nushell/crates/nu-parser/src/flatten.rs
Ian Manske b6c7656194
IO and redirection overhaul (#11934)
# Description
The PR overhauls how IO redirection is handled, allowing more explicit
and fine-grain control over `stdout` and `stderr` output as well as more
efficient IO and piping.

To summarize the changes in this PR:
- Added a new `IoStream` type to indicate the intended destination for a
pipeline element's `stdout` and `stderr`.
- The `stdout` and `stderr` `IoStream`s are stored in the `Stack` and to
avoid adding 6 additional arguments to every eval function and
`Command::run`. The `stdout` and `stderr` streams can be temporarily
overwritten through functions on `Stack` and these functions will return
a guard that restores the original `stdout` and `stderr` when dropped.
- In the AST, redirections are now directly part of a `PipelineElement`
as a `Option<Redirection>` field instead of having multiple different
`PipelineElement` enum variants for each kind of redirection. This
required changes to the parser, mainly in `lite_parser.rs`.
- `Command`s can also set a `IoStream` override/redirection which will
apply to the previous command in the pipeline. This is used, for
example, in `ignore` to allow the previous external command to have its
stdout redirected to `Stdio::null()` at spawn time. In contrast, the
current implementation has to create an os pipe and manually consume the
output on nushell's side. File and pipe redirections (`o>`, `e>`, `e>|`,
etc.) have precedence over overrides from commands.

This PR improves piping and IO speed, partially addressing #10763. Using
the `throughput` command from that issue, this PR gives the following
speedup on my setup for the commands below:
| Command | Before (MB/s) | After (MB/s) | Bash (MB/s) |
| --------------------------- | -------------:| ------------:|
-----------:|
| `throughput o> /dev/null` | 1169 | 52938 | 54305 |
| `throughput \| ignore` | 840 | 55438 | N/A |
| `throughput \| null` | Error | 53617 | N/A |
| `throughput \| rg 'x'` | 1165 | 3049 | 3736 |
| `(throughput) \| rg 'x'` | 810 | 3085 | 3815 |

(Numbers above are the median samples for throughput)

This PR also paves the way to refactor our `ExternalStream` handling in
the various commands. For example, this PR already fixes the following
code:
```nushell
^sh -c 'echo -n "hello "; sleep 0; echo "world"' | find "hello world"
```
This returns an empty list on 0.90.1 and returns a highlighted "hello
world" on this PR.

Since the `stdout` and `stderr` `IoStream`s are available to commands
when they are run, then this unlocks the potential for more convenient
behavior. E.g., the `find` command can disable its ansi highlighting if
it detects that the output `IoStream` is not the terminal. Knowing the
output streams will also allow background job output to be redirected
more easily and efficiently.

# User-Facing Changes
- External commands returned from closures will be collected (in most
cases):
  ```nushell
  1..2 | each {|_| nu -c "print a" }
  ```
This gives `["a", "a"]` on this PR, whereas this used to print "a\na\n"
and then return an empty list.

  ```nushell
  1..2 | each {|_| nu -c "print -e a" }
  ```
This gives `["", ""]` and prints "a\na\n" to stderr, whereas this used
to return an empty list and print "a\na\n" to stderr.

- Trailing new lines are always trimmed for external commands when
piping into internal commands or collecting it as a value. (Failure to
decode the output as utf-8 will keep the trailing newline for the last
binary value.) In the current nushell version, the following three code
snippets differ only in parenthesis placement, but they all also have
different outputs:

  1. `1..2 | each { ^echo a }`
     ```
     a
     a
     ╭────────────╮
     │ empty list │
     ╰────────────╯
     ```
  2. `1..2 | each { (^echo a) }`
     ```
     ╭───┬───╮
     │ 0 │ a │
     │ 1 │ a │
     ╰───┴───╯
     ```
  3. `1..2 | (each { ^echo a })`
     ```
     ╭───┬───╮
     │ 0 │ a │
     │   │   │
     │ 1 │ a │
     │   │   │
     ╰───┴───╯
     ```

  But in this PR, the above snippets will all have the same output:
  ```
  ╭───┬───╮
  │ 0 │ a │
  │ 1 │ a │
  ╰───┴───╯
  ```

- All existing flags on `run-external` are now deprecated.

- File redirections now apply to all commands inside a code block:
  ```nushell
  (nu -c "print -e a"; nu -c "print -e b") e> test.out
  ```
This gives "a\nb\n" in `test.out` and prints nothing. The same result
would happen when printing to stdout and using a `o>` file redirection.

- External command output will (almost) never be ignored, and ignoring
output must be explicit now:
  ```nushell
  (^echo a; ^echo b)
  ```
This prints "a\nb\n", whereas this used to print only "b\n". This only
applies to external commands; values and internal commands not in return
position will not print anything (e.g., `(echo a; echo b)` still only
prints "b").

- `complete` now always captures stderr (`do` is not necessary).

# After Submitting
The language guide and other documentation will need to be updated.
2024-03-14 15:51:55 -05:00

678 lines
24 KiB
Rust

use nu_protocol::ast::{
Argument, Block, Expr, Expression, ExternalArgument, ImportPatternMember, MatchPattern,
PathMember, Pattern, Pipeline, PipelineElement, PipelineRedirection, RecordItem,
};
use nu_protocol::{engine::StateWorkingSet, Span};
use nu_protocol::{DeclId, VarId};
use std::fmt::{Display, Formatter, Result};
#[derive(Debug, Eq, PartialEq, Ord, Clone, PartialOrd)]
pub enum FlatShape {
And,
Binary,
Block,
Bool,
Closure,
Custom(DeclId),
DateTime,
Directory,
External,
ExternalArg,
ExternalResolved,
Filepath,
Flag,
Float,
Garbage,
GlobPattern,
Int,
InternalCall(DeclId),
Keyword,
List,
Literal,
MatchPattern,
Nothing,
Operator,
Or,
Pipe,
Range,
Record,
Redirection,
Signature,
String,
StringInterpolation,
Table,
Variable(VarId),
VarDecl(VarId),
}
impl Display for FlatShape {
fn fmt(&self, f: &mut Formatter) -> Result {
match self {
FlatShape::And => write!(f, "shape_and"),
FlatShape::Binary => write!(f, "shape_binary"),
FlatShape::Block => write!(f, "shape_block"),
FlatShape::Bool => write!(f, "shape_bool"),
FlatShape::Closure => write!(f, "shape_closure"),
FlatShape::Custom(_) => write!(f, "shape_custom"),
FlatShape::DateTime => write!(f, "shape_datetime"),
FlatShape::Directory => write!(f, "shape_directory"),
FlatShape::External => write!(f, "shape_external"),
FlatShape::ExternalArg => write!(f, "shape_externalarg"),
FlatShape::ExternalResolved => write!(f, "shape_external_resolved"),
FlatShape::Filepath => write!(f, "shape_filepath"),
FlatShape::Flag => write!(f, "shape_flag"),
FlatShape::Float => write!(f, "shape_float"),
FlatShape::Garbage => write!(f, "shape_garbage"),
FlatShape::GlobPattern => write!(f, "shape_globpattern"),
FlatShape::Int => write!(f, "shape_int"),
FlatShape::InternalCall(_) => write!(f, "shape_internalcall"),
FlatShape::Keyword => write!(f, "shape_keyword"),
FlatShape::List => write!(f, "shape_list"),
FlatShape::Literal => write!(f, "shape_literal"),
FlatShape::MatchPattern => write!(f, "shape_match_pattern"),
FlatShape::Nothing => write!(f, "shape_nothing"),
FlatShape::Operator => write!(f, "shape_operator"),
FlatShape::Or => write!(f, "shape_or"),
FlatShape::Pipe => write!(f, "shape_pipe"),
FlatShape::Range => write!(f, "shape_range"),
FlatShape::Record => write!(f, "shape_record"),
FlatShape::Redirection => write!(f, "shape_redirection"),
FlatShape::Signature => write!(f, "shape_signature"),
FlatShape::String => write!(f, "shape_string"),
FlatShape::StringInterpolation => write!(f, "shape_string_interpolation"),
FlatShape::Table => write!(f, "shape_table"),
FlatShape::Variable(_) => write!(f, "shape_variable"),
FlatShape::VarDecl(_) => write!(f, "shape_vardecl"),
}
}
}
pub fn flatten_block(working_set: &StateWorkingSet, block: &Block) -> Vec<(Span, FlatShape)> {
let mut output = vec![];
for pipeline in &block.pipelines {
output.extend(flatten_pipeline(working_set, pipeline));
}
output
}
pub fn flatten_expression(
working_set: &StateWorkingSet,
expr: &Expression,
) -> Vec<(Span, FlatShape)> {
if let Some(custom_completion) = &expr.custom_completion {
return vec![(expr.span, FlatShape::Custom(*custom_completion))];
}
match &expr.expr {
Expr::BinaryOp(lhs, op, rhs) => {
let mut output = vec![];
output.extend(flatten_expression(working_set, lhs));
output.extend(flatten_expression(working_set, op));
output.extend(flatten_expression(working_set, rhs));
output
}
Expr::UnaryNot(inner_expr) => {
let mut output = vec![(
Span::new(expr.span.start, expr.span.start + 3),
FlatShape::Operator,
)];
output.extend(flatten_expression(working_set, inner_expr));
output
}
Expr::Closure(block_id) => {
let outer_span = expr.span;
let mut output = vec![];
let block = working_set.get_block(*block_id);
let flattened = flatten_block(working_set, block);
if let Some(first) = flattened.first() {
if first.0.start > outer_span.start {
output.push((
Span::new(outer_span.start, first.0.start),
FlatShape::Closure,
));
}
}
let last = if let Some(last) = flattened.last() {
if last.0.end < outer_span.end {
Some((Span::new(last.0.end, outer_span.end), FlatShape::Closure))
} else {
None
}
} else {
None
};
output.extend(flattened);
if let Some(last) = last {
output.push(last)
}
output
}
Expr::Block(block_id) | Expr::RowCondition(block_id) | Expr::Subexpression(block_id) => {
let outer_span = expr.span;
let mut output = vec![];
let flattened = flatten_block(working_set, working_set.get_block(*block_id));
if let Some(first) = flattened.first() {
if first.0.start > outer_span.start {
output.push((Span::new(outer_span.start, first.0.start), FlatShape::Block));
}
}
let last = if let Some(last) = flattened.last() {
if last.0.end < outer_span.end {
Some((Span::new(last.0.end, outer_span.end), FlatShape::Block))
} else {
None
}
} else {
None
};
output.extend(flattened);
if let Some(last) = last {
output.push(last)
}
output
}
Expr::Call(call) => {
let mut output = vec![];
if call.head.end != 0 {
// Make sure we don't push synthetic calls
output.push((call.head, FlatShape::InternalCall(call.decl_id)));
}
let mut args = vec![];
for arg in &call.arguments {
match arg {
Argument::Positional(positional) | Argument::Unknown(positional) => {
let flattened = flatten_expression(working_set, positional);
args.extend(flattened);
}
Argument::Named(named) => {
if named.0.span.end != 0 {
// Ignore synthetic flags
args.push((named.0.span, FlatShape::Flag));
}
if let Some(expr) = &named.2 {
args.extend(flatten_expression(working_set, expr));
}
}
Argument::Spread(expr) => {
args.push((
Span::new(expr.span.start - 3, expr.span.start),
FlatShape::Operator,
));
args.extend(flatten_expression(working_set, expr));
}
}
}
// sort these since flags and positional args can be intermixed
args.sort();
output.extend(args);
output
}
Expr::ExternalCall(head, args) => {
let mut output = vec![];
match **head {
Expression {
expr: Expr::String(..),
span,
..
} => {
output.push((span, FlatShape::External));
}
_ => {
output.extend(flatten_expression(working_set, head));
}
}
for arg in args {
//output.push((*arg, FlatShape::ExternalArg));
match arg {
ExternalArgument::Regular(expr) => match expr {
Expression {
expr: Expr::String(..),
span,
..
} => {
output.push((*span, FlatShape::ExternalArg));
}
_ => {
output.extend(flatten_expression(working_set, expr));
}
},
ExternalArgument::Spread(expr) => {
output.push((
Span::new(expr.span.start - 3, expr.span.start),
FlatShape::Operator,
));
output.extend(flatten_expression(working_set, expr));
}
}
}
output
}
Expr::Garbage => {
vec![(expr.span, FlatShape::Garbage)]
}
Expr::Nothing => {
vec![(expr.span, FlatShape::Nothing)]
}
Expr::DateTime(_) => {
vec![(expr.span, FlatShape::DateTime)]
}
Expr::Binary(_) => {
vec![(expr.span, FlatShape::Binary)]
}
Expr::Int(_) => {
vec![(expr.span, FlatShape::Int)]
}
Expr::Float(_) => {
vec![(expr.span, FlatShape::Float)]
}
Expr::MatchBlock(matches) => {
let mut output = vec![];
for match_ in matches {
output.extend(flatten_pattern(&match_.0));
output.extend(flatten_expression(working_set, &match_.1));
}
output
}
Expr::ValueWithUnit(x, unit) => {
let mut output = flatten_expression(working_set, x);
output.push((unit.span, FlatShape::String));
output
}
Expr::CellPath(cell_path) => {
let mut output = vec![];
for path_element in &cell_path.members {
match path_element {
PathMember::String { span, .. } => output.push((*span, FlatShape::String)),
PathMember::Int { span, .. } => output.push((*span, FlatShape::Int)),
}
}
output
}
Expr::FullCellPath(cell_path) => {
let mut output = vec![];
output.extend(flatten_expression(working_set, &cell_path.head));
for path_element in &cell_path.tail {
match path_element {
PathMember::String { span, .. } => output.push((*span, FlatShape::String)),
PathMember::Int { span, .. } => output.push((*span, FlatShape::Int)),
}
}
output
}
Expr::ImportPattern(import_pattern) => {
let mut output = vec![(import_pattern.head.span, FlatShape::String)];
for member in &import_pattern.members {
match member {
ImportPatternMember::Glob { span } => output.push((*span, FlatShape::String)),
ImportPatternMember::Name { span, .. } => {
output.push((*span, FlatShape::String))
}
ImportPatternMember::List { names } => {
for (_, span) in names {
output.push((*span, FlatShape::String));
}
}
}
}
output
}
Expr::Overlay(_) => {
vec![(expr.span, FlatShape::String)]
}
Expr::Range(from, next, to, op) => {
let mut output = vec![];
if let Some(f) = from {
output.extend(flatten_expression(working_set, f));
}
if let Some(s) = next {
output.extend(vec![(op.next_op_span, FlatShape::Operator)]);
output.extend(flatten_expression(working_set, s));
}
output.extend(vec![(op.span, FlatShape::Operator)]);
if let Some(t) = to {
output.extend(flatten_expression(working_set, t));
}
output
}
Expr::Bool(_) => {
vec![(expr.span, FlatShape::Bool)]
}
Expr::Filepath(_, _) => {
vec![(expr.span, FlatShape::Filepath)]
}
Expr::Directory(_, _) => {
vec![(expr.span, FlatShape::Directory)]
}
Expr::GlobPattern(_, _) => {
vec![(expr.span, FlatShape::GlobPattern)]
}
Expr::List(list) => {
let outer_span = expr.span;
let mut last_end = outer_span.start;
let mut output = vec![];
for l in list {
let flattened = flatten_expression(working_set, l);
if let Some(first) = flattened.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::List));
}
}
if let Some(last) = flattened.last() {
last_end = last.0.end;
}
output.extend(flattened);
}
if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::List));
}
output
}
Expr::StringInterpolation(exprs) => {
let mut output = vec![];
for expr in exprs {
output.extend(flatten_expression(working_set, expr));
}
if let Some(first) = output.first() {
if first.0.start != expr.span.start {
// If we aren't a bare word interpolation, also highlight the outer quotes
output.insert(
0,
(
Span::new(expr.span.start, expr.span.start + 2),
FlatShape::StringInterpolation,
),
);
output.push((
Span::new(expr.span.end - 1, expr.span.end),
FlatShape::StringInterpolation,
));
}
}
output
}
Expr::Record(list) => {
let outer_span = expr.span;
let mut last_end = outer_span.start;
let mut output = vec![];
for l in list {
match l {
RecordItem::Pair(key, val) => {
let flattened_lhs = flatten_expression(working_set, key);
let flattened_rhs = flatten_expression(working_set, val);
if let Some(first) = flattened_lhs.first() {
if first.0.start > last_end {
output
.push((Span::new(last_end, first.0.start), FlatShape::Record));
}
}
if let Some(last) = flattened_lhs.last() {
last_end = last.0.end;
}
output.extend(flattened_lhs);
if let Some(first) = flattened_rhs.first() {
if first.0.start > last_end {
output
.push((Span::new(last_end, first.0.start), FlatShape::Record));
}
}
if let Some(last) = flattened_rhs.last() {
last_end = last.0.end;
}
output.extend(flattened_rhs);
}
RecordItem::Spread(op_span, record) => {
if op_span.start > last_end {
output.push((Span::new(last_end, op_span.start), FlatShape::Record));
}
output.push((*op_span, FlatShape::Operator));
last_end = op_span.end;
let flattened_inner = flatten_expression(working_set, record);
if let Some(first) = flattened_inner.first() {
if first.0.start > last_end {
output
.push((Span::new(last_end, first.0.start), FlatShape::Record));
}
}
if let Some(last) = flattened_inner.last() {
last_end = last.0.end;
}
output.extend(flattened_inner);
}
}
}
if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::Record));
}
output
}
Expr::Keyword(_, span, expr) => {
let mut output = vec![(*span, FlatShape::Keyword)];
output.extend(flatten_expression(working_set, expr));
output
}
Expr::Operator(_) => {
vec![(expr.span, FlatShape::Operator)]
}
Expr::Signature(_) => {
vec![(expr.span, FlatShape::Signature)]
}
Expr::String(_) => {
vec![(expr.span, FlatShape::String)]
}
Expr::Table(headers, cells) => {
let outer_span = expr.span;
let mut last_end = outer_span.start;
let mut output = vec![];
for e in headers {
let flattened = flatten_expression(working_set, e);
if let Some(first) = flattened.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::Table));
}
}
if let Some(last) = flattened.last() {
last_end = last.0.end;
}
output.extend(flattened);
}
for row in cells {
for expr in row {
let flattened = flatten_expression(working_set, expr);
if let Some(first) = flattened.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::Table));
}
}
if let Some(last) = flattened.last() {
last_end = last.0.end;
}
output.extend(flattened);
}
}
if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::Table));
}
output
}
Expr::Var(var_id) => {
vec![(expr.span, FlatShape::Variable(*var_id))]
}
Expr::VarDecl(var_id) => {
vec![(expr.span, FlatShape::VarDecl(*var_id))]
}
Expr::Spread(inner_expr) => {
let mut output = vec![(
Span::new(expr.span.start, expr.span.start + 3),
FlatShape::Operator,
)];
output.extend(flatten_expression(working_set, inner_expr));
output
}
}
}
pub fn flatten_pipeline_element(
working_set: &StateWorkingSet,
pipeline_element: &PipelineElement,
) -> Vec<(Span, FlatShape)> {
let mut output = if let Some(span) = pipeline_element.pipe {
let mut output = vec![(span, FlatShape::Pipe)];
output.extend(flatten_expression(working_set, &pipeline_element.expr));
output
} else {
flatten_expression(working_set, &pipeline_element.expr)
};
if let Some(redirection) = pipeline_element.redirection.as_ref() {
match redirection {
PipelineRedirection::Single { target, .. } => {
output.push((target.span(), FlatShape::Redirection));
if let Some(expr) = target.expr() {
output.extend(flatten_expression(working_set, expr));
}
}
PipelineRedirection::Separate { out, err } => {
let (out, err) = if out.span() <= err.span() {
(out, err)
} else {
(err, out)
};
output.push((out.span(), FlatShape::Redirection));
if let Some(expr) = out.expr() {
output.extend(flatten_expression(working_set, expr));
}
output.push((err.span(), FlatShape::Redirection));
if let Some(expr) = err.expr() {
output.extend(flatten_expression(working_set, expr));
}
}
}
}
output
}
pub fn flatten_pipeline(
working_set: &StateWorkingSet,
pipeline: &Pipeline,
) -> Vec<(Span, FlatShape)> {
let mut output = vec![];
for expr in &pipeline.elements {
output.extend(flatten_pipeline_element(working_set, expr))
}
output
}
pub fn flatten_pattern(match_pattern: &MatchPattern) -> Vec<(Span, FlatShape)> {
let mut output = vec![];
match &match_pattern.pattern {
Pattern::Garbage => {
output.push((match_pattern.span, FlatShape::Garbage));
}
Pattern::IgnoreValue => {
output.push((match_pattern.span, FlatShape::Nothing));
}
Pattern::IgnoreRest => {
output.push((match_pattern.span, FlatShape::Nothing));
}
Pattern::List(items) => {
if let Some(first) = items.first() {
if let Some(last) = items.last() {
output.push((
Span::new(match_pattern.span.start, first.span.start),
FlatShape::MatchPattern,
));
for item in items {
output.extend(flatten_pattern(item));
}
output.push((
Span::new(last.span.end, match_pattern.span.end),
FlatShape::MatchPattern,
))
}
} else {
output.push((match_pattern.span, FlatShape::MatchPattern));
}
}
Pattern::Record(items) => {
if let Some(first) = items.first() {
if let Some(last) = items.last() {
output.push((
Span::new(match_pattern.span.start, first.1.span.start),
FlatShape::MatchPattern,
));
for item in items {
output.extend(flatten_pattern(&item.1));
}
output.push((
Span::new(last.1.span.end, match_pattern.span.end),
FlatShape::MatchPattern,
))
}
} else {
output.push((match_pattern.span, FlatShape::MatchPattern));
}
}
Pattern::Value(_) => {
output.push((match_pattern.span, FlatShape::MatchPattern));
}
Pattern::Variable(var_id) => {
output.push((match_pattern.span, FlatShape::VarDecl(*var_id)));
}
Pattern::Rest(var_id) => {
output.push((match_pattern.span, FlatShape::VarDecl(*var_id)));
}
Pattern::Or(patterns) => {
for pattern in patterns {
output.extend(flatten_pattern(pattern));
}
}
}
output
}