nushell/crates/nu-protocol/src/engine/stack.rs
Ian Manske c747ec75c9
Add command_prelude module (#12291)
# Description
When implementing a `Command`, one must also import all the types
present in the function signatures for `Command`. This makes it so that
we often import the same set of types in each command implementation
file. E.g., something like this:
```rust
use nu_protocol::ast::Call;
use nu_protocol::engine::{Command, EngineState, Stack};
use nu_protocol::{
    record, Category, Example, IntoInterruptiblePipelineData, IntoPipelineData, PipelineData,
    ShellError, Signature, Span, Type, Value,
};
```

This PR adds the `nu_engine::command_prelude` module which contains the
necessary and commonly used types to implement a `Command`:
```rust
// command_prelude.rs
pub use crate::CallExt;
pub use nu_protocol::{
    ast::{Call, CellPath},
    engine::{Command, EngineState, Stack},
    record, Category, Example, IntoInterruptiblePipelineData, IntoPipelineData, IntoSpanned,
    PipelineData, Record, ShellError, Signature, Span, Spanned, SyntaxShape, Type, Value,
};
```

This should reduce the boilerplate needed to implement a command and
also gives us a place to track the breadth of the `Command` API. I tried
to be conservative with what went into the prelude modules, since it
might be hard/annoying to remove items from the prelude in the future.
Let me know if something should be included or excluded.
2024-03-26 21:17:30 +00:00

696 lines
24 KiB
Rust

use crate::{
engine::{
EngineState, Redirection, StackCallArgGuard, StackCaptureGuard, StackIoGuard, StackStdio,
DEFAULT_OVERLAY_NAME,
},
IoStream, ShellError, Span, Value, VarId, ENV_VARIABLE_ID, NU_VARIABLE_ID,
};
use std::{
collections::{HashMap, HashSet},
sync::Arc,
};
/// Environment variables per overlay
pub type EnvVars = HashMap<String, HashMap<String, Value>>;
/// A runtime value stack used during evaluation
///
/// A note on implementation:
///
/// We previously set up the stack in a traditional way, where stack frames had parents which would
/// represent other frames that you might return to when exiting a function.
///
/// While experimenting with blocks, we found that we needed to have closure captures of variables
/// seen outside of the blocks, so that they blocks could be run in a way that was both thread-safe
/// and followed the restrictions for closures applied to iterators. The end result left us with
/// closure-captured single stack frames that blocks could see.
///
/// Blocks make up the only scope and stack definition abstraction in Nushell. As a result, we were
/// creating closure captures at any point we wanted to have a Block value we could safely evaluate
/// in any context. This meant that the parents were going largely unused, with captured variables
/// taking their place. The end result is this, where we no longer have separate frames, but instead
/// use the Stack as a way of representing the local and closure-captured state.
#[derive(Debug, Clone)]
pub struct Stack {
/// Variables
pub vars: Vec<(VarId, Value)>,
/// Environment variables arranged as a stack to be able to recover values from parent scopes
pub env_vars: Vec<EnvVars>,
/// Tells which environment variables from engine state are hidden, per overlay.
pub env_hidden: HashMap<String, HashSet<String>>,
/// List of active overlays
pub active_overlays: Vec<String>,
pub recursion_count: u64,
pub parent_stack: Option<Arc<Stack>>,
/// Variables that have been deleted (this is used to hide values from parent stack lookups)
pub parent_deletions: Vec<VarId>,
pub(crate) stdio: StackStdio,
}
impl Default for Stack {
fn default() -> Self {
Self::new()
}
}
impl Stack {
/// Create a new stack.
///
/// Stdio will be set to [`IoStream::Inherit`]. So, if the last command is an external command,
/// then its output will be forwarded to the terminal/stdio streams.
///
/// Use [`Stack::capture`] afterwards if you need to evaluate an expression to a [`Value`](crate::Value)
/// (as opposed to a [`PipelineData`](crate::PipelineData)).
pub fn new() -> Self {
Self {
vars: Vec::new(),
env_vars: Vec::new(),
env_hidden: HashMap::new(),
active_overlays: vec![DEFAULT_OVERLAY_NAME.to_string()],
recursion_count: 0,
parent_stack: None,
parent_deletions: vec![],
stdio: StackStdio::new(),
}
}
/// Unwrap a uniquely-owned stack.
///
/// In debug mode, this panics if there are multiple references.
/// In production this will instead clone the underlying stack.
pub fn unwrap_unique(stack_arc: Arc<Stack>) -> Stack {
// If you hit an error here, it's likely that you created an extra
// Arc pointing to the stack somewhere. Make sure that it gets dropped before
// getting here!
Arc::try_unwrap(stack_arc).unwrap_or_else(|arc| {
// in release mode, we clone the stack, but this can lead to
// major performance issues, so we should avoid it
debug_assert!(false, "More than one stack reference remaining!");
(*arc).clone()
})
}
/// Create a new child stack from a parent.
///
/// Changes from this child can be merged back into the parent with
/// Stack::with_changes_from_child
pub fn with_parent(parent: Arc<Stack>) -> Stack {
Stack {
// here we are still cloning environment variable-related information
env_vars: parent.env_vars.clone(),
env_hidden: parent.env_hidden.clone(),
active_overlays: parent.active_overlays.clone(),
recursion_count: parent.recursion_count,
vars: vec![],
parent_deletions: vec![],
stdio: parent.stdio.clone(),
parent_stack: Some(parent),
}
}
/// Take an Arc of a parent (assumed to be unique), and a child, and apply
/// all the changes from a child back to the parent.
///
/// Here it is assumed that child was created with a call to Stack::with_parent
/// with parent
pub fn with_changes_from_child(parent: Arc<Stack>, mut child: Stack) -> Stack {
// we're going to drop the link to the parent stack on our new stack
// so that we can unwrap the Arc as a unique reference
//
// This makes the new_stack be in a bit of a weird state, so we shouldn't call
// any structs
drop(child.parent_stack);
let mut unique_stack = Stack::unwrap_unique(parent);
unique_stack.vars.append(&mut child.vars);
unique_stack.env_vars = child.env_vars;
unique_stack.env_hidden = child.env_hidden;
unique_stack.active_overlays = child.active_overlays;
for item in child.parent_deletions.into_iter() {
unique_stack.vars.remove(item);
}
unique_stack
}
pub fn with_env(
&mut self,
env_vars: &[EnvVars],
env_hidden: &HashMap<String, HashSet<String>>,
) {
// Do not clone the environment if it hasn't changed
if self.env_vars.iter().any(|scope| !scope.is_empty()) {
self.env_vars = env_vars.to_owned();
}
if !self.env_hidden.is_empty() {
self.env_hidden = env_hidden.to_owned();
}
}
/// Lookup a variable, returning None if it is not present
fn lookup_var(&self, var_id: VarId) -> Option<Value> {
for (id, val) in &self.vars {
if var_id == *id {
return Some(val.clone());
}
}
if let Some(stack) = &self.parent_stack {
if !self.parent_deletions.contains(&var_id) {
return stack.lookup_var(var_id);
}
}
None
}
/// Lookup a variable, erroring if it is not found
///
/// The passed-in span will be used to tag the value
pub fn get_var(&self, var_id: VarId, span: Span) -> Result<Value, ShellError> {
match self.lookup_var(var_id) {
Some(v) => Ok(v.with_span(span)),
None => Err(ShellError::VariableNotFoundAtRuntime { span }),
}
}
/// Lookup a variable, erroring if it is not found
///
/// While the passed-in span will be used for errors, the returned value
/// has the span from where it was originally defined
pub fn get_var_with_origin(&self, var_id: VarId, span: Span) -> Result<Value, ShellError> {
match self.lookup_var(var_id) {
Some(v) => Ok(v),
None => {
if var_id == NU_VARIABLE_ID || var_id == ENV_VARIABLE_ID {
return Err(ShellError::GenericError {
error: "Built-in variables `$env` and `$nu` have no metadata".into(),
msg: "no metadata available".into(),
span: Some(span),
help: None,
inner: vec![],
});
}
Err(ShellError::VariableNotFoundAtRuntime { span })
}
}
}
pub fn add_var(&mut self, var_id: VarId, value: Value) {
//self.vars.insert(var_id, value);
for (id, val) in &mut self.vars {
if *id == var_id {
*val = value;
return;
}
}
self.vars.push((var_id, value));
}
pub fn remove_var(&mut self, var_id: VarId) {
for (idx, (id, _)) in self.vars.iter().enumerate() {
if *id == var_id {
self.vars.remove(idx);
break;
}
}
// even if we did have it in the original layer, we need to make sure to remove it here
// as well (since the previous update might have simply hid the parent value)
if self.parent_stack.is_some() {
self.parent_deletions.push(var_id);
}
}
pub fn add_env_var(&mut self, var: String, value: Value) {
if let Some(last_overlay) = self.active_overlays.last() {
if let Some(env_hidden) = self.env_hidden.get_mut(last_overlay) {
// if the env var was hidden, let's activate it again
env_hidden.remove(&var);
}
if let Some(scope) = self.env_vars.last_mut() {
if let Some(env_vars) = scope.get_mut(last_overlay) {
env_vars.insert(var, value);
} else {
scope.insert(last_overlay.into(), [(var, value)].into_iter().collect());
}
} else {
self.env_vars.push(
[(last_overlay.into(), [(var, value)].into_iter().collect())]
.into_iter()
.collect(),
);
}
} else {
// TODO: Remove panic
panic!("internal error: no active overlay");
}
}
pub fn last_overlay_name(&self) -> Result<String, ShellError> {
self.active_overlays
.last()
.cloned()
.ok_or_else(|| ShellError::NushellFailed {
msg: "No active overlay".into(),
})
}
pub fn captures_to_stack(&self, captures: Vec<(VarId, Value)>) -> Stack {
self.captures_to_stack_preserve_stdio(captures).capture()
}
pub fn captures_to_stack_preserve_stdio(&self, captures: Vec<(VarId, Value)>) -> Stack {
// FIXME: this is probably slow
let mut env_vars = self.env_vars.clone();
env_vars.push(HashMap::new());
Stack {
vars: captures,
env_vars,
env_hidden: self.env_hidden.clone(),
active_overlays: self.active_overlays.clone(),
recursion_count: self.recursion_count,
parent_stack: None,
parent_deletions: vec![],
stdio: self.stdio.clone(),
}
}
pub fn gather_captures(&self, engine_state: &EngineState, captures: &[VarId]) -> Stack {
let mut vars = vec![];
let fake_span = Span::new(0, 0);
for capture in captures {
// Note: this assumes we have calculated captures correctly and that commands
// that take in a var decl will manually set this into scope when running the blocks
if let Ok(value) = self.get_var(*capture, fake_span) {
vars.push((*capture, value));
} else if let Some(const_val) = &engine_state.get_var(*capture).const_val {
vars.push((*capture, const_val.clone()));
}
}
let mut env_vars = self.env_vars.clone();
env_vars.push(HashMap::new());
Stack {
vars,
env_vars,
env_hidden: self.env_hidden.clone(),
active_overlays: self.active_overlays.clone(),
recursion_count: self.recursion_count,
parent_stack: None,
parent_deletions: vec![],
stdio: self.stdio.clone(),
}
}
/// Flatten the env var scope frames into one frame
pub fn get_env_vars(&self, engine_state: &EngineState) -> HashMap<String, Value> {
let mut result = HashMap::new();
for active_overlay in self.active_overlays.iter() {
if let Some(env_vars) = engine_state.env_vars.get(active_overlay) {
result.extend(
env_vars
.iter()
.filter(|(k, _)| {
if let Some(env_hidden) = self.env_hidden.get(active_overlay) {
!env_hidden.contains(*k)
} else {
// nothing has been hidden in this overlay
true
}
})
.map(|(k, v)| (k.clone(), v.clone()))
.collect::<HashMap<String, Value>>(),
);
}
}
result.extend(self.get_stack_env_vars());
result
}
/// Get flattened environment variables only from the stack
pub fn get_stack_env_vars(&self) -> HashMap<String, Value> {
let mut result = HashMap::new();
for scope in &self.env_vars {
for active_overlay in self.active_overlays.iter() {
if let Some(env_vars) = scope.get(active_overlay) {
result.extend(env_vars.clone());
}
}
}
result
}
/// Get flattened environment variables only from the stack and one overlay
pub fn get_stack_overlay_env_vars(&self, overlay_name: &str) -> HashMap<String, Value> {
let mut result = HashMap::new();
for scope in &self.env_vars {
if let Some(active_overlay) = self.active_overlays.iter().find(|n| n == &overlay_name) {
if let Some(env_vars) = scope.get(active_overlay) {
result.extend(env_vars.clone());
}
}
}
result
}
/// Same as get_env_vars, but returns only the names as a HashSet
pub fn get_env_var_names(&self, engine_state: &EngineState) -> HashSet<String> {
let mut result = HashSet::new();
for active_overlay in self.active_overlays.iter() {
if let Some(env_vars) = engine_state.env_vars.get(active_overlay) {
result.extend(
env_vars
.keys()
.filter(|k| {
if let Some(env_hidden) = self.env_hidden.get(active_overlay) {
!env_hidden.contains(*k)
} else {
// nothing has been hidden in this overlay
true
}
})
.cloned()
.collect::<HashSet<String>>(),
);
}
}
for scope in &self.env_vars {
for active_overlay in self.active_overlays.iter() {
if let Some(env_vars) = scope.get(active_overlay) {
result.extend(env_vars.keys().cloned().collect::<HashSet<String>>());
}
}
}
result
}
pub fn get_env_var(&self, engine_state: &EngineState, name: &str) -> Option<Value> {
for scope in self.env_vars.iter().rev() {
for active_overlay in self.active_overlays.iter().rev() {
if let Some(env_vars) = scope.get(active_overlay) {
if let Some(v) = env_vars.get(name) {
return Some(v.clone());
}
}
}
}
for active_overlay in self.active_overlays.iter().rev() {
let is_hidden = if let Some(env_hidden) = self.env_hidden.get(active_overlay) {
env_hidden.contains(name)
} else {
false
};
if !is_hidden {
if let Some(env_vars) = engine_state.env_vars.get(active_overlay) {
if let Some(v) = env_vars.get(name) {
return Some(v.clone());
}
}
}
}
None
}
pub fn has_env_var(&self, engine_state: &EngineState, name: &str) -> bool {
for scope in self.env_vars.iter().rev() {
for active_overlay in self.active_overlays.iter().rev() {
if let Some(env_vars) = scope.get(active_overlay) {
if env_vars.contains_key(name) {
return true;
}
}
}
}
for active_overlay in self.active_overlays.iter().rev() {
let is_hidden = if let Some(env_hidden) = self.env_hidden.get(active_overlay) {
env_hidden.contains(name)
} else {
false
};
if !is_hidden {
if let Some(env_vars) = engine_state.env_vars.get(active_overlay) {
if env_vars.contains_key(name) {
return true;
}
}
}
}
false
}
pub fn remove_env_var(&mut self, engine_state: &EngineState, name: &str) -> bool {
for scope in self.env_vars.iter_mut().rev() {
for active_overlay in self.active_overlays.iter().rev() {
if let Some(env_vars) = scope.get_mut(active_overlay) {
if env_vars.remove(name).is_some() {
return true;
}
}
}
}
for active_overlay in self.active_overlays.iter().rev() {
if let Some(env_vars) = engine_state.env_vars.get(active_overlay) {
if env_vars.get(name).is_some() {
if let Some(env_hidden) = self.env_hidden.get_mut(active_overlay) {
env_hidden.insert(name.into());
} else {
self.env_hidden
.insert(active_overlay.into(), [name.into()].into_iter().collect());
}
return true;
}
}
}
false
}
pub fn has_env_overlay(&self, name: &str, engine_state: &EngineState) -> bool {
for scope in self.env_vars.iter().rev() {
if scope.contains_key(name) {
return true;
}
}
engine_state.env_vars.contains_key(name)
}
pub fn is_overlay_active(&self, name: &str) -> bool {
self.active_overlays.iter().any(|n| n == name)
}
pub fn add_overlay(&mut self, name: String) {
self.active_overlays.retain(|o| o != &name);
self.active_overlays.push(name);
}
pub fn remove_overlay(&mut self, name: &str) {
self.active_overlays.retain(|o| o != name);
}
/// Returns the [`IoStream`] to use for the current command's stdout.
///
/// This will be the pipe redirection if one is set,
/// otherwise it will be the current file redirection,
/// otherwise it will be the process's stdout indicated by [`IoStream::Inherit`].
pub fn stdout(&self) -> &IoStream {
self.stdio.stdout()
}
/// Returns the [`IoStream`] to use for the current command's stderr.
///
/// This will be the pipe redirection if one is set,
/// otherwise it will be the current file redirection,
/// otherwise it will be the process's stderr indicated by [`IoStream::Inherit`].
pub fn stderr(&self) -> &IoStream {
self.stdio.stderr()
}
/// Returns the [`IoStream`] to use for the last command's stdout.
pub fn pipe_stdout(&self) -> Option<&IoStream> {
self.stdio.pipe_stdout.as_ref()
}
/// Returns the [`IoStream`] to use for the last command's stderr.
pub fn pipe_stderr(&self) -> Option<&IoStream> {
self.stdio.pipe_stderr.as_ref()
}
/// Temporarily set the pipe stdout redirection to [`IoStream::Capture`].
///
/// This is used before evaluating an expression into a `Value`.
pub fn start_capture(&mut self) -> StackCaptureGuard {
StackCaptureGuard::new(self)
}
/// Temporarily use the stdio redirections in the parent scope.
///
/// This is used before evaluating an argument to a call.
pub fn use_call_arg_stdio(&mut self) -> StackCallArgGuard {
StackCallArgGuard::new(self)
}
/// Temporarily apply redirections to stdout and/or stderr.
pub fn push_redirection(
&mut self,
stdout: Option<Redirection>,
stderr: Option<Redirection>,
) -> StackIoGuard {
StackIoGuard::new(self, stdout, stderr)
}
/// Mark stdout for the last command as [`IoStream::Capture`].
///
/// This will irreversibly alter the stdio redirections, and so it only makes sense to use this on an owned `Stack`
/// (which is why this function does not take `&mut self`).
///
/// See [`Stack::start_capture`] which can temporarily set stdout as [`IoStream::Capture`] for a mutable `Stack` reference.
pub fn capture(mut self) -> Self {
self.stdio.pipe_stdout = Some(IoStream::Capture);
self.stdio.pipe_stderr = None;
self
}
/// Clears any pipe and file redirections and resets stdout and stderr to [`IoStream::Inherit`].
///
/// This will irreversibly reset the stdio redirections, and so it only makes sense to use this on an owned `Stack`
/// (which is why this function does not take `&mut self`).
pub fn reset_stdio(mut self) -> Self {
self.stdio = StackStdio::new();
self
}
/// Clears any pipe redirections, keeping the current stdout and stderr.
///
/// This will irreversibly reset some of the stdio redirections, and so it only makes sense to use this on an owned `Stack`
/// (which is why this function does not take `&mut self`).
pub fn reset_pipes(mut self) -> Self {
self.stdio.pipe_stdout = None;
self.stdio.pipe_stderr = None;
self
}
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use crate::{engine::EngineState, Span, Value};
use super::Stack;
const ZERO_SPAN: Span = Span { start: 0, end: 0 };
fn string_value(s: &str) -> Value {
Value::String {
val: s.to_string(),
internal_span: ZERO_SPAN,
}
}
#[test]
fn test_children_see_inner_values() {
let mut original = Stack::new();
original.add_var(0, string_value("hello"));
let cloned = Stack::with_parent(Arc::new(original));
assert_eq!(cloned.get_var(0, ZERO_SPAN), Ok(string_value("hello")));
}
#[test]
fn test_children_dont_see_deleted_values() {
let mut original = Stack::new();
original.add_var(0, string_value("hello"));
let mut cloned = Stack::with_parent(Arc::new(original));
cloned.remove_var(0);
assert_eq!(
cloned.get_var(0, ZERO_SPAN),
Err(crate::ShellError::VariableNotFoundAtRuntime { span: ZERO_SPAN })
);
}
#[test]
fn test_children_changes_override_parent() {
let mut original = Stack::new();
original.add_var(0, string_value("hello"));
let mut cloned = Stack::with_parent(Arc::new(original));
cloned.add_var(0, string_value("there"));
assert_eq!(cloned.get_var(0, ZERO_SPAN), Ok(string_value("there")));
cloned.remove_var(0);
// the underlying value shouldn't magically re-appear
assert_eq!(
cloned.get_var(0, ZERO_SPAN),
Err(crate::ShellError::VariableNotFoundAtRuntime { span: ZERO_SPAN })
);
}
#[test]
fn test_children_changes_persist_in_offspring() {
let mut original = Stack::new();
original.add_var(0, string_value("hello"));
let mut cloned = Stack::with_parent(Arc::new(original));
cloned.add_var(1, string_value("there"));
cloned.remove_var(0);
let cloned = Stack::with_parent(Arc::new(cloned));
assert_eq!(
cloned.get_var(0, ZERO_SPAN),
Err(crate::ShellError::VariableNotFoundAtRuntime { span: ZERO_SPAN })
);
assert_eq!(cloned.get_var(1, ZERO_SPAN), Ok(string_value("there")));
}
#[test]
fn test_merging_children_back_to_parent() {
let mut original = Stack::new();
let engine_state = EngineState::new();
original.add_var(0, string_value("hello"));
let original_arc = Arc::new(original);
let mut cloned = Stack::with_parent(original_arc.clone());
cloned.add_var(1, string_value("there"));
cloned.remove_var(0);
cloned.add_env_var("ADDED_IN_CHILD".to_string(), string_value("New Env Var"));
let original = Stack::with_changes_from_child(original_arc, cloned);
assert_eq!(
original.get_var(0, ZERO_SPAN),
Err(crate::ShellError::VariableNotFoundAtRuntime { span: ZERO_SPAN })
);
assert_eq!(original.get_var(1, ZERO_SPAN), Ok(string_value("there")));
assert_eq!(
original.get_env_var(&engine_state, "ADDED_IN_CHILD"),
Some(string_value("New Env Var")),
);
}
}