ParseError::LabeledError(
format!("{name} value must be a number"),
"not a number".into(),
lhs_span,
)
};
return Some(Err(Box::new(mk_err)));
}
});
let (num, unit) = match convert {
Some(convert_to) => (
((number_part * convert_to.1 as f64) + (decimal_part * convert_to.1 as f64)) as i64,
convert_to.0,
),
None => (number_part as i64, *unit),
};
trace!("-- found {} {:?}", num, unit);
let value = ValueWithUnit {
expr: Expression::new_unknown(Expr::Int(num), lhs_span, Type::Number),
unit: Spanned {
item: unit,
span: unit_span,
},
};
let expr = Expression::new_unknown(Expr::ValueWithUnit(Box::new(value)), span, ty);
Some(Ok(expr))
} else {
None
}
}
pub const FILESIZE_UNIT_GROUPS: &[UnitGroup] = &[
(
Unit::Filesize(FilesizeUnit::KB),
"KB",
Some((Unit::Filesize(FilesizeUnit::B), 1000)),
),
(
Unit::Filesize(FilesizeUnit::MB),
"MB",
Some((Unit::Filesize(FilesizeUnit::KB), 1000)),
),
(
Unit::Filesize(FilesizeUnit::GB),
"GB",
Some((Unit::Filesize(FilesizeUnit::MB), 1000)),
),
(
Unit::Filesize(FilesizeUnit::TB),
"TB",
Some((Unit::Filesize(FilesizeUnit::GB), 1000)),
),
(
Unit::Filesize(FilesizeUnit::PB),
"PB",
Some((Unit::Filesize(FilesizeUnit::TB), 1000)),
),
(
Unit::Filesize(FilesizeUnit::EB),
"EB",
Some((Unit::Filesize(FilesizeUnit::PB), 1000)),
),
(
Unit::Filesize(FilesizeUnit::KiB),
"KIB",
Some((Unit::Filesize(FilesizeUnit::B), 1024)),
),
(
Unit::Filesize(FilesizeUnit::MiB),
"MIB",
Some((Unit::Filesize(FilesizeUnit::KiB), 1024)),
),
(
Unit::Filesize(FilesizeUnit::GiB),
"GIB",
Some((Unit::Filesize(FilesizeUnit::MiB), 1024)),
),
(
Unit::Filesize(FilesizeUnit::TiB),
"TIB",
Some((Unit::Filesize(FilesizeUnit::GiB), 1024)),
),
(
Unit::Filesize(FilesizeUnit::PiB),
"PIB",
Some((Unit::Filesize(FilesizeUnit::TiB), 1024)),
),
(
Unit::Filesize(FilesizeUnit::EiB),
"EIB",
Some((Unit::Filesize(FilesizeUnit::EiB), 1024)),
),
(Unit::Filesize(FilesizeUnit::B), "B", None),
];
pub const DURATION_UNIT_GROUPS: &[UnitGroup] = &[
(Unit::Nanosecond, "ns", None),
// todo start adding aliases for duration units here
(Unit::Microsecond, "us", Some((Unit::Nanosecond, 1000))),
(
// µ Micro Sign
Unit::Microsecond,
"\u{00B5}s",
Some((Unit::Nanosecond, 1000)),
),
(
// μ Greek small letter Mu
Unit::Microsecond,
"\u{03BC}s",
Some((Unit::Nanosecond, 1000)),
),
(Unit::Millisecond, "ms", Some((Unit::Microsecond, 1000))),
(Unit::Second, "sec", Some((Unit::Millisecond, 1000))),
(Unit::Minute, "min", Some((Unit::Second, 60))),
(Unit::Hour, "hr", Some((Unit::Minute, 60))),
(Unit::Day, "day", Some((Unit::Minute, 1440))),
(Unit::Week, "wk", Some((Unit::Day, 7))),
];
// Borrowed from libm at https://github.com/rust-lang/libm/blob/master/src/math/modf.rs
fn modf(x: f64) -> (f64, f64) {
let rv2: f64;
let mut u = x.to_bits();
let e = ((u >> 52 & 0x7ff) as i32) - 0x3ff;
/* no fractional part */
if e >= 52 {
rv2 = x;
if e == 0x400 && (u << 12) != 0 {
/* nan */
return (x, rv2);
}
u &= 1 << 63;
return (f64::from_bits(u), rv2);
}
/* no integral part*/
if e < 0 {
u &= 1 << 63;
rv2 = f64::from_bits(u);
return (x, rv2);
}
let mask = ((!0) >> 12) >> e;
if (u & mask) == 0 {
rv2 = x;
u &= 1 << 63;
return (f64::from_bits(u), rv2);
}
u &= !mask;
rv2 = f64::from_bits(u);
(x - rv2, rv2)
}
pub fn parse_glob_pattern(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let bytes = working_set.get_span_contents(span);
let quoted = is_quoted(bytes);
let (token, err) = unescape_unquote_string(bytes, span);
trace!("parsing: glob pattern");
if err.is_none() {
trace!("-- found {}", token);
Expression::new(
working_set,
Expr::GlobPattern(token, quoted),
span,
Type::Glob,
)
} else {
working_set.error(ParseError::Expected("glob pattern string", span));
garbage(working_set, span)
}
}
pub fn unescape_string(bytes: &[u8], span: Span) -> (Vec<u8>, Option<ParseError>) {
let mut output = Vec::new();
let mut error = None;
let mut idx = 0;
if !bytes.contains(&b'\\') {
return (bytes.to_vec(), None);
}
'us_loop: while idx < bytes.len() {
if bytes[idx] == b'\\' {
// We're in an escape
idx += 1;
match bytes.get(idx) {
Some(b'"') => {
output.push(b'"');
idx += 1;
}
Some(b'\'') => {
output.push(b'\'');
idx += 1;
}
Some(b'\\') => {
output.push(b'\\');
idx += 1;
}
Some(b'/') => {
output.push(b'/');
idx += 1;
}
Some(b'(') => {
output.push(b'(');
idx += 1;
}
Some(b')') => {
output.push(b')');
idx += 1;
}
Some(b'{') => {
output.push(b'{');
idx += 1;
}
Some(b'}') => {
output.push(b'}');
idx += 1;
}
Some(b'$') => {
output.push(b'$');
idx += 1;
}
Some(b'^') => {
output.push(b'^');
idx += 1;
}
Some(b'#') => {
output.push(b'#');
idx += 1;
}
Some(b'|') => {
output.push(b'|');
idx += 1;
}
Some(b'~') => {
output.push(b'~');
idx += 1;
}
Some(b'a') => {
output.push(0x7);
idx += 1;
}
Some(b'b') => {
output.push(0x8);
idx += 1;
}
Some(b'e') => {
output.push(0x1b);
idx += 1;
}
Some(b'f') => {
output.push(0xc);
idx += 1;
}
Some(b'n') => {
output.push(b'\n');
idx += 1;
}
Some(b'r') => {
output.push(b'\r');
idx += 1;
}
Some(b't') => {
output.push(b'\t');
idx += 1;
}
Some(b'u') => {
let mut digits = String::with_capacity(10);
let mut cur_idx = idx + 1; // index of first beyond current end of token
if let Some(b'{') = bytes.get(idx + 1) {
cur_idx = idx + 2;
loop {
match bytes.get(cur_idx) {
Some(b'}') => {
cur_idx += 1;
break;
}
Some(c) => {
digits.push(*c as char);
cur_idx += 1;
}
_ => {
error = error.or(Some(ParseError::InvalidLiteral(
"missing '}' for unicode escape '\\u{X...}'".into(),
"string".into(),
Span::new(span.start + idx, span.end),
)));
break 'us_loop;
}
}
}
}
if (1..=6).contains(&digits.len()) {
let int = u32::from_str_radix(&digits, 16);
if let Ok(int) = int {
if int <= 0x10ffff {
let result = char::from_u32(int);
if let Some(result) = result {
let mut buffer = vec![0; 4];
let result = result.encode_utf8(&mut buffer);
for elem in result.bytes() {
output.push(elem);
}
idx = cur_idx;
continue 'us_loop;
}
}
}
}
// fall through -- escape not accepted above, must be error.
error = error.or(Some(ParseError::InvalidLiteral(
"invalid unicode escape '\\u{X...}', must be 1-6 hex digits, max value 10FFFF".into(),
"string".into(),
Span::new(span.start + idx, span.end),
)));
break 'us_loop;
}
_ => {
error = error.or(Some(ParseError::InvalidLiteral(
"unrecognized escape after '\\'".into(),
"string".into(),
Span::new(span.start + idx, span.end),
)));
break 'us_loop;
}
}
} else {
output.push(bytes[idx]);
idx += 1;
}
}
(output, error)
}
pub fn unescape_unquote_string(bytes: &[u8], span: Span) -> (String, Option<ParseError>) {
if bytes.starts_with(b"\"") {
// Needs unescaping
let bytes = trim_quotes(bytes);
let (bytes, err) = unescape_string(bytes, span);
if let Ok(token) = String::from_utf8(bytes) {
(token, err)
} else {
(String::new(), Some(ParseError::Expected("string", span)))
}
} else {
let bytes = trim_quotes(bytes);
if let Ok(token) = String::from_utf8(bytes.into()) {
(token, None)
} else {
(String::new(), Some(ParseError::Expected("string", span)))
}
}
}
pub fn parse_string(working_set: &mut StateWorkingSet, span: Span) -> Expression {
trace!("parsing: string");
let bytes = working_set.get_span_contents(span);
if bytes.is_empty() {
working_set.error(ParseError::Expected("String", span));
return Expression::garbage(working_set, span);
}
// Check for bare word interpolation
if bytes[0] != b'\'' && bytes[0] != b'"' && bytes[0] != b'`' && bytes.contains(&b'(') {
return parse_string_interpolation(working_set, span);
}
// Check for unbalanced quotes:
{
if bytes.starts_with(b"\"")
&& (bytes.iter().filter(|ch| **ch == b'"').count() > 1 && !bytes.ends_with(b"\""))
{
let close_delimiter_index = bytes
.iter()
.skip(1)
.position(|ch| *ch == b'"')
.expect("Already check input bytes contains at least two double quotes");
// needs `+2` rather than `+1`, because we have skip 1 to find close_delimiter_index before.
let span = Span::new(span.start + close_delimiter_index + 2, span.end);
working_set.error(ParseError::ExtraTokensAfterClosingDelimiter(span));
return garbage(working_set, span);
}
if bytes.starts_with(b"\'")
&& (bytes.iter().filter(|ch| **ch == b'\'').count() > 1 && !bytes.ends_with(b"\'"))
{
let close_delimiter_index = bytes
.iter()
.skip(1)
.position(|ch| *ch == b'\'')
.expect("Already check input bytes contains at least two double quotes");
// needs `+2` rather than `+1`, because we have skip 1 to find close_delimiter_index before.
let span = Span::new(span.start + close_delimiter_index + 2, span.end);
working_set.error(ParseError::ExtraTokensAfterClosingDelimiter(span));
return garbage(working_set, span);
}
}
let (s, err) = unescape_unquote_string(bytes, span);
if let Some(err) = err {
working_set.error(err);
}
Expression::new(working_set, Expr::String(s), span, Type::String)
}
fn is_quoted(bytes: &[u8]) -> bool {
(bytes.starts_with(b"\"") && bytes.ends_with(b"\"") && bytes.len() > 1)
|| (bytes.starts_with(b"\'") && bytes.ends_with(b"\'") && bytes.len() > 1)
}
pub fn parse_string_strict(working_set: &mut StateWorkingSet, span: Span) -> Expression {
trace!("parsing: string, with required delimiters");
let bytes = working_set.get_span_contents(span);
// Check for unbalanced quotes:
{
let bytes = if bytes.starts_with(b"$") {
&bytes[1..]
} else {
bytes
};
if bytes.starts_with(b"\"") && (bytes.len() == 1 || !bytes.ends_with(b"\"")) {
working_set.error(ParseError::Unclosed("\"".into(), span));
return garbage(working_set, span);
}
if bytes.starts_with(b"\'") && (bytes.len() == 1 || !bytes.ends_with(b"\'")) {
working_set.error(ParseError::Unclosed("\'".into(), span));
return garbage(working_set, span);
}
if bytes.starts_with(b"r#") && (bytes.len() == 1 || !bytes.ends_with(b"#")) {
working_set.error(ParseError::Unclosed("r#".into(), span));
return garbage(working_set, span);
}
}
let (bytes, quoted) = if (bytes.starts_with(b"\"") && bytes.ends_with(b"\"") && bytes.len() > 1)
|| (bytes.starts_with(b"\'") && bytes.ends_with(b"\'") && bytes.len() > 1)
{
(&bytes[1..(bytes.len() - 1)], true)
} else if (bytes.starts_with(b"$\"") && bytes.ends_with(b"\"") && bytes.len() > 2)
|| (bytes.starts_with(b"$\'") && bytes.ends_with(b"\'") && bytes.len() > 2)
{
(&bytes[2..(bytes.len() - 1)], true)
} else {
(bytes, false)
};
if let Ok(token) = String::from_utf8(bytes.into()) {
trace!("-- found {}", token);
if quoted {
Expression::new(working_set, Expr::String(token), span, Type::String)
} else if token.contains(' ') {
working_set.error(ParseError::Expected("string", span));
garbage(working_set, span)
} else {
Expression::new(working_set, Expr::String(token), span, Type::String)
}
} else {
working_set.error(ParseError::Expected("string", span));
garbage(working_set, span)
}
}
pub fn parse_import_pattern(working_set: &mut StateWorkingSet, spans: &[Span]) -> Expression {
let Some(head_span) = spans.first() else {
working_set.error(ParseError::WrongImportPattern(
"needs at least one component of import pattern".to_string(),
Span::concat(spans),
));
return garbage(working_set, Span::concat(spans));
};
let head_expr = parse_value(working_set, *head_span, &SyntaxShape::Any);
let (maybe_module_id, head_name) = match eval_constant(working_set, &head_expr) {
Ok(val) => match val.coerce_into_string() {
Ok(s) => (working_set.find_module(s.as_bytes()), s.into_bytes()),
Err(err) => {
working_set.error(err.wrap(working_set, Span::concat(spans)));
return garbage(working_set, Span::concat(spans));
}
},
Err(err) => {
working_set.error(err.wrap(working_set, Span::concat(spans)));
return garbage(working_set, Span::concat(spans));
}
};
let mut import_pattern = ImportPattern {
head: ImportPatternHead {
name: head_name,
id: maybe_module_id,
span: *head_span,
},
members: vec![],
hidden: HashSet::new(),
constants: vec![],
};
if spans.len() > 1 {
let mut leaf_member_span = None;
for tail_span in spans[1..].iter() {
if let Some(prev_span) = leaf_member_span {
let what = if working_set.get_span_contents(prev_span) == b"*" {
"glob"
} else {
"list"
};
working_set.error(ParseError::WrongImportPattern(
format!(
"{} member can be only at the end of an import pattern",
what
),
prev_span,
));
return Expression::new(
working_set,
Expr::ImportPattern(Box::new(import_pattern)),
prev_span,
Type::List(Box::new(Type::String)),
);
}
let tail = working_set.get_span_contents(*tail_span);
if tail == b"*" {
import_pattern
.members
.push(ImportPatternMember::Glob { span: *tail_span });
leaf_member_span = Some(*tail_span);
} else if tail.starts_with(b"[") {
let result = parse_list_expression(working_set, *tail_span, &SyntaxShape::String);
let mut output = vec![];
if let Expression {
expr: Expr::List(list),
..
} = result
{
for item in list {
match item {
ListItem::Item(expr) => {
let contents = working_set.get_span_contents(expr.span);
output.push((trim_quotes(contents).to_vec(), expr.span));
}
ListItem::Spread(_, spread) => {
working_set.error(ParseError::WrongImportPattern(
"cannot spread in an import pattern".into(),
spread.span,
))
}
}
}
import_pattern
.members
.push(ImportPatternMember::List { names: output });
} else {
working_set.error(ParseError::ExportNotFound(result.span));
return Expression::new(
working_set,
Expr::ImportPattern(Box::new(import_pattern)),
Span::concat(spans),
Type::List(Box::new(Type::String)),
);
}
leaf_member_span = Some(*tail_span);
} else {
let tail = trim_quotes(tail);
import_pattern.members.push(ImportPatternMember::Name {
name: tail.to_vec(),
span: *tail_span,
});
}
}
}
Expression::new(
working_set,
Expr::ImportPattern(Box::new(import_pattern)),
Span::concat(&spans[1..]),
Type::List(Box::new(Type::String)),
)
}
/// Parse `spans[spans_idx..]` into a variable, with optional type annotation.
/// If the name of the variable ends with a colon (no space in-between allowed), then a type annotation
/// can appear after the variable, in which case the colon is stripped from the name of the variable.
/// `spans_idx` is updated to point to the last span that has been parsed.
pub fn parse_var_with_opt_type(
working_set: &mut StateWorkingSet,
spans: &[Span],
spans_idx: &mut usize,
mutable: bool,
) -> (Expression, Option<Type>) {
let name_span = spans[*spans_idx];
let bytes = working_set.get_span_contents(name_span).to_vec();
if bytes.contains(&b' ')
|| bytes.contains(&b'"')
|| bytes.contains(&b'\'')
|| bytes.contains(&b'`')
{
working_set.error(ParseError::VariableNotValid(spans[*spans_idx]));
return (garbage(working_set, spans[*spans_idx]), None);
}
if bytes.ends_with(b":") {
let name_span = Span::new(name_span.start, name_span.end - 1);
let var_name = bytes[0..(bytes.len() - 1)].to_vec();
// We end with colon, so the next span should be the type
if *spans_idx + 1 < spans.len() {
*spans_idx += 1;
// signature like record<a: int b: int> is broken into multiple spans due to
// whitespaces. Collect the rest into one span and work on it
let full_span = Span::concat(&spans[*spans_idx..]);
let type_bytes = working_set.get_span_contents(full_span).to_vec();
let (tokens, parse_error) =
lex_signature(&type_bytes, full_span.start, &[b','], &[], true);
if let Some(parse_error) = parse_error {
working_set.error(parse_error);
}
let ty = parse_type(working_set, &type_bytes, tokens[0].span);
*spans_idx = spans.len() - 1;
if !is_variable(&var_name) {
working_set.error(ParseError::Expected(
"valid variable name",
spans[*spans_idx - 1],
));
return (garbage(working_set, spans[*spans_idx - 1]), None);
}
let id = working_set.add_variable(var_name, spans[*spans_idx - 1], ty.clone(), mutable);
(
Expression::new(working_set, Expr::VarDecl(id), name_span, ty.clone()),
Some(ty),
)
} else {
if !is_variable(&var_name) {
working_set.error(ParseError::Expected(
"valid variable name",
spans[*spans_idx],
));
return (garbage(working_set, spans[*spans_idx]), None);
}
let id = working_set.add_variable(var_name, spans[*spans_idx], Type::Any, mutable);
working_set.error(ParseError::MissingType(spans[*spans_idx]));
(
Expression::new(working_set, Expr::VarDecl(id), spans[*spans_idx], Type::Any),
None,
)
}
} else {
let var_name = bytes;
if !is_variable(&var_name) {
working_set.error(ParseError::Expected(
"valid variable name",
spans[*spans_idx],
));
return (garbage(working_set, spans[*spans_idx]), None);
}
let id = working_set.add_variable(
var_name,
Span::concat(&spans[*spans_idx..*spans_idx + 1]),
Type::Any,
mutable,
);
(
Expression::new(working_set, Expr::VarDecl(id), spans[*spans_idx], Type::Any),
None,
)
}
}
pub fn expand_to_cell_path(
working_set: &mut StateWorkingSet,
expression: &mut Expression,
var_id: VarId,
) {
trace!("parsing: expanding to cell path");
if let Expression {
expr: Expr::String(_),
span,
..
} = expression
{
// Re-parse the string as if it were a cell-path
let new_expression = parse_full_cell_path(working_set, Some(var_id), *span);
*expression = new_expression;
}
if let Expression {
expr: Expr::UnaryNot(inner),
..
} = expression
{
expand_to_cell_path(working_set, inner, var_id);
}
}
pub fn parse_input_output_types(
working_set: &mut StateWorkingSet,
spans: &[Span],
) -> Vec<(Type, Type)> {
let mut full_span = Span::concat(spans);
let mut bytes = working_set.get_span_contents(full_span);
if bytes.starts_with(b"[") {
bytes = &bytes[1..];
full_span.start += 1;
}
if bytes.ends_with(b"]") {
bytes = &bytes[..(bytes.len() - 1)];
full_span.end -= 1;
}
let (tokens, parse_error) =
lex_signature(bytes, full_span.start, &[b'\n', b'\r', b','], &[], true);
if let Some(parse_error) = parse_error {
working_set.error(parse_error);
}
let mut output = vec![];
let mut idx = 0;
while idx < tokens.len() {
let type_bytes = working_set.get_span_contents(tokens[idx].span).to_vec();
let input_type = parse_type(working_set, &type_bytes, tokens[idx].span);
idx += 1;
if idx >= tokens.len() {
working_set.error(ParseError::Expected(
"arrow (->)",
Span::new(tokens[idx - 1].span.end, tokens[idx - 1].span.end),
));
break;
}
let arrow = working_set.get_span_contents(tokens[idx].span);
if arrow != b"->" {
working_set.error(ParseError::Expected("arrow (->)", tokens[idx].span));
}
idx += 1;
if idx >= tokens.len() {
working_set.error(ParseError::MissingType(Span::new(
tokens[idx - 1].span.end,
tokens[idx - 1].span.end,
)));
break;
}
let type_bytes = working_set.get_span_contents(tokens[idx].span).to_vec();
let output_type = parse_type(working_set, &type_bytes, tokens[idx].span);
output.push((input_type, output_type));
idx += 1;
}
output
}
pub fn parse_full_signature(working_set: &mut StateWorkingSet, spans: &[Span]) -> Expression {
match spans.len() {
// This case should never happen. It corresponds to declarations like `def foo {}`,
// which should throw a 'Missing required positional argument.' before getting to this point
0 => {
working_set.error(ParseError::InternalError(
"failed to catch missing positional arguments".to_string(),
Span::concat(spans),
));
garbage(working_set, Span::concat(spans))
}
// e.g. `[ b"[foo: string]" ]`
1 => parse_signature(working_set, spans[0]),
// This case is needed to distinguish between e.g.
// `[ b"[]", b"{ true }" ]` vs `[ b"[]:", b"int" ]`
2 if working_set.get_span_contents(spans[1]).starts_with(b"{") => {
parse_signature(working_set, spans[0])
}
// This should handle every other case, e.g.
// `[ b"[]:", b"int" ]`
// `[ b"[]", b":", b"int" ]`
// `[ b"[]", b":", b"int", b"->", b"bool" ]`
_ => {
let (mut arg_signature, input_output_types_pos) =
if working_set.get_span_contents(spans[0]).ends_with(b":") {
(
parse_signature(working_set, Span::new(spans[0].start, spans[0].end - 1)),
1,
)
} else if working_set.get_span_contents(spans[1]) == b":" {
(parse_signature(working_set, spans[0]), 2)
} else {
// This should be an error case, but we call parse_signature anyway
// so it can handle the various possible errors
// e.g. `[ b"[]", b"int" ]` or `[
working_set.error(ParseError::Expected(
"colon (:) before type signature",
Span::concat(&spans[1..]),
));
// (garbage(working_set, Span::concat(spans)), 1)
(parse_signature(working_set, spans[0]), 1)
};
let input_output_types =
parse_input_output_types(working_set, &spans[input_output_types_pos..]);
if let Expression {
expr: Expr::Signature(sig),
span: expr_span,
..
} = &mut arg_signature
{
sig.input_output_types = input_output_types;
expr_span.end = Span::concat(&spans[input_output_types_pos..]).end;
}
arg_signature
}
}
}
pub fn parse_row_condition(working_set: &mut StateWorkingSet, spans: &[Span]) -> Expression {
let var_id = working_set.add_variable(b"$it".to_vec(), Span::concat(spans), Type::Any, false);
let expression = parse_math_expression(working_set, spans, Some(var_id));
let span = Span::concat(spans);
let block_id = match expression.expr {
Expr::Block(block_id) => block_id,
Expr::Closure(block_id) => block_id,
_ => {
// We have an expression, so let's convert this into a block.
let mut block = Block::new();
let mut pipeline = Pipeline::new();
pipeline.elements.push(PipelineElement {
pipe: None,
expr: expression,
redirection: None,
});
block.pipelines.push(pipeline);
block.signature.required_positional.push(PositionalArg {
name: "$it".into(),
desc: "row condition".into(),
shape: SyntaxShape::Any,
var_id: Some(var_id),
default_value: None,
});
compile_block(working_set, &mut block);
working_set.add_block(Arc::new(block))
}
};
Expression::new(working_set, Expr::RowCondition(block_id), span, Type::Bool)
}
pub fn parse_signature(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let bytes = working_set.get_span_contents(span);
let mut start = span.start;
let mut end = span.end;
let mut has_paren = false;
if bytes.starts_with(b"[") {
start += 1;
} else if bytes.starts_with(b"(") {
has_paren = true;
start += 1;
} else {
working_set.error(ParseError::Expected("[ or (", Span::new(start, start + 1)));
return garbage(working_set, span);
}
if (has_paren && bytes.ends_with(b")")) || (!has_paren && bytes.ends_with(b"]")) {
end -= 1;
} else {
working_set.error(ParseError::Unclosed("] or )".into(), Span::new(end, end)));
}
let sig = parse_signature_helper(working_set, Span::new(start, end));
Expression::new(working_set, Expr::Signature(sig), span, Type::Signature)
}
pub fn parse_signature_helper(working_set: &mut StateWorkingSet, span: Span) -> Box<Signature> {
enum ParseMode {
Arg,
AfterCommaArg,
Type,
AfterType,
DefaultValue,
}
#[derive(Debug)]
enum Arg {
Positional {
arg: PositionalArg,
required: bool,
type_annotated: bool,
},
RestPositional(PositionalArg),
Flag {
flag: Flag,
type_annotated: bool,
},
}
let source = working_set.get_span_contents(span);
let (output, err) = lex_signature(
source,
span.start,
&[b'\n', b'\r'],
&[b':', b'=', b','],
false,
);
if let Some(err) = err {
working_set.error(err);
}
let mut args: Vec<Arg> = vec![];
let mut parse_mode = ParseMode::Arg;
for (index, token) in output.iter().enumerate() {
let last_token = index == output.len() - 1;
match token {
Token {
contents: crate::TokenContents::Item | crate::TokenContents::AssignmentOperator,
span,
} => {
let span = *span;
let contents = working_set.get_span_contents(span).to_vec();
// The : symbol separates types
if contents == b":" {
match parse_mode {
ParseMode::Arg if last_token => working_set
.error(ParseError::Expected("type", Span::new(span.end, span.end))),
ParseMode::Arg => {
parse_mode = ParseMode::Type;
}
ParseMode::AfterCommaArg | ParseMode::AfterType => {
working_set.error(ParseError::Expected("parameter or flag", span));
}
ParseMode::Type | ParseMode::DefaultValue => {
// We're seeing two types for the same thing for some reason, error
working_set.error(ParseError::Expected("type", span));
}
}
}
// The = symbol separates a variable from its default value
else if contents == b"=" {
match parse_mode {
ParseMode::Arg | ParseMode::AfterType if last_token => working_set.error(
ParseError::Expected("default value", Span::new(span.end, span.end)),
),
ParseMode::Arg | ParseMode::AfterType => {
parse_mode = ParseMode::DefaultValue;
}
ParseMode::Type => {
working_set.error(ParseError::Expected("type", span));
}
ParseMode::AfterCommaArg => {
working_set.error(ParseError::Expected("parameter or flag", span));
}
ParseMode::DefaultValue => {
// We're seeing two default values for some reason, error
working_set.error(ParseError::Expected("default value", span));
}
}
}
// The , symbol separates params only
else if contents == b"," {
match parse_mode {
ParseMode::Arg | ParseMode::AfterType => {
parse_mode = ParseMode::AfterCommaArg
}
ParseMode::AfterCommaArg => {
working_set.error(ParseError::Expected("parameter or flag", span));
}
ParseMode::Type => {
working_set.error(ParseError::Expected("type", span));
}
ParseMode::DefaultValue => {
working_set.error(ParseError::Expected("default value", span));
}
}
} else {
match parse_mode {
ParseMode::Arg | ParseMode::AfterCommaArg | ParseMode::AfterType => {
// Long flag with optional short form following with no whitespace, e.g. --output, --age(-a)
if contents.starts_with(b"--") && contents.len() > 2 {
// Split the long flag from the short flag with the ( character as delimiter.
// The trailing ) is removed further down.
let flags: Vec<_> =
contents.split(|x| x == &b'(').map(|x| x.to_vec()).collect();
let long = String::from_utf8_lossy(&flags[0][2..]).to_string();
let mut variable_name = flags[0][2..].to_vec();
// Replace the '-' in a variable name with '_'
(0..variable_name.len()).for_each(|idx| {
if variable_name[idx] == b'-' {
variable_name[idx] = b'_';
}
});
if !is_variable(&variable_name) {
working_set.error(ParseError::Expected(
"valid variable name for this long flag",
span,
))
}
let var_id =
working_set.add_variable(variable_name, span, Type::Any, false);
// If there's no short flag, exit now. Otherwise, parse it.
if flags.len() == 1 {
args.push(Arg::Flag {
flag: Flag {
arg: None,
desc: String::new(),
long,
short: None,
required: false,
var_id: Some(var_id),
default_value: None,
},
type_annotated: false,
});
} else if flags.len() >= 3 {
working_set.error(ParseError::Expected(
"only one short flag alternative",
span,
));
} else {
let short_flag = &flags[1];
let short_flag = if !short_flag.starts_with(b"-")
|| !short_flag.ends_with(b")")
{
working_set.error(ParseError::Expected(
"short flag alternative for the long flag",
span,
));
short_flag
} else {
// Obtain the flag's name by removing the starting - and trailing )
&short_flag[1..(short_flag.len() - 1)]
};
// Note that it is currently possible to make a short flag with non-alphanumeric characters,
// like -).
let short_flag =
String::from_utf8_lossy(short_flag).to_string();
let chars: Vec<char> = short_flag.chars().collect();
let long = String::from_utf8_lossy(&flags[0][2..]).to_string();
let mut variable_name = flags[0][2..].to_vec();
(0..variable_name.len()).for_each(|idx| {
if variable_name[idx] == b'-' {
variable_name[idx] = b'_';
}
});
if !is_variable(&variable_name) {
working_set.error(ParseError::Expected(
"valid variable name for this short flag",
span,
))
}
let var_id = working_set.add_variable(
variable_name,
span,
Type::Any,
false,
);
if chars.len() == 1 {
args.push(Arg::Flag {
flag: Flag {
arg: None,
desc: String::new(),
long,
short: Some(chars[0]),
required: false,
var_id: Some(var_id),
default_value: None,
},
type_annotated: false,
});
} else {
working_set.error(ParseError::Expected("short flag", span));
}
}
parse_mode = ParseMode::Arg;
}
// Mandatory short flag, e.g. -e (must be one character)
else if contents.starts_with(b"-") && contents.len() > 1 {
let short_flag = &contents[1..];
let short_flag = String::from_utf8_lossy(short_flag).to_string();
let chars: Vec<char> = short_flag.chars().collect();
if chars.len() > 1 {
working_set.error(ParseError::Expected("short flag", span));
}
let mut encoded_var_name = vec![0u8; 4];
let len = chars[0].encode_utf8(&mut encoded_var_name).len();
let variable_name = encoded_var_name[0..len].to_vec();
if !is_variable(&variable_name) {
working_set.error(ParseError::Expected(
"valid variable name for this short flag",
span,
))
}
let var_id =
working_set.add_variable(variable_name, span, Type::Any, false);
args.push(Arg::Flag {
flag: Flag {
arg: None,
desc: String::new(),
long: String::new(),
short: Some(chars[0]),
required: false,
var_id: Some(var_id),
default_value: None,
},
type_annotated: false,
});
parse_mode = ParseMode::Arg;
}
// Short flag alias for long flag, e.g. --b (-a)
// This is the same as the short flag in --b(-a)
else if contents.starts_with(b"(-") {
if matches!(parse_mode, ParseMode::AfterCommaArg) {
working_set
.error(ParseError::Expected("parameter or flag", span));
}
let short_flag = &contents[2..];
let short_flag = if !short_flag.ends_with(b")") {
working_set.error(ParseError::Expected("short flag", span));
short_flag
} else {
&short_flag[..(short_flag.len() - 1)]
};
let short_flag = String::from_utf8_lossy(short_flag).to_string();
let chars: Vec<char> = short_flag.chars().collect();
if chars.len() == 1 {
match args.last_mut() {
Some(Arg::Flag { flag, .. }) => {
if flag.short.is_some() {
working_set.error(ParseError::Expected(
"one short flag",
span,
));
} else {
flag.short = Some(chars[0]);
}
}
_ => {
working_set
.error(ParseError::Expected("unknown flag", span));
}
}
} else {
working_set.error(ParseError::Expected("short flag", span));
}
}
// Positional arg, optional
else if contents.ends_with(b"?") {
let contents: Vec<_> = contents[..(contents.len() - 1)].into();
let name = String::from_utf8_lossy(&contents).to_string();
if !is_variable(&contents) {
working_set.error(ParseError::Expected(
"valid variable name for this optional parameter",
span,
))
}
let var_id =
working_set.add_variable(contents, span, Type::Any, false);
args.push(Arg::Positional {
arg: PositionalArg {
desc: String::new(),
name,
shape: SyntaxShape::Any,
var_id: Some(var_id),
default_value: None,
},
required: false,
type_annotated: false,
});
parse_mode = ParseMode::Arg;
}
// Rest param
else if let Some(contents) = contents.strip_prefix(b"...") {
let name = String::from_utf8_lossy(contents).to_string();
let contents_vec: Vec<u8> = contents.to_vec();
if !is_variable(&contents_vec) {
working_set.error(ParseError::Expected(
"valid variable name for this rest parameter",
span,
))
}
let var_id =
working_set.add_variable(contents_vec, span, Type::Any, false);
args.push(Arg::RestPositional(PositionalArg {
desc: String::new(),
name,
shape: SyntaxShape::Any,
var_id: Some(var_id),
default_value: None,
}));
parse_mode = ParseMode::Arg;
}
// Normal param
else {
let name = String::from_utf8_lossy(&contents).to_string();
let contents_vec = contents.to_vec();
if !is_variable(&contents_vec) {
working_set.error(ParseError::Expected(
"valid variable name for this parameter",
span,
))
}
let var_id =
working_set.add_variable(contents_vec, span, Type::Any, false);
// Positional arg, required
args.push(Arg::Positional {
arg: PositionalArg {
desc: String::new(),
name,
shape: SyntaxShape::Any,
var_id: Some(var_id),
default_value: None,
},
required: true,
type_annotated: false,
});
parse_mode = ParseMode::Arg;
}
}
ParseMode::Type => {
if let Some(last) = args.last_mut() {
let syntax_shape = parse_shape_name(
working_set,
&contents,
span,
ShapeDescriptorUse::Argument,
);
//TODO check if we're replacing a custom parameter already
match last {
Arg::Positional {
arg: PositionalArg { shape, var_id, .. },
required: _,
type_annotated,
} => {
working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type());
*shape = syntax_shape;
*type_annotated = true;
}
Arg::RestPositional(PositionalArg {
shape, var_id, ..
}) => {
working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), Type::List(Box::new(syntax_shape.to_type())));
*shape = syntax_shape;
}
Arg::Flag {
flag: Flag { arg, var_id, .. },
type_annotated,
} => {
working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type());
if syntax_shape == SyntaxShape::Boolean {
working_set.error(ParseError::LabeledError(
"Type annotations are not allowed for boolean switches.".to_string(),
"Remove the `: bool` type annotation.".to_string(),
span,
));
}
*arg = Some(syntax_shape);
*type_annotated = true;
}
}
}
parse_mode = ParseMode::AfterType;
}
ParseMode::DefaultValue => {
if let Some(last) = args.last_mut() {
let expression = parse_value(working_set, span, &SyntaxShape::Any);
//TODO check if we're replacing a custom parameter already
match last {
Arg::Positional {
arg:
PositionalArg {
shape,
var_id,
default_value,
..
},
required,
type_annotated,
} => {
let var_id = var_id.expect("internal error: all custom parameters must have var_ids");
let var_type = &working_set.get_variable(var_id).ty;
match var_type {
Type::Any => {
if !*type_annotated {
working_set.set_variable_type(
var_id,
expression.ty.clone(),
);
}
}
_ => {
if !type_compatible(var_type, &expression.ty) {
working_set.error(
ParseError::AssignmentMismatch(
"Default value wrong type".into(),
format!(
"expected default value to be `{var_type}`"
),
expression.span,
),
)
}
}
}
*default_value = if let Ok(constant) =
eval_constant(working_set, &expression)
{
Some(constant)
} else {
working_set.error(ParseError::NonConstantDefaultValue(
expression.span,
));
None
};
if !*type_annotated {
*shape = expression.ty.to_shape();
}
*required = false;
}
Arg::RestPositional(..) => {
working_set.error(ParseError::AssignmentMismatch(
"Rest parameter was given a default value".into(),
"can't have default value".into(),
expression.span,
))
}
Arg::Flag {
flag:
Flag {
arg,
var_id,
default_value,
..
},
type_annotated,
} => {
let expression_span = expression.span;
*default_value = if let Ok(value) =
eval_constant(working_set, &expression)
{
Some(value)
} else {
working_set.error(ParseError::NonConstantDefaultValue(
expression_span,
));
None
};
let var_id = var_id.expect("internal error: all custom parameters must have var_ids");
let var_type = &working_set.get_variable(var_id).ty;
let expression_ty = expression.ty.clone();
// Flags with no TypeMode are just present/not-present switches
// in the case, `var_type` is any.
match var_type {
Type::Any => {
if !*type_annotated {
*arg = Some(expression_ty.to_shape());
working_set
.set_variable_type(var_id, expression_ty);
}
}
t => {
if !type_compatible(t, &expression_ty) {
working_set.error(
ParseError::AssignmentMismatch(
"Default value is the wrong type"
.into(),
format!(
"expected default value to be `{t}`"
),
expression_span,
),
)
}
}
}
}
}
}
parse_mode = ParseMode::Arg;
}
}
}
}
Token {
contents: crate::TokenContents::Comment,
span,
} => {
let contents = working_set.get_span_contents(Span::new(span.start + 1, span.end));
let mut contents = String::from_utf8_lossy(contents).to_string();
contents = contents.trim().into();
if let Some(last) = args.last_mut() {
match last {
Arg::Flag { flag, .. } => {
if !flag.desc.is_empty() {
flag.desc.push('\n');
}
flag.desc.push_str(&contents);
}
Arg::Positional {
arg: positional, ..
} => {
if !positional.desc.is_empty() {
positional.desc.push('\n');
}
positional.desc.push_str(&contents);
}
Arg::RestPositional(positional) => {
if !positional.desc.is_empty() {
positional.desc.push('\n');
}
positional.desc.push_str(&contents);
}
}
}
}
_ => {}
}
}
let mut sig = Signature::new(String::new());
for arg in args {
match arg {
Arg::Positional {
arg: positional,
required,
..
} => {
if required {
if !sig.optional_positional.is_empty() {
working_set.error(ParseError::RequiredAfterOptional(
positional.name.clone(),
span,
))
}
sig.required_positional.push(positional)
} else {
sig.optional_positional.push(positional)
}
}
Arg::Flag { flag, .. } => sig.named.push(flag),
Arg::RestPositional(positional) => {
if positional.name.is_empty() {
working_set.error(ParseError::RestNeedsName(span))
} else if sig.rest_positional.is_none() {
sig.rest_positional = Some(PositionalArg {
name: positional.name,
..positional
})
} else {
// Too many rest params
working_set.error(ParseError::MultipleRestParams(span))
}
}
}
}
Box::new(sig)
}
pub fn parse_list_expression(
working_set: &mut StateWorkingSet,
span: Span,
element_shape: &SyntaxShape,
) -> Expression {
let bytes = working_set.get_span_contents(span);
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"[") {
start += 1;
}
if bytes.ends_with(b"]") {
end -= 1;
} else {
working_set.error(ParseError::Unclosed("]".into(), Span::new(end, end)));
}
let inner_span = Span::new(start, end);
let source = working_set.get_span_contents(inner_span);
let (output, err) = lex(source, inner_span.start, &[b'\n', b'\r', b','], &[], true);
if let Some(err) = err {
working_set.error(err)
}
let (mut output, err) = lite_parse(&output);
if let Some(err) = err {
working_set.error(err)
}
let mut args = vec![];
let mut contained_type: Option<Type> = None;
if !output.block.is_empty() {
for mut command in output.block.remove(0).commands {
let mut spans_idx = 0;
while spans_idx < command.parts.len() {
let curr_span = command.parts[spans_idx];
let curr_tok = working_set.get_span_contents(curr_span);
let (arg, ty) = if curr_tok.starts_with(b"...")
&& curr_tok.len() > 3
&& (curr_tok[3] == b'$' || curr_tok[3] == b'[' || curr_tok[3] == b'(')
{
// Parse the spread operator
// Remove "..." before parsing argument to spread operator
command.parts[spans_idx] = Span::new(curr_span.start + 3, curr_span.end);
let spread_arg = parse_multispan_value(
working_set,
&command.parts,
&mut spans_idx,
&SyntaxShape::List(Box::new(element_shape.clone())),
);
let elem_ty = match &spread_arg.ty {
Type::List(elem_ty) => *elem_ty.clone(),
_ => Type::Any,
};
let span = Span::new(curr_span.start, curr_span.start + 3);
(ListItem::Spread(span, spread_arg), elem_ty)
} else {
let arg = parse_multispan_value(
working_set,
&command.parts,
&mut spans_idx,
element_shape,
);
let ty = arg.ty.clone();
(ListItem::Item(arg), ty)
};
if let Some(ref ctype) = contained_type {
if *ctype != ty {
contained_type = Some(Type::Any);
}
} else {
contained_type = Some(ty);
}
args.push(arg);
spans_idx += 1;
}
}
}
Expression::new(
working_set,
Expr::List(args),
span,
Type::List(Box::new(if let Some(ty) = contained_type {
ty
} else {
Type::Any
})),
)
}
fn parse_table_row(
working_set: &mut StateWorkingSet,
span: Span,
) -> Result<(Vec<Expression>, Span), Span> {
let list = parse_list_expression(working_set, span, &SyntaxShape::Any);
let Expression {
expr: Expr::List(list),
span,
..
} = list
else {
unreachable!("the item must be a list")
};
list.into_iter()
.map(|item| match item {
ListItem::Item(expr) => Ok(expr),
ListItem::Spread(_, spread) => Err(spread.span),
})
.collect::<Result<_, _>>()
.map(|exprs| (exprs, span))
}
fn parse_table_expression(
working_set: &mut StateWorkingSet,
span: Span,
list_element_shape: &SyntaxShape,
) -> Expression {
let bytes = working_set.get_span_contents(span);
let inner_span = {
let start = if bytes.starts_with(b"[") {
span.start + 1
} else {
span.start
};
let end = if bytes.ends_with(b"]") {
span.end - 1
} else {
let end = span.end;
working_set.error(ParseError::Unclosed("]".into(), Span::new(end, end)));
span.end
};
Span::new(start, end)
};
let source = working_set.get_span_contents(inner_span);
let (tokens, err) = lex(source, inner_span.start, &[b'\n', b'\r', b','], &[], true);
if let Some(err) = err {
working_set.error(err);
}
// Check that we have all arguments first, before trying to parse the first
// in order to avoid exponential parsing time
let [first, second, rest @ ..] = &tokens[..] else {
return parse_list_expression(working_set, span, list_element_shape);
};
if !working_set.get_span_contents(first.span).starts_with(b"[")
|| second.contents != TokenContents::Semicolon
|| rest.is_empty()
{
return parse_list_expression(working_set, span, list_element_shape);
};
let head = parse_table_row(working_set, first.span);
let errors = working_set.parse_errors.len();
let (head, rows) = match head {
Ok((head, _)) => {
let rows = rest
.iter()
.filter_map(|it| {
use std::cmp::Ordering;
match working_set.get_span_contents(it.span) {
b"," => None,
text if !text.starts_with(b"[") => {
let err = ParseError::LabeledErrorWithHelp {
error: String::from("Table item not list"),
label: String::from("not a list"),
span: it.span,
help: String::from("All table items must be lists"),
};
working_set.error(err);
None
}
_ => match parse_table_row(working_set, it.span) {
Ok((list, span)) => {
match list.len().cmp(&head.len()) {
Ordering::Less => {
let err = ParseError::MissingColumns(head.len(), span);
working_set.error(err);
}
Ordering::Greater => {
let span = {
let start = list[head.len()].span.start;
let end = span.end;
Span::new(start, end)
};
let err = ParseError::ExtraColumns(head.len(), span);
working_set.error(err);
}
Ordering::Equal => {}
}
Some(list)
}
Err(span) => {
let err = ParseError::LabeledError(
String::from("Cannot spread in a table row"),
String::from("invalid spread here"),
span,
);
working_set.error(err);
None
}
},
}
})
.collect();
(head, rows)
}
Err(span) => {
let err = ParseError::LabeledError(
String::from("Cannot spread in a table row"),
String::from("invalid spread here"),
span,
);
working_set.error(err);
(Vec::new(), Vec::new())
}
};
let ty = if working_set.parse_errors.len() == errors {
let (ty, errs) = table_type(&head, &rows);
working_set.parse_errors.extend(errs);
ty
} else {
Type::table()
};
let table = Table {
columns: head.into(),
rows: rows.into_iter().map(Into::into).collect(),
};
Expression::new(working_set, Expr::Table(table), span, ty)
}
fn table_type(head: &[Expression], rows: &[Vec<Expression>]) -> (Type, Vec<ParseError>) {
let mut errors = vec![];
let mut rows = rows.to_vec();
let mut mk_ty = || -> Type {
rows.iter_mut()
.map(|row| row.pop().map(|x| x.ty).unwrap_or_default())
.reduce(|acc, ty| -> Type {
if type_compatible(&acc, &ty) {
ty
} else {
Type::Any
}
})
.unwrap_or_default()
};
let mk_error = |span| ParseError::LabeledErrorWithHelp {
error: "Table column name not string".into(),
label: "must be a string".into(),
help: "Table column names should be able to be converted into strings".into(),
span,
};
let mut ty = head
.iter()
.rev()
.map(|expr| {
if let Some(str) = expr.as_string() {
str
} else {
errors.push(mk_error(expr.span));
String::from("{ column }")
}
})
.map(|title| (title, mk_ty()))
.collect_vec();
ty.reverse();
(Type::Table(ty.into()), errors)
}
pub fn parse_block_expression(working_set: &mut StateWorkingSet, span: Span) -> Expression {
trace!("parsing: block expression");
let bytes = working_set.get_span_contents(span);
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"{") {
start += 1;
} else {
working_set.error(ParseError::Expected("block", span));
return garbage(working_set, span);
}
if bytes.ends_with(b"}") {
end -= 1;
} else {
working_set.error(ParseError::Unclosed("}".into(), Span::new(end, end)));
}
let inner_span = Span::new(start, end);
let source = working_set.get_span_contents(inner_span);
let (output, err) = lex(source, start, &[], &[], false);
if let Some(err) = err {
working_set.error(err);
}
working_set.enter_scope();
// Check to see if we have parameters
let (signature, amt_to_skip): (Option<(Box<Signature>, Span)>, usize) = match output.first() {
Some(Token {
contents: TokenContents::Pipe,
span,
}) => {
working_set.error(ParseError::Expected("block but found closure", *span));
(None, 0)
}
_ => (None, 0),
};
let mut output = parse_block(working_set, &output[amt_to_skip..], span, false, false);
if let Some(signature) = signature {
output.signature = signature.0;
}
output.span = Some(span);
working_set.exit_scope();
let block_id = working_set.add_block(Arc::new(output));
Expression::new(working_set, Expr::Block(block_id), span, Type::Block)
}
pub fn parse_match_block_expression(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let bytes = working_set.get_span_contents(span);
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"{") {
start += 1;
} else {
working_set.error(ParseError::Expected("closure", span));
return garbage(working_set, span);
}
if bytes.ends_with(b"}") {
end -= 1;
} else {
working_set.error(ParseError::Unclosed("}".into(), Span::new(end, end)));
}
let inner_span = Span::new(start, end);
let source = working_set.get_span_contents(inner_span);
let (output, err) = lex(source, start, &[b' ', b'\r', b'\n', b',', b'|'], &[], true);
if let Some(err) = err {
working_set.error(err);
}
let mut position = 0;
let mut output_matches = vec![];
while position < output.len() {
// Each match gets its own scope
working_set.enter_scope();
// First parse the pattern
let mut pattern = parse_pattern(working_set, output[position].span);
position += 1;
if position >= output.len() {
working_set.error(ParseError::Mismatch(
"=>".into(),
"end of input".into(),
Span::new(output[position - 1].span.end, output[position - 1].span.end),
));
working_set.exit_scope();
break;
}
let mut connector = working_set.get_span_contents(output[position].span);
// Multiple patterns connected by '|'
if connector == b"|" && position < output.len() {
let mut or_pattern = vec![pattern];
while connector == b"|" && position < output.len() {
connector = b"";
position += 1;
if position >= output.len() {
working_set.error(ParseError::Mismatch(
"pattern".into(),
"end of input".into(),
Span::new(output[position - 1].span.end, output[position - 1].span.end),
));
working_set.exit_scope();
break;
}
let pattern = parse_pattern(working_set, output[position].span);
or_pattern.push(pattern);
position += 1;
if position >= output.len() {
working_set.error(ParseError::Mismatch(
"=>".into(),
"end of input".into(),
Span::new(output[position - 1].span.end, output[position - 1].span.end),
));
working_set.exit_scope();
break;
} else {
connector = working_set.get_span_contents(output[position].span);
}
}
let start = or_pattern
.first()
.expect("internal error: unexpected state of or-pattern")
.span
.start;
let end = or_pattern
.last()
.expect("internal error: unexpected state of or-pattern")
.span
.end;
pattern = MatchPattern {
pattern: Pattern::Or(or_pattern),
guard: None,
span: Span::new(start, end),
}
// A match guard
} else if connector == b"if" {
let if_end = {
let end = output[position].span.end;
Span::new(end, end)
};
position += 1;
let mk_err = || ParseError::LabeledErrorWithHelp {
error: "Match guard without an expression".into(),
label: "expected an expression".into(),
help: "The `if` keyword must be followed with an expression".into(),
span: if_end,
};
if output.get(position).is_none() {
working_set.error(mk_err());
return garbage(working_set, span);
};
let (tokens, found) = if let Some((pos, _)) = output[position..]
.iter()
.find_position(|t| working_set.get_span_contents(t.span) == b"=>")
{
if position + pos == position {
working_set.error(mk_err());
return garbage(working_set, span);
}
(&output[position..position + pos], true)
} else {
(&output[position..], false)
};
let mut start = 0;
let guard = parse_multispan_value(
working_set,
&tokens.iter().map(|tok| tok.span).collect_vec(),
&mut start,
&SyntaxShape::MathExpression,
);
pattern.guard = Some(Box::new(guard));
position += if found { start + 1 } else { start };
connector = working_set.get_span_contents(output[position].span);
}
// Then the `=>` arrow
if connector != b"=>" {
working_set.error(ParseError::Mismatch(
"=>".into(),
"end of input".into(),
Span::new(output[position - 1].span.end, output[position - 1].span.end),
));
} else {
position += 1;
}
// Finally, the value/expression/block that we will run to produce the result
if position >= output.len() {
working_set.error(ParseError::Mismatch(
"match result".into(),
"end of input".into(),
Span::new(output[position - 1].span.end, output[position - 1].span.end),
));
working_set.exit_scope();
break;
}
let result = parse_multispan_value(
working_set,
&[output[position].span],
&mut 0,
&SyntaxShape::OneOf(vec![SyntaxShape::Block, SyntaxShape::Expression]),
);
position += 1;
working_set.exit_scope();
output_matches.push((pattern, result));
}
Expression::new(
working_set,
Expr::MatchBlock(output_matches),
span,
Type::Any,
)
}
pub fn parse_closure_expression(
working_set: &mut StateWorkingSet,
shape: &SyntaxShape,
span: Span,
) -> Expression {
trace!("parsing: closure expression");
let bytes = working_set.get_span_contents(span);
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"{") {
start += 1;
} else {
working_set.error(ParseError::Expected("closure", span));
return garbage(working_set, span);
}
if bytes.ends_with(b"}") {
end -= 1;
} else {
working_set.error(ParseError::Unclosed("}".into(), Span::new(end, end)));
}
let inner_span = Span::new(start, end);
let source = working_set.get_span_contents(inner_span);
let (output, err) = lex(source, start, &[], &[], false);
if let Some(err) = err {
working_set.error(err);
}
working_set.enter_scope();
// Check to see if we have parameters
let (signature, amt_to_skip): (Option<(Box<Signature>, Span)>, usize) = match output.first() {
Some(Token {
contents: TokenContents::Pipe,
span,
}) => {
// We've found a parameter list
let start_point = span.start;
let mut token_iter = output.iter().enumerate().skip(1);
let mut end_span = None;
let mut amt_to_skip = 1;
for token in &mut token_iter {
if let Token {
contents: TokenContents::Pipe,
span,
} = token.1
{
end_span = Some(span);
amt_to_skip += token.0;
break;
}
}
let end_point = if let Some(span) = end_span {
span.end
} else {
working_set.error(ParseError::Unclosed("|".into(), Span::new(end, end)));
end
};
let signature_span = Span::new(start_point, end_point);
let signature = parse_signature_helper(working_set, signature_span);
(Some((signature, signature_span)), amt_to_skip)
}
Some(Token {
contents: TokenContents::PipePipe,
span,
}) => (
Some((Box::new(Signature::new("closure".to_string())), *span)),
1,
),
_ => (None, 0),
};
// TODO: Finish this
if let SyntaxShape::Closure(Some(v)) = shape {
if let Some((sig, sig_span)) = &signature {
if sig.num_positionals() > v.len() {
working_set.error(ParseError::ExpectedWithStringMsg(
format!(
"{} closure parameter{}",
v.len(),
if v.len() > 1 { "s" } else { "" }
),
*sig_span,
));
}
for (expected, PositionalArg { name, shape, .. }) in
v.iter().zip(sig.required_positional.iter())
{
if expected != shape && *shape != SyntaxShape::Any {
working_set.error(ParseError::ParameterMismatchType(
name.to_owned(),
expected.to_string(),
shape.to_string(),
*sig_span,
));
}
}
}
}
let mut output = parse_block(working_set, &output[amt_to_skip..], span, false, false);
if let Some(signature) = signature {
output.signature = signature.0;
}
output.span = Some(span);
working_set.exit_scope();
let block_id = working_set.add_block(Arc::new(output));
Expression::new(working_set, Expr::Closure(block_id), span, Type::Closure)
}
pub fn parse_value(
working_set: &mut StateWorkingSet,
span: Span,
shape: &SyntaxShape,
) -> Expression {
trace!("parsing: value: {}", shape);
let bytes = working_set.get_span_contents(span);
if bytes.is_empty() {
working_set.error(ParseError::IncompleteParser(span));
return garbage(working_set, span);
}
// Check for reserved keyword values
match bytes {
b"true" => {
if matches!(shape, SyntaxShape::Boolean) || matches!(shape, SyntaxShape::Any) {
return Expression::new(working_set, Expr::Bool(true), span, Type::Bool);
} else {
working_set.error(ParseError::Expected("non-boolean value", span));
return Expression::garbage(working_set, span);
}
}
b"false" => {
if matches!(shape, SyntaxShape::Boolean) || matches!(shape, SyntaxShape::Any) {
return Expression::new(working_set, Expr::Bool(false), span, Type::Bool);
} else {
working_set.error(ParseError::Expected("non-boolean value", span));
return Expression::garbage(working_set, span);
}
}
b"null" => {
return Expression::new(working_set, Expr::Nothing, span, Type::Nothing);
}
b"-inf" | b"inf" | b"NaN" => {
return parse_float(working_set, span);
}
_ => {}
}
match bytes[0] {
b'$' => return parse_dollar_expr(working_set, span),
b'(' => return parse_paren_expr(working_set, span, shape),
b'{' => return parse_brace_expr(working_set, span, shape),
b'[' => match shape {
SyntaxShape::Any
| SyntaxShape::List(_)
| SyntaxShape::Table(_)
| SyntaxShape::Signature
| SyntaxShape::Filepath
| SyntaxShape::String
| SyntaxShape::GlobPattern
| SyntaxShape::ExternalArgument => {}
SyntaxShape::OneOf(possible_shapes) => {
if !possible_shapes
.iter()
.any(|s| matches!(s, SyntaxShape::List(_)))
{
working_set.error(ParseError::Expected("non-[] value", span));
return Expression::garbage(working_set, span);
}
}
_ => {
working_set.error(ParseError::Expected("non-[] value", span));
return Expression::garbage(working_set, span);
}
},
b'r' if bytes.len() > 1 && bytes[1] == b'#' => {
return parse_raw_string(working_set, span);
}
_ => {}
}
match shape {
SyntaxShape::CompleterWrapper(shape, custom_completion) => {
let mut expression = parse_value(working_set, span, shape);
expression.custom_completion = Some(*custom_completion);
expression
}
SyntaxShape::Number => parse_number(working_set, span),
SyntaxShape::Float => parse_float(working_set, span),
SyntaxShape::Int => parse_int(working_set, span),
SyntaxShape::Duration => parse_duration(working_set, span),
SyntaxShape::DateTime => parse_datetime(working_set, span),
SyntaxShape::Filesize => parse_filesize(working_set, span),
SyntaxShape::Range => {
parse_range(working_set, span).unwrap_or_else(|| garbage(working_set, span))
}
SyntaxShape::Filepath => parse_filepath(working_set, span),
SyntaxShape::Directory => parse_directory(working_set, span),
SyntaxShape::GlobPattern => parse_glob_pattern(working_set, span),
SyntaxShape::String => parse_string(working_set, span),
SyntaxShape::Binary => parse_binary(working_set, span),
SyntaxShape::Signature => {
if bytes.starts_with(b"[") {
parse_signature(working_set, span)
} else {
working_set.error(ParseError::Expected("signature", span));
Expression::garbage(working_set, span)
}
}
SyntaxShape::List(elem) => {
if bytes.starts_with(b"[") {
parse_table_expression(working_set, span, elem)
} else {
working_set.error(ParseError::Expected("list", span));
Expression::garbage(working_set, span)
}
}
SyntaxShape::Table(_) => {
if bytes.starts_with(b"[") {
parse_table_expression(working_set, span, &SyntaxShape::Any)
} else {
working_set.error(ParseError::Expected("table", span));
Expression::garbage(working_set, span)
}
}
SyntaxShape::CellPath => parse_simple_cell_path(working_set, span),
SyntaxShape::Boolean => {
// Redundant, though we catch bad boolean parses here
if bytes == b"true" || bytes == b"false" {
Expression::new(working_set, Expr::Bool(true), span, Type::Bool)
} else {
working_set.error(ParseError::Expected("bool", span));
Expression::garbage(working_set, span)
}
}
// Be sure to return ParseError::Expected(..) if invoked for one of these shapes, but lex
// stream doesn't start with '{'} -- parsing in SyntaxShape::Any arm depends on this error variant.
SyntaxShape::Block | SyntaxShape::Closure(..) | SyntaxShape::Record(_) => {
working_set.error(ParseError::Expected("block, closure or record", span));
Expression::garbage(working_set, span)
}
SyntaxShape::ExternalArgument => parse_regular_external_arg(working_set, span),
SyntaxShape::OneOf(possible_shapes) => {
parse_oneof(working_set, &[span], &mut 0, possible_shapes, false)
}
SyntaxShape::Any => {
if bytes.starts_with(b"[") {
//parse_value(working_set, span, &SyntaxShape::Table)
parse_full_cell_path(working_set, None, span)
} else {
let shapes = [
SyntaxShape::Binary,
SyntaxShape::Filesize,
SyntaxShape::Duration,
SyntaxShape::Range,
SyntaxShape::DateTime,
SyntaxShape::Int,
SyntaxShape::Number,
SyntaxShape::String,
];
for shape in shapes.iter() {
let starting_error_count = working_set.parse_errors.len();
let s = parse_value(working_set, span, shape);
if starting_error_count == working_set.parse_errors.len() {
return s;
} else {
match working_set.parse_errors.get(starting_error_count) {
Some(
ParseError::Expected(_, _)
| ParseError::ExpectedWithStringMsg(_, _),
) => {
working_set.parse_errors.truncate(starting_error_count);
continue;
}
_ => {
return s;
}
}
}
}
working_set.error(ParseError::Expected("any shape", span));
garbage(working_set, span)
}
}
x => {
working_set.error(ParseError::ExpectedWithStringMsg(
x.to_type().to_string(),
span,
));
garbage(working_set, span)
}
}
}
pub fn parse_assignment_operator(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let contents = working_set.get_span_contents(span);
let operator = match contents {
b"=" => Operator::Assignment(Assignment::Assign),
b"+=" => Operator::Assignment(Assignment::PlusAssign),
b"++=" => Operator::Assignment(Assignment::ConcatAssign),
b"-=" => Operator::Assignment(Assignment::MinusAssign),
b"*=" => Operator::Assignment(Assignment::MultiplyAssign),
b"/=" => Operator::Assignment(Assignment::DivideAssign),
_ => {
working_set.error(ParseError::Expected("assignment operator", span));
return garbage(working_set, span);
}
};
Expression::new(working_set, Expr::Operator(operator), span, Type::Any)
}
pub fn parse_assignment_expression(
working_set: &mut StateWorkingSet,
spans: &[Span],
) -> Expression {
trace!("parsing: assignment expression");
let expr_span = Span::concat(spans);
// Assignment always has the most precedence, and its right-hand side can be a pipeline
let Some(op_index) = spans
.iter()
.position(|span| is_assignment_operator(working_set.get_span_contents(*span)))
else {
working_set.error(ParseError::Expected("assignment expression", expr_span));
return garbage(working_set, expr_span);
};
let lhs_spans = &spans[0..op_index];
let op_span = spans[op_index];
let rhs_spans = &spans[(op_index + 1)..];
if lhs_spans.is_empty() {
working_set.error(ParseError::Expected(
"left hand side of assignment",
op_span,
));
return garbage(working_set, expr_span);
}
if rhs_spans.is_empty() {
working_set.error(ParseError::Expected(
"right hand side of assignment",
op_span,
));
return garbage(working_set, expr_span);
}
// Parse the lhs and operator as usual for a math expression
let mut lhs = parse_expression(working_set, lhs_spans);
// make sure that lhs is a mutable variable.
match &lhs.expr {
Expr::FullCellPath(p) => {
if let Expr::Var(var_id) = p.head.expr {
if var_id != nu_protocol::ENV_VARIABLE_ID
&& !working_set.get_variable(var_id).mutable
{
working_set.error(ParseError::AssignmentRequiresMutableVar(lhs.span))
}
}
}
_ => working_set.error(ParseError::AssignmentRequiresVar(lhs.span)),
}
let mut operator = parse_assignment_operator(working_set, op_span);
// Re-parse the right-hand side as a subexpression
let rhs_span = Span::concat(rhs_spans);
let (rhs_tokens, rhs_error) = lex(
working_set.get_span_contents(rhs_span),
rhs_span.start,
&[],
&[],
true,
);
working_set.parse_errors.extend(rhs_error);
trace!("parsing: assignment right-hand side subexpression");
let rhs_block = parse_block(working_set, &rhs_tokens, rhs_span, false, true);
let rhs_ty = rhs_block.output_type();
// TEMP: double-check that if the RHS block starts with an external call, it must start with a
// caret. This is to mitigate the change in assignment parsing introduced in 0.97.0 which could
// result in unintentional execution of commands.
if let Some(Expr::ExternalCall(head, ..)) = rhs_block
.pipelines
.first()
.and_then(|pipeline| pipeline.elements.first())
.map(|element| &element.expr.expr)
{
let contents = working_set.get_span_contents(Span {
start: head.span.start - 1,
end: head.span.end,
});
if !contents.starts_with(b"^") {
working_set.parse_errors.push(ParseError::LabeledErrorWithHelp {
error: "External command calls must be explicit in assignments".into(),
label: "add a caret (^) before the command name if you intended to run and capture its output".into(),
help: "the parsing of assignments was changed in 0.97.0, and this would have previously been treated as a string. Alternatively, quote the string with single or double quotes to avoid it being interpreted as a command name. This restriction may be removed in a future release.".into(),
span: head.span,
});
}
}
let rhs_block_id = working_set.add_block(Arc::new(rhs_block));
let mut rhs = Expression::new(
working_set,
Expr::Subexpression(rhs_block_id),
rhs_span,
rhs_ty,
);
let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut operator, &mut rhs);
if let Some(err) = err {
working_set.parse_errors.push(err);
}
Expression::new(
working_set,
Expr::BinaryOp(Box::new(lhs), Box::new(operator), Box::new(rhs)),
expr_span,
result_ty,
)
}
pub fn parse_operator(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let contents = working_set.get_span_contents(span);
let operator = match contents {
b"==" => Operator::Comparison(Comparison::Equal),
b"!=" => Operator::Comparison(Comparison::NotEqual),
b"<" => Operator::Comparison(Comparison::LessThan),
b"<=" => Operator::Comparison(Comparison::LessThanOrEqual),
b">" => Operator::Comparison(Comparison::GreaterThan),
b">=" => Operator::Comparison(Comparison::GreaterThanOrEqual),
b"=~" | b"like" => Operator::Comparison(Comparison::RegexMatch),
b"!~" | b"not-like" => Operator::Comparison(Comparison::NotRegexMatch),
b"+" => Operator::Math(Math::Plus),
b"++" => Operator::Math(Math::Concat),
b"-" => Operator::Math(Math::Minus),
b"*" => Operator::Math(Math::Multiply),
b"/" => Operator::Math(Math::Divide),
b"//" => Operator::Math(Math::FloorDivision),
b"in" => Operator::Comparison(Comparison::In),
b"not-in" => Operator::Comparison(Comparison::NotIn),
b"mod" => Operator::Math(Math::Modulo),
b"bit-or" => Operator::Bits(Bits::BitOr),
b"bit-xor" => Operator::Bits(Bits::BitXor),
b"bit-and" => Operator::Bits(Bits::BitAnd),
b"bit-shl" => Operator::Bits(Bits::ShiftLeft),
b"bit-shr" => Operator::Bits(Bits::ShiftRight),
b"starts-with" => Operator::Comparison(Comparison::StartsWith),
b"ends-with" => Operator::Comparison(Comparison::EndsWith),
b"and" => Operator::Boolean(Boolean::And),
b"or" => Operator::Boolean(Boolean::Or),
b"xor" => Operator::Boolean(Boolean::Xor),
b"**" => Operator::Math(Math::Pow),
// WARNING: not actual operators below! Error handling only
pow @ (b"^" | b"pow") => {
working_set.error(ParseError::UnknownOperator(
match pow {
b"^" => "^",
b"pow" => "pow",
_ => unreachable!(),
},
"Use '**' for exponentiation or 'bit-xor' for bitwise XOR.",
span,
));
return garbage(working_set, span);
}
equality @ (b"is" | b"===") => {
working_set.error(ParseError::UnknownOperator(
match equality {
b"is" => "is",
b"===" => "===",
_ => unreachable!(),
},
"Did you mean '=='?",
span,
));
return garbage(working_set, span);
}
b"contains" => {
working_set.error(ParseError::UnknownOperator(
"contains",
"Did you mean '$string =~ $pattern' or '$element in $container'?",
span,
));
return garbage(working_set, span);
}
b"%" => {
working_set.error(ParseError::UnknownOperator(
"%",
"Did you mean 'mod'?",
span,
));
return garbage(working_set, span);
}
b"&" => {
working_set.error(ParseError::UnknownOperator(
"&",
"Did you mean 'bit-and'?",
span,
));
return garbage(working_set, span);
}
b"<<" => {
working_set.error(ParseError::UnknownOperator(
"<<",
"Did you mean 'bit-shl'?",
span,
));
return garbage(working_set, span);
}
b">>" => {
working_set.error(ParseError::UnknownOperator(
">>",
"Did you mean 'bit-shr'?",
span,
));
return garbage(working_set, span);
}
bits @ (b"bits-and" | b"bits-xor" | b"bits-or" | b"bits-shl" | b"bits-shr") => {
working_set.error(ParseError::UnknownOperator(
match bits {
b"bits-and" => "bits-and",
b"bits-xor" => "bits-xor",
b"bits-or" => "bits-or",
b"bits-shl" => "bits-shl",
b"bits-shr" => "bits-shr",
_ => unreachable!(),
},
match bits {
b"bits-and" => "Did you mean 'bit-and'?",
b"bits-xor" => "Did you mean 'bit-xor'?",
b"bits-or" => "Did you mean 'bit-or'?",
b"bits-shl" => "Did you mean 'bit-shl'?",
b"bits-shr" => "Did you mean 'bit-shr'?",
_ => unreachable!(),
},
span,
));
return garbage(working_set, span);
}
op if is_assignment_operator(op) => {
working_set.error(ParseError::Expected("a non-assignment operator", span));
return garbage(working_set, span);
}
_ => {
working_set.error(ParseError::Expected("operator", span));
return garbage(working_set, span);
}
};
Expression::new(working_set, Expr::Operator(operator), span, Type::Any)
}
pub fn parse_math_expression(
working_set: &mut StateWorkingSet,
spans: &[Span],
lhs_row_var_id: Option<VarId>,
) -> Expression {
trace!("parsing: math expression");
// As the expr_stack grows, we increase the required precedence to grow larger
// If, at any time, the operator we're looking at is the same or lower precedence
// of what is in the expression stack, we collapse the expression stack.
//
// This leads to an expression stack that grows under increasing precedence and collapses
// under decreasing/sustained precedence
//
// The end result is a stack that we can fold into binary operations as right associations
// safely.
let mut expr_stack: Vec<Expression> = vec![];
let mut idx = 0;
let mut last_prec = u8::MAX;
let first_span = working_set.get_span_contents(spans[0]);
let mut not_start_spans = vec![];
if first_span == b"if" || first_span == b"match" {
// If expression
if spans.len() > 1 {
return parse_call(working_set, spans, spans[0]);
} else {
working_set.error(ParseError::Expected(
"expression",
Span::new(spans[0].end, spans[0].end),
));
return garbage(working_set, spans[0]);
}
} else if first_span == b"not" {
not_start_spans.push(spans[idx].start);
idx += 1;
while idx < spans.len() {
let next_value = working_set.get_span_contents(spans[idx]);
if next_value == b"not" {
not_start_spans.push(spans[idx].start);
idx += 1;
} else {
break;
}
}
if idx == spans.len() {
working_set.error(ParseError::Expected(
"expression",
Span::new(spans[idx - 1].end, spans[idx - 1].end),
));
return garbage(working_set, spans[idx - 1]);
}
}
let mut lhs = parse_value(working_set, spans[idx], &SyntaxShape::Any);
for not_start_span in not_start_spans.iter().rev() {
// lhs = Expression {
// expr: Expr::UnaryNot(Box::new(lhs)),
// span: Span::new(*not_start_span, spans[idx].end),
// ty: Type::Bool,
// custom_completion: None,
// };
lhs = Expression::new(
working_set,
Expr::UnaryNot(Box::new(lhs)),
Span::new(*not_start_span, spans[idx].end),
Type::Bool,
);
}
not_start_spans.clear();
idx += 1;
if idx >= spans.len() {
// We already found the one part of our expression, so let's expand
if let Some(row_var_id) = lhs_row_var_id {
expand_to_cell_path(working_set, &mut lhs, row_var_id);
}
}
expr_stack.push(lhs);
while idx < spans.len() {
let op = parse_operator(working_set, spans[idx]);
let op_prec = op.precedence();
idx += 1;
if idx == spans.len() {
// Handle broken math expr `1 +` etc
working_set.error(ParseError::IncompleteMathExpression(spans[idx - 1]));
expr_stack.push(Expression::garbage(working_set, spans[idx - 1]));
expr_stack.push(Expression::garbage(working_set, spans[idx - 1]));
break;
}
let content = working_set.get_span_contents(spans[idx]);
// allow `if` to be a special value for assignment.
if content == b"if" || content == b"match" {
let rhs = parse_call(working_set, &spans[idx..], spans[0]);
expr_stack.push(op);
expr_stack.push(rhs);
break;
} else if content == b"not" {
not_start_spans.push(spans[idx].start);
idx += 1;
while idx < spans.len() {
let next_value = working_set.get_span_contents(spans[idx]);
if next_value == b"not" {
not_start_spans.push(spans[idx].start);
idx += 1;
} else {
break;
}
}
if idx == spans.len() {
working_set.error(ParseError::Expected(
"expression",
Span::new(spans[idx - 1].end, spans[idx - 1].end),
));
return garbage(working_set, spans[idx - 1]);
}
}
let mut rhs = parse_value(working_set, spans[idx], &SyntaxShape::Any);
for not_start_span in not_start_spans.iter().rev() {
// rhs = Expression {
// expr: Expr::UnaryNot(Box::new(rhs)),
// span: Span::new(*not_start_span, spans[idx].end),
// ty: Type::Bool,
// custom_completion: None,
// };
rhs = Expression::new(
working_set,
Expr::UnaryNot(Box::new(rhs)),
Span::new(*not_start_span, spans[idx].end),
Type::Bool,
);
}
not_start_spans.clear();
while op_prec <= last_prec && expr_stack.len() > 1 {
// Collapse the right associated operations first
// so that we can get back to a stack with a lower precedence
let mut rhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
let mut op = expr_stack
.pop()
.expect("internal error: expression stack empty");
last_prec = op.precedence();
if last_prec < op_prec {
expr_stack.push(op);
expr_stack.push(rhs);
break;
}
let mut lhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
if let Some(row_var_id) = lhs_row_var_id {
expand_to_cell_path(working_set, &mut lhs, row_var_id);
}
let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut op, &mut rhs);
if let Some(err) = err {
working_set.error(err);
}
let op_span = Span::append(lhs.span, rhs.span);
expr_stack.push(Expression::new(
working_set,
Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)),
op_span,
result_ty,
));
}
expr_stack.push(op);
expr_stack.push(rhs);
last_prec = op_prec;
idx += 1;
}
while expr_stack.len() != 1 {
let mut rhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
let mut op = expr_stack
.pop()
.expect("internal error: expression stack empty");
let mut lhs = expr_stack
.pop()
.expect("internal error: expression stack empty");
if let Some(row_var_id) = lhs_row_var_id {
expand_to_cell_path(working_set, &mut lhs, row_var_id);
}
let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut op, &mut rhs);
if let Some(err) = err {
working_set.error(err)
}
let binary_op_span = Span::append(lhs.span, rhs.span);
expr_stack.push(Expression::new(
working_set,
Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)),
binary_op_span,
result_ty,
));
}
expr_stack
.pop()
.expect("internal error: expression stack empty")
}
pub fn parse_expression(working_set: &mut StateWorkingSet, spans: &[Span]) -> Expression {
trace!("parsing: expression");
let mut pos = 0;
let mut shorthand = vec![];
while pos < spans.len() {
// Check if there is any environment shorthand
let name = working_set.get_span_contents(spans[pos]);
let split = name.splitn(2, |x| *x == b'=');
let split: Vec<_> = split.collect();
if !name.starts_with(b"^")
&& split.len() == 2
&& !split[0].is_empty()
&& !split[0].ends_with(b"..")
// was range op ..=
{
let point = split[0].len() + 1;
let starting_error_count = working_set.parse_errors.len();
let lhs_span = Span::new(spans[pos].start, spans[pos].start + point - 1);
if !is_identifier(working_set.get_span_contents(lhs_span)) {
break;
}
let lhs = parse_string_strict(working_set, lhs_span);
let rhs = if spans[pos].start + point < spans[pos].end {
let rhs_span = Span::new(spans[pos].start + point, spans[pos].end);
if working_set.get_span_contents(rhs_span).starts_with(b"$") {
parse_dollar_expr(working_set, rhs_span)
} else {
parse_string_strict(working_set, rhs_span)
}
} else {
Expression::new(
working_set,
Expr::String(String::new()),
Span::unknown(),
Type::Nothing,
)
};
if starting_error_count == working_set.parse_errors.len() {
shorthand.push((lhs, rhs));
pos += 1;
} else {
working_set.parse_errors.truncate(starting_error_count);
break;
}
} else {
break;
}
}
if pos == spans.len() {
working_set.error(ParseError::UnknownCommand(spans[0]));
return garbage(working_set, Span::concat(spans));
}
let output = if spans[pos..]
.iter()
.any(|span| is_assignment_operator(working_set.get_span_contents(*span)))
{
parse_assignment_expression(working_set, &spans[pos..])
} else if is_math_expression_like(working_set, spans[pos]) {
parse_math_expression(working_set, &spans[pos..], None)
} else {
let bytes = working_set.get_span_contents(spans[pos]).to_vec();
// For now, check for special parses of certain keywords
match bytes.as_slice() {
b"def" | b"extern" | b"for" | b"module" | b"use" | b"source" | b"alias" | b"export"
| b"hide" => {
working_set.error(ParseError::BuiltinCommandInPipeline(
String::from_utf8(bytes)
.expect("builtin commands bytes should be able to convert to string"),
spans[0],
));
parse_call(working_set, &spans[pos..], spans[0])
}
b"let" | b"const" | b"mut" => {
working_set.error(ParseError::AssignInPipeline(
String::from_utf8(bytes)
.expect("builtin commands bytes should be able to convert to string"),
String::from_utf8_lossy(match spans.len() {
1..=3 => b"value",
_ => working_set.get_span_contents(spans[3]),
})
.to_string(),
String::from_utf8_lossy(match spans.len() {
1 => b"variable",
_ => working_set.get_span_contents(spans[1]),
})
.to_string(),
spans[0],
));
parse_call(working_set, &spans[pos..], spans[0])
}
b"overlay" => {
if spans.len() > 1 && working_set.get_span_contents(spans[1]) == b"list" {
// whitelist 'overlay list'
parse_call(working_set, &spans[pos..], spans[0])
} else {
working_set.error(ParseError::BuiltinCommandInPipeline(
"overlay".into(),
spans[0],
));
parse_call(working_set, &spans[pos..], spans[0])
}
}
b"where" => parse_where_expr(working_set, &spans[pos..]),
#[cfg(feature = "plugin")]
b"plugin" => {
if spans.len() > 1 && working_set.get_span_contents(spans[1]) == b"use" {
// only 'plugin use' is banned
working_set.error(ParseError::BuiltinCommandInPipeline(
"plugin use".into(),
spans[0],
));
}
parse_call(working_set, &spans[pos..], spans[0])
}
_ => parse_call(working_set, &spans[pos..], spans[0]),
}
};
if !shorthand.is_empty() {
let with_env = working_set.find_decl(b"with-env");
if let Some(decl_id) = with_env {
let mut block = Block::default();
let ty = output.ty.clone();
block.pipelines = vec![Pipeline::from_vec(vec![output])];
block.span = Some(Span::concat(spans));
compile_block(working_set, &mut block);
let block_id = working_set.add_block(Arc::new(block));
let mut env_vars = vec![];
for sh in shorthand {
env_vars.push(RecordItem::Pair(sh.0, sh.1));
}
let arguments = vec![
Argument::Positional(Expression::new(
working_set,
Expr::Record(env_vars),
Span::concat(&spans[..pos]),
Type::Any,
)),
Argument::Positional(Expression::new(
working_set,
Expr::Closure(block_id),
Span::concat(&spans[pos..]),
Type::Closure,
)),
];
let expr = Expr::Call(Box::new(Call {
head: Span::unknown(),
decl_id,
arguments,
parser_info: HashMap::new(),
}));
Expression::new(working_set, expr, Span::concat(spans), ty)
} else {
output
}
} else {
output
}
}
pub fn parse_builtin_commands(
working_set: &mut StateWorkingSet,
lite_command: &LiteCommand,
) -> Pipeline {
trace!("parsing: builtin commands");
if !is_math_expression_like(working_set, lite_command.parts[0])
&& !is_unaliasable_parser_keyword(working_set, &lite_command.parts)
{
trace!("parsing: not math expression or unaliasable parser keyword");
let name = working_set.get_span_contents(lite_command.parts[0]);
if let Some(decl_id) = working_set.find_decl(name) {
let cmd = working_set.get_decl(decl_id);
if cmd.is_alias() {
// Parse keywords that can be aliased. Note that we check for "unaliasable" keywords
// because alias can have any name, therefore, we can't check for "aliasable" keywords.
let call_expr = parse_call(working_set, &lite_command.parts, lite_command.parts[0]);
if let Expression {
expr: Expr::Call(call),
..
} = call_expr
{
// Apply parse keyword side effects
let cmd = working_set.get_decl(call.decl_id);
match cmd.name() {
"overlay hide" => return parse_overlay_hide(working_set, call),
"overlay new" => return parse_overlay_new(working_set, call),
"overlay use" => return parse_overlay_use(working_set, call),
_ => { /* this alias is not a parser keyword */ }
}
}
}
}
}
trace!("parsing: checking for keywords");
let name = working_set.get_span_contents(lite_command.parts[0]);
match name {
b"def" => parse_def(working_set, lite_command, None).0,
b"extern" => parse_extern(working_set, lite_command, None),
b"let" => parse_let(
working_set,
&lite_command
.parts_including_redirection()
.collect::<Vec<Span>>(),
),
b"const" => parse_const(working_set, &lite_command.parts).0,
b"mut" => parse_mut(
working_set,
&lite_command
.parts_including_redirection()
.collect::<Vec<Span>>(),
),
b"for" => {
let expr = parse_for(working_set, lite_command);
Pipeline::from_vec(vec![expr])
}
b"alias" => parse_alias(working_set, lite_command, None),
b"module" => parse_module(working_set, lite_command, None).0,
b"use" => parse_use(working_set, lite_command, None).0,
b"overlay" => {
if let Some(redirection) = lite_command.redirection.as_ref() {
working_set.error(redirecting_builtin_error("overlay", redirection));
return garbage_pipeline(working_set, &lite_command.parts);
}
parse_keyword(working_set, lite_command)
}
b"source" | b"source-env" => parse_source(working_set, lite_command),
b"export" => parse_export_in_block(working_set, lite_command),
b"hide" => parse_hide(working_set, lite_command),
b"where" => parse_where(working_set, lite_command),
// Only "plugin use" is a keyword
#[cfg(feature = "plugin")]
b"plugin"
if lite_command
.parts
.get(1)
.is_some_and(|span| working_set.get_span_contents(*span) == b"use") =>
{
if let Some(redirection) = lite_command.redirection.as_ref() {
working_set.error(redirecting_builtin_error("plugin use", redirection));
return garbage_pipeline(working_set, &lite_command.parts);
}
parse_keyword(working_set, lite_command)
}
_ => {
let element = parse_pipeline_element(working_set, lite_command);
Pipeline {
elements: vec![element],
}
}
}
}
fn check_record_key_or_value(
working_set: &StateWorkingSet,
expr: &Expression,
position: &str,
) -> Option<ParseError> {
let bareword_error = |string_value: &Expression| {
working_set
.get_span_contents(string_value.span)
.iter()
.find_position(|b| **b == b':')
.map(|(i, _)| {
let colon_position = i + string_value.span.start;
ParseError::InvalidLiteral(
"colon".to_string(),
format!("bare word specifying record {}", position),
Span::new(colon_position, colon_position + 1),
)
})
};
let value_span = working_set.get_span_contents(expr.span);
match expr.expr {
Expr::String(_) => {
if ![b'"', b'\'', b'`'].contains(&value_span[0]) {
bareword_error(expr)
} else {
None
}
}
Expr::StringInterpolation(ref expressions) => {
if value_span[0] != b'$' {
expressions
.iter()
.filter(|expr| matches!(expr.expr, Expr::String(_)))
.filter_map(bareword_error)
.next()
} else {
None
}
}
_ => None,
}
}
pub fn parse_record(working_set: &mut StateWorkingSet, span: Span) -> Expression {
let bytes = working_set.get_span_contents(span);
let mut start = span.start;
let mut end = span.end;
if bytes.starts_with(b"{") {
start += 1;
} else {
working_set.error(ParseError::Expected("{", Span::new(start, start + 1)));
return garbage(working_set, span);
}
if bytes.ends_with(b"}") {
end -= 1;
} else {
working_set.error(ParseError::Unclosed("}".into(), Span::new(end, end)));
}
let inner_span = Span::new(start, end);
let mut lex_state = LexState {
input: working_set.get_span_contents(inner_span),
output: Vec::new(),
error: None,
span_offset: start,
};
let mut lex_n = |additional_whitespace, special_tokens, max_tokens| {
lex_n_tokens(
&mut lex_state,
additional_whitespace,
special_tokens,
true,
max_tokens,
)
};
loop {
if lex_n(&[b'\n', b'\r', b','], &[b':'], 2) < 2 {
break;
};
if lex_n(&[b'\n', b'\r', b','], &[], 1) < 1 {
break;
};
}
let (tokens, err) = (lex_state.output, lex_state.error);
if let Some(err) = err {
working_set.error(err);
}
let mut output = vec![];
let mut idx = 0;
let mut field_types = Some(vec![]);
while idx < tokens.len() {
let curr_span = tokens[idx].span;
let curr_tok = working_set.get_span_contents(curr_span);
if curr_tok.starts_with(b"...")
&& curr_tok.len() > 3
&& (curr_tok[3] == b'$' || curr_tok[3] == b'{' || curr_tok[3] == b'(')
{
// Parse spread operator
let inner = parse_value(
working_set,
Span::new(curr_span.start + 3, curr_span.end),
&SyntaxShape::Record(vec![]),
);
idx += 1;
match &inner.ty {
Type::Record(inner_fields) => {
if let Some(fields) = &mut field_types {
for (field, ty) in inner_fields.as_ref() {
fields.push((field.clone(), ty.clone()));
}
}
}
_ => {
// We can't properly see all the field types
// so fall back to the Any type later
field_types = None;
}
}
output.push(RecordItem::Spread(
Span::new(curr_span.start, curr_span.start + 3),
inner,
));
} else {
// Normal key-value pair
let field_token = &tokens[idx];
let field = if field_token.contents != TokenContents::Item {
working_set.error(ParseError::Expected(
"item in record key position",
Span::new(field_token.span.start, field_token.span.end),
));
garbage(working_set, curr_span)
} else {
let field = parse_value(working_set, curr_span, &SyntaxShape::Any);
if let Some(error) = check_record_key_or_value(working_set, &field, "key") {
working_set.error(error);
garbage(working_set, field.span)
} else {
field
}
};
idx += 1;
if idx == tokens.len() {
working_set.error(ParseError::Expected(
"':'",
Span::new(curr_span.end, curr_span.end),
));
output.push(RecordItem::Pair(
garbage(working_set, curr_span),
garbage(working_set, Span::new(curr_span.end, curr_span.end)),
));
break;
}
let colon_span = tokens[idx].span;
let colon = working_set.get_span_contents(colon_span);
idx += 1;
if colon != b":" {
working_set.error(ParseError::Expected(
"':'",
Span::new(colon_span.start, colon_span.start),
));
output.push(RecordItem::Pair(
field,
garbage(
working_set,
Span::new(colon_span.start, tokens[tokens.len() - 1].span.end),
),
));
break;
}
if idx == tokens.len() {
working_set.error(ParseError::Expected(
"value for record field",
Span::new(colon_span.end, colon_span.end),
));
output.push(RecordItem::Pair(
garbage(working_set, Span::new(curr_span.start, colon_span.end)),
garbage(
working_set,
Span::new(colon_span.end, tokens[tokens.len() - 1].span.end),
),
));
break;
}
let value_token = &tokens[idx];
let value = if value_token.contents != TokenContents::Item {
working_set.error(ParseError::Expected(
"item in record value position",
Span::new(value_token.span.start, value_token.span.end),
));
garbage(
working_set,
Span::new(value_token.span.start, value_token.span.end),
)
} else {
let value = parse_value(working_set, tokens[idx].span, &SyntaxShape::Any);
if let Some(parse_error) = check_record_key_or_value(working_set, &value, "value") {
working_set.error(parse_error);
garbage(working_set, value.span)
} else {
value
}
};
idx += 1;
if let Some(field) = field.as_string() {
if let Some(fields) = &mut field_types {
fields.push((field, value.ty.clone()));
}
} else {
// We can't properly see all the field types
// so fall back to the Any type later
field_types = None;
}
output.push(RecordItem::Pair(field, value));
}
}
Expression::new(
working_set,
Expr::Record(output),
span,
if let Some(fields) = field_types {
Type::Record(fields.into())
} else {
Type::Any
},
)
}
fn parse_redirection_target(
working_set: &mut StateWorkingSet,
target: &LiteRedirectionTarget,
) -> RedirectionTarget {
match target {
LiteRedirectionTarget::File {
connector,
file,
append,
} => RedirectionTarget::File {
expr: parse_value(working_set, *file, &SyntaxShape::Any),
append: *append,
span: *connector,
},
LiteRedirectionTarget::Pipe { connector } => RedirectionTarget::Pipe { span: *connector },
}
}
pub(crate) fn parse_redirection(
working_set: &mut StateWorkingSet,
target: &LiteRedirection,
) -> PipelineRedirection {
match target {
LiteRedirection::Single { source, target } => PipelineRedirection::Single {
source: *source,
target: parse_redirection_target(working_set, target),
},
LiteRedirection::Separate { out, err } => PipelineRedirection::Separate {
out: parse_redirection_target(working_set, out),
err: parse_redirection_target(working_set, err),
},
}
}
fn parse_pipeline_element(
working_set: &mut StateWorkingSet,
command: &LiteCommand,
) -> PipelineElement {
trace!("parsing: pipeline element");
let expr = parse_expression(working_set, &command.parts);
let redirection = command
.redirection
.as_ref()
.map(|r| parse_redirection(working_set, r));
PipelineElement {
pipe: command.pipe,
expr,
redirection,
}
}
pub(crate) fn redirecting_builtin_error(
name: &'static str,
redirection: &LiteRedirection,
) -> ParseError {
match redirection {
LiteRedirection::Single { target, .. } => {
ParseError::RedirectingBuiltinCommand(name, target.connector(), None)
}
LiteRedirection::Separate { out, err } => ParseError::RedirectingBuiltinCommand(
name,
out.connector().min(err.connector()),
Some(out.connector().max(err.connector())),
),
}
}
pub fn parse_pipeline(working_set: &mut StateWorkingSet, pipeline: &LitePipeline) -> Pipeline {
if pipeline.commands.len() > 1 {
// Parse a normal multi command pipeline
let elements: Vec<_> = pipeline
.commands
.iter()
.enumerate()
.map(|(index, element)| {
let element = parse_pipeline_element(working_set, element);
// Handle $in for pipeline elements beyond the first one
if index > 0 && element.has_in_variable(working_set) {
wrap_element_with_collect(working_set, element.clone())
} else {
element
}
})
.collect();
Pipeline { elements }
} else {
// If there's only one command in the pipeline, this could be a builtin command
parse_builtin_commands(working_set, &pipeline.commands[0])
}
}
pub fn parse_block(
working_set: &mut StateWorkingSet,
tokens: &[Token],
span: Span,
scoped: bool,
is_subexpression: bool,
) -> Block {
let (lite_block, err) = lite_parse(tokens);
if let Some(err) = err {
working_set.error(err);
}
trace!("parsing block: {:?}", lite_block);
if scoped {
working_set.enter_scope();
}
// Pre-declare any definition so that definitions
// that share the same block can see each other
for pipeline in &lite_block.block {
if pipeline.commands.len() == 1 {
parse_def_predecl(working_set, &pipeline.commands[0].parts)
}
}
let mut block = Block::new_with_capacity(lite_block.block.len());
block.span = Some(span);
for lite_pipeline in &lite_block.block {
let pipeline = parse_pipeline(working_set, lite_pipeline);
block.pipelines.push(pipeline);
}
// If this is not a subexpression and there are any pipelines where the first element has $in,
// we can wrap the whole block in collect so that they all reference the same $in
if !is_subexpression
&& block
.pipelines
.iter()
.flat_map(|pipeline| pipeline.elements.first())
.any(|element| element.has_in_variable(working_set))
{
// Move the block out to prepare it to become a subexpression
let inner_block = std::mem::take(&mut block);
block.span = inner_block.span;
let ty = inner_block.output_type();
let block_id = working_set.add_block(Arc::new(inner_block));
// Now wrap it in a Collect expression, and put it in the block as the only pipeline
let subexpression = Expression::new(working_set, Expr::Subexpression(block_id), span, ty);
let collect = wrap_expr_with_collect(working_set, subexpression);
block.pipelines.push(Pipeline {
elements: vec![PipelineElement {
pipe: None,
expr: collect,
redirection: None,
}],
});
}
if scoped {
working_set.exit_scope();
}
let errors = type_check::check_block_input_output(working_set, &block);
if !errors.is_empty() {
working_set.parse_errors.extend_from_slice(&errors);
}
// Do not try to compile blocks that are subexpressions, or when we've already had a parse
// failure as that definitely will fail to compile
if !is_subexpression && working_set.parse_errors.is_empty() {
compile_block(working_set, &mut block);
}
block
}
/// Compile an IR block for the `Block`, adding a compile error on failure
fn compile_block(working_set: &mut StateWorkingSet<'_>, block: &mut Block) {
match nu_engine::compile(working_set, block) {
Ok(ir_block) => {
block.ir_block = Some(ir_block);
}
Err(err) => working_set.compile_errors.push(err),
}
}
pub fn discover_captures_in_closure(
working_set: &StateWorkingSet,
block: &Block,
seen: &mut Vec<VarId>,
seen_blocks: &mut HashMap<BlockId, Vec<(VarId, Span)>>,
output: &mut Vec<(VarId, Span)>,
) -> Result<(), ParseError> {
for flag in &block.signature.named {
if let Some(var_id) = flag.var_id {
seen.push(var_id);
}
}
for positional in &block.signature.required_positional {
if let Some(var_id) = positional.var_id {
seen.push(var_id);
}
}
for positional in &block.signature.optional_positional {
if let Some(var_id) = positional.var_id {
seen.push(var_id);
}
}
if let Some(positional) = &block.signature.rest_positional {
if let Some(var_id) = positional.var_id {
seen.push(var_id);
}
}
for pipeline in &block.pipelines {
discover_captures_in_pipeline(working_set, pipeline, seen, seen_blocks, output)?;
}
Ok(())
}
fn discover_captures_in_pipeline(
working_set: &StateWorkingSet,
pipeline: &Pipeline,
seen: &mut Vec<VarId>,
seen_blocks: &mut HashMap<BlockId, Vec<(VarId, Span)>>,
output: &mut Vec<(VarId, Span)>,
) -> Result<(), ParseError> {
for element in &pipeline.elements {
discover_captures_in_pipeline_element(working_set, element, seen, seen_blocks, output)?;
}
Ok(())
}
// Closes over captured variables
pub fn discover_captures_in_pipeline_element(
working_set: &StateWorkingSet,
element: &PipelineElement,
seen: &mut Vec<VarId>,
seen_blocks: &mut HashMap<BlockId, Vec<(VarId, Span)>>,
output: &mut Vec<(VarId, Span)>,
) -> Result<(), ParseError> {
discover_captures_in_expr(working_set, &element.expr, seen, seen_blocks, output)?;
if let Some(redirection) = element.redirection.as_ref() {
match redirection {
PipelineRedirection::Single { target, .. } => {
if let Some(expr) = target.expr() {
discover_captures_in_expr(working_set, expr, seen, seen_blocks, output)?;
}
}
PipelineRedirection::Separate { out, err } => {
if let Some(expr) = out.expr() {
discover_captures_in_expr(working_set, expr, seen, seen_blocks, output)?;
}
if let Some(expr) = err.expr() {
discover_captures_in_expr(working_set, expr, seen, seen_blocks, output)?;
}
}
}
}
Ok(())
}
pub fn discover_captures_in_pattern(pattern: &MatchPattern, seen: &mut Vec<VarId>) {
match &pattern.pattern {
Pattern::Variable(var_id) => seen.push(*var_id),
Pattern::List(items) => {
for item in items {
discover_captures_in_pattern(item, seen)
}
}
Pattern::Record(items) => {
for item in items {
discover_captures_in_pattern(&item.1, seen)
}
}
Pattern::Or(patterns) => {
for pattern in patterns {
discover_captures_in_pattern(pattern, seen)
}
}
Pattern::Rest(var_id) => seen.push(*var_id),
Pattern::Value(_) | Pattern::IgnoreValue | Pattern::IgnoreRest | Pattern::Garbage => {}
}
}
// Closes over captured variables
pub fn discover_captures_in_expr(
working_set: &StateWorkingSet,
expr: &Expression,
seen: &mut Vec<VarId>,
seen_blocks: &mut HashMap<BlockId, Vec<(VarId, Span)>>,
output: &mut Vec<(VarId, Span)>,
) -> Result<(), ParseError> {
match &expr.expr {
Expr::BinaryOp(lhs, _, rhs) => {
discover_captures_in_expr(working_set, lhs, seen, seen_blocks, output)?;
discover_captures_in_expr(working_set, rhs, seen, seen_blocks, output)?;
}
Expr::UnaryNot(expr) => {
discover_captures_in_expr(working_set, expr, seen, seen_blocks, output)?;
}
Expr::Closure(block_id) => {
let block = working_set.get_block(*block_id);
let results = {
let mut seen = vec![];
let mut results = vec![];
discover_captures_in_closure(
working_set,
block,
&mut seen,
seen_blocks,
&mut results,
)?;
for (var_id, span) in results.iter() {
if !seen.contains(var_id) {
if let Some(variable) = working_set.get_variable_if_possible(*var_id) {
if variable.mutable {
return Err(ParseError::CaptureOfMutableVar(*span));
}
}
}
}
results
};
seen_blocks.insert(*block_id, results.clone());
for (var_id, span) in results.into_iter() {
if !seen.contains(&var_id) {
output.push((var_id, span))
}
}
}
Expr::Block(block_id) => {
let block = working_set.get_block(*block_id);
// FIXME: is this correct?
let results = {
let mut seen = vec![];
let mut results = vec![];
discover_captures_in_closure(
working_set,
block,
&mut seen,
seen_blocks,
&mut results,
)?;
results
};
seen_blocks.insert(*block_id, results.clone());
for (var_id, span) in results.into_iter() {
if !seen.contains(&var_id) {
output.push((var_id, span))
}
}
}
Expr::Binary(_) => {}
Expr::Bool(_) => {}
Expr::Call(call) => {
let decl = working_set.get_decl(call.decl_id);
if let Some(block_id) = decl.block_id() {
match seen_blocks.get(&block_id) {
Some(capture_list) => {
// Push captures onto the outer closure that aren't created by that outer closure
for capture in capture_list {
if !seen.contains(&capture.0) {
output.push(*capture);
}
}
}
None => {
let block = working_set.get_block(block_id);
if !block.captures.is_empty() {
for capture in &block.captures {
if !seen.contains(capture) {
output.push((*capture, call.head));
}
}
} else {
let result = {
let mut seen = vec![];
seen_blocks.insert(block_id, output.clone());
let mut result = vec![];
discover_captures_in_closure(
working_set,
block,
&mut seen,
seen_blocks,
&mut result,
)?;
result
};
// Push captures onto the outer closure that aren't created by that outer closure
for capture in &result {
if !seen.contains(&capture.0) {
output.push(*capture);
}
}
seen_blocks.insert(block_id, result);
}
}
}
}
for arg in &call.arguments {
match arg {
Argument::Named(named) => {
if let Some(arg) = &named.2 {
discover_captures_in_expr(working_set, arg, seen, seen_blocks, output)?;
}
}
Argument::Positional(expr)
| Argument::Unknown(expr)
| Argument::Spread(expr) => {
discover_captures_in_expr(working_set, expr, seen, seen_blocks, output)?;
}
}
}
}
Expr::CellPath(_) => {}
Expr::DateTime(_) => {}
Expr::ExternalCall(head, args) => {
discover_captures_in_expr(working_set, head, seen, seen_blocks, output)?;
for ExternalArgument::Regular(expr) | ExternalArgument::Spread(expr) in args.as_ref() {
discover_captures_in_expr(working_set, expr, seen, seen_blocks, output)?;
}
}
Expr::Filepath(_, _) => {}
Expr::Directory(_, _) => {}
Expr::Float(_) => {}
Expr::FullCellPath(cell_path) => {
discover_captures_in_expr(working_set, &cell_path.head, seen, seen_blocks, output)?;
}
Expr::ImportPattern(_) => {}
Expr::Overlay(_) => {}
Expr::Garbage => {}
Expr::Nothing => {}
Expr::GlobPattern(_, _) => {}
Expr::Int(_) => {}
Expr::Keyword(kw) => {
discover_captures_in_expr(working_set, &kw.expr, seen, seen_blocks, output)?;
}
Expr::List(list) => {
for item in list {
discover_captures_in_expr(working_set, item.expr(), seen, seen_blocks, output)?;
}
}
Expr::Operator(_) => {}
Expr::Range(range) => {
if let Some(from) = &range.from {
discover_captures_in_expr(working_set, from, seen, seen_blocks, output)?;
}
if let Some(next) = &range.next {
discover_captures_in_expr(working_set, next, seen, seen_blocks, output)?;
}
if let Some(to) = &range.to {
discover_captures_in_expr(working_set, to, seen, seen_blocks, output)?;
}
}
Expr::Record(items) => {
for item in items {
match item {
RecordItem::Pair(field_name, field_value) => {
discover_captures_in_expr(
working_set,
field_name,
seen,
seen_blocks,
output,
)?;
discover_captures_in_expr(
working_set,
field_value,
seen,
seen_blocks,
output,
)?;
}
RecordItem::Spread(_, record) => {
discover_captures_in_expr(working_set, record, seen, seen_blocks, output)?;
}
}
}
}
Expr::Signature(sig) => {
// Something with a declaration, similar to a var decl, will introduce more VarIds into the stack at eval
for pos in &sig.required_positional {
if let Some(var_id) = pos.var_id {
seen.push(var_id);
}
}
for pos in &sig.optional_positional {
if let Some(var_id) = pos.var_id {
seen.push(var_id);
}
}
if let Some(rest) = &sig.rest_positional {
if let Some(var_id) = rest.var_id {
seen.push(var_id);
}
}
for named in &sig.named {
if let Some(var_id) = named.var_id {
seen.push(var_id);
}
}
}
Expr::String(_) => {}
Expr::RawString(_) => {}
Expr::StringInterpolation(exprs) | Expr::GlobInterpolation(exprs, _) => {
for expr in exprs {
discover_captures_in_expr(working_set, expr, seen, seen_blocks, output)?;
}
}
Expr::MatchBlock(match_block) => {
for match_ in match_block {
discover_captures_in_pattern(&match_.0, seen);
discover_captures_in_expr(working_set, &match_.1, seen, seen_blocks, output)?;
}
}
Expr::Collect(var_id, expr) => {
seen.push(*var_id);
discover_captures_in_expr(working_set, expr, seen, seen_blocks, output)?
}
Expr::RowCondition(block_id) | Expr::Subexpression(block_id) => {
let block = working_set.get_block(*block_id);
let results = {
let mut results = vec![];
let mut seen = vec![];
discover_captures_in_closure(
working_set,
block,
&mut seen,
seen_blocks,
&mut results,
)?;
results
};
seen_blocks.insert(*block_id, results.clone());
for (var_id, span) in results.into_iter() {
if !seen.contains(&var_id) {
output.push((var_id, span))
}
}
}
Expr::Table(table) => {
for header in table.columns.as_ref() {
discover_captures_in_expr(working_set, header, seen, seen_blocks, output)?;
}
for row in table.rows.as_ref() {
for cell in row.as_ref() {
discover_captures_in_expr(working_set, cell, seen, seen_blocks, output)?;
}
}
}
Expr::ValueWithUnit(value) => {
discover_captures_in_expr(working_set, &value.expr, seen, seen_blocks, output)?;
}
Expr::Var(var_id) => {
if (*var_id > ENV_VARIABLE_ID || *var_id == IN_VARIABLE_ID) && !seen.contains(var_id) {
output.push((*var_id, expr.span));
}
}
Expr::VarDecl(var_id) => {
seen.push(*var_id);
}
}
Ok(())
}
fn wrap_redirection_with_collect(
working_set: &mut StateWorkingSet,
target: RedirectionTarget,
) -> RedirectionTarget {
match target {
RedirectionTarget::File { expr, append, span } => RedirectionTarget::File {
expr: wrap_expr_with_collect(working_set, expr),
span,
append,
},
RedirectionTarget::Pipe { span } => RedirectionTarget::Pipe { span },
}
}
fn wrap_element_with_collect(
working_set: &mut StateWorkingSet,
element: PipelineElement,
) -> PipelineElement {
PipelineElement {
pipe: element.pipe,
expr: wrap_expr_with_collect(working_set, element.expr),
redirection: element.redirection.map(|r| match r {
PipelineRedirection::Single { source, target } => PipelineRedirection::Single {
source,
target: wrap_redirection_with_collect(working_set, target),
},
PipelineRedirection::Separate { out, err } => PipelineRedirection::Separate {
out: wrap_redirection_with_collect(working_set, out),
err: wrap_redirection_with_collect(working_set, err),
},
}),
}
}
fn wrap_expr_with_collect(working_set: &mut StateWorkingSet, expr: Expression) -> Expression {
let span = expr.span;
// IN_VARIABLE_ID should get replaced with a unique variable, so that we don't have to
// execute as a closure
let var_id = working_set.add_variable(b"$in".into(), expr.span, Type::Any, false);
let mut expr = expr.clone();
expr.replace_in_variable(working_set, var_id);
// Bind the custom `$in` variable for that particular expression
let ty = expr.ty.clone();
Expression::new(
working_set,
Expr::Collect(var_id, Box::new(expr)),
span,
// We can expect it to have the same result type
ty,
)
}
// Parses a vector of u8 to create an AST Block. If a file name is given, then
// the name is stored in the working set. When parsing a source without a file
// name, the source of bytes is stored as "source"
pub fn parse(
working_set: &mut StateWorkingSet,
fname: Option<&str>,
contents: &[u8],
scoped: bool,
) -> Arc<Block> {
trace!("parse");
let name = match fname {
Some(fname) => {
// use the canonical name for this filename
nu_path::expand_to_real_path(fname)
.to_string_lossy()
.to_string()
}
None => "source".to_string(),
};
let file_id = working_set.add_file(name, contents);
let new_span = working_set.get_span_for_file(file_id);
let previously_parsed_block = working_set.find_block_by_span(new_span);
let mut output = {
if let Some(block) = previously_parsed_block {
// dbg!("previous block");
return block;
} else {
// dbg!("starting lex");
let (output, err) = lex(contents, new_span.start, &[], &[], false);
// dbg!("finished lex");
// dbg!(&output);
if let Some(err) = err {
working_set.error(err)
}
Arc::new(parse_block(working_set, &output, new_span, scoped, false))
}
};
let mut seen = vec![];
let mut seen_blocks = HashMap::new();
let mut captures = vec![];
match discover_captures_in_closure(
working_set,
&output,
&mut seen,
&mut seen_blocks,
&mut captures,
) {
Ok(_) => {
Arc::make_mut(&mut output).captures =
captures.into_iter().map(|(var_id, _)| var_id).collect();
}
Err(err) => working_set.error(err),
}
// Also check other blocks that might have been imported
let mut errors = vec![];
for (block_idx, block) in working_set.delta.blocks.iter().enumerate() {
let block_id = block_idx + working_set.permanent_state.num_blocks();
let block_id = BlockId::new(block_id);
if !seen_blocks.contains_key(&block_id) {
let mut captures = vec![];
match discover_captures_in_closure(
working_set,
block,
&mut seen,
&mut seen_blocks,
&mut captures,
) {
Ok(_) => {
seen_blocks.insert(block_id, captures);
}
Err(err) => {
errors.push(err);
}
}
}
}
for err in errors {
working_set.error(err)
}
for (block_id, captures) in seen_blocks.into_iter() {
// In theory, we should only be updating captures where we have new information
// the only place where this is possible would be blocks that are newly created
// by our working set delta. If we ever tried to modify the permanent state, we'd
// panic (again, in theory, this shouldn't be possible)
let block = working_set.get_block(block_id);
let block_captures_empty = block.captures.is_empty();
// need to check block_id >= working_set.permanent_state.num_blocks()
// to avoid mutate a block that is in the permanent state.
// this can happened if user defines a function with recursive call
// and pipe a variable to the command, e.g:
// def px [] { if true { 42 } else { px } }; # the block px is saved in permanent state.
// let x = 3
// $x | px
// If we don't guard for `block_id`, it will change captures of `px`, which is
// already saved in permanent state
if !captures.is_empty()
&& block_captures_empty
&& block_id.get() >= working_set.permanent_state.num_blocks()
{
let block = working_set.get_block_mut(block_id);
block.captures = captures.into_iter().map(|(var_id, _)| var_id).collect();
}
}
output
}