nushell/crates/nu-command/src/charting/histogram.rs
Stefan Holderbach f7647584a3
Clippy with the current stable toolchain (#6615)
Fix lints that are coming with rust 1.64

Passes with the earlier toolchain from `rust-toolchain.toml` as well.
2022-09-26 19:29:25 +02:00

257 lines
8.6 KiB
Rust

use super::hashable_value::HashableValue;
use nu_engine::CallExt;
use nu_protocol::ast::Call;
use nu_protocol::engine::{Command, EngineState, Stack};
use nu_protocol::{
Example, IntoPipelineData, PipelineData, ShellError, Signature, Span, Spanned, SyntaxShape,
Value,
};
use std::collections::HashMap;
use std::iter;
#[derive(Clone)]
pub struct Histogram;
enum PercentageCalcMethod {
Normalize,
Relative,
}
impl Command for Histogram {
fn name(&self) -> &str {
"histogram"
}
fn signature(&self) -> Signature {
Signature::build("histogram")
.optional("column-name", SyntaxShape::String, "column name to calc frequency, no need to provide if input is just a list")
.optional("frequency-column-name", SyntaxShape::String, "histogram's frequency column, default to be frequency column output")
.named("percentage-type", SyntaxShape::String, "percentage calculate method, can be 'normalize' or 'relative', in 'normalize', defaults to be 'normalize'", Some('t'))
}
fn usage(&self) -> &str {
"Creates a new table with a histogram based on the column name passed in."
}
fn examples(&self) -> Vec<Example> {
vec![
Example {
description: "Get a histogram for the types of files",
example: "ls | histogram type",
result: None,
},
Example {
description:
"Get a histogram for the types of files, with frequency column named freq",
example: "ls | histogram type freq",
result: None,
},
Example {
description: "Get a histogram for a list of numbers",
example: "echo [1 2 3 1 1 1 2 2 1 1] | histogram",
result: None,
},
Example {
description: "Get a histogram for a list of numbers, and percentage is based on the maximum value",
example: "echo [1 2 3 1 1 1 2 2 1 1] | histogram --percentage-type relative",
result: None,
}
]
}
fn run(
&self,
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
input: PipelineData,
) -> Result<PipelineData, ShellError> {
// input check.
let column_name: Option<Spanned<String>> = call.opt(engine_state, stack, 0)?;
let frequency_name_arg = call.opt::<Spanned<String>>(engine_state, stack, 1)?;
let frequency_column_name = match frequency_name_arg {
Some(inner) => {
let span = inner.span;
if ["value", "count", "quantile", "percentage"].contains(&inner.item.as_str()) {
return Err(ShellError::UnsupportedInput(
"frequency-column-name can't be 'value', 'count' or 'percentage'"
.to_string(),
span,
));
}
inner.item
}
None => "frequency".to_string(),
};
let calc_method: Option<Spanned<String>> =
call.get_flag(engine_state, stack, "percentage-type")?;
let calc_method = match calc_method {
None => PercentageCalcMethod::Normalize,
Some(inner) => match inner.item.as_str() {
"normalize" => PercentageCalcMethod::Normalize,
"relative" => PercentageCalcMethod::Relative,
_ => {
return Err(ShellError::UnsupportedInput(
"calc method can only be 'normalize' or 'relative'".to_string(),
inner.span,
))
}
},
};
let span = call.head;
let data_as_value = input.into_value(span);
// `input` is not a list, here we can return an error.
match data_as_value.as_list() {
Ok(list_value) => run_histogram(
list_value.to_vec(),
column_name,
frequency_column_name,
calc_method,
span,
),
Err(e) => Err(e),
}
}
}
fn run_histogram(
values: Vec<Value>,
column_name: Option<Spanned<String>>,
freq_column: String,
calc_method: PercentageCalcMethod,
head_span: Span,
) -> Result<PipelineData, ShellError> {
let mut inputs = vec![];
// convert from inputs to hashable values.
match column_name {
None => {
// some invalid input scenario needs to handle:
// Expect input is a list of hashable value, if one value is not hashable, throw out error.
for v in values {
let current_span = v.span().unwrap_or(head_span);
inputs.push(HashableValue::from_value(v, head_span).map_err(|_| {
ShellError::UnsupportedInput(
"--column-name is not provided, can only support a list of simple value."
.to_string(),
current_span,
)
})?);
}
}
Some(ref col) => {
// some invalid input scenario needs to handle:
// * item in `input` is not a record, just skip it.
// * a record doesn't contain specific column, just skip it.
// * all records don't contain specific column, throw out error, indicate at least one row should contains specific column.
// * a record contain a value which can't be hashed, skip it.
let col_name = &col.item;
for v in values {
match v {
// parse record, and fill valid value to actual input.
Value::Record { cols, vals, .. } => {
for (c, v) in iter::zip(cols, vals) {
if &c == col_name {
if let Ok(v) = HashableValue::from_value(v, head_span) {
inputs.push(v);
}
}
}
}
_ => continue,
}
}
if inputs.is_empty() {
return Err(ShellError::UnsupportedInput(
format!("expect input is table, and inputs doesn't contain any value which has {col_name} column"),
head_span,
));
}
}
}
let value_column_name = column_name
.map(|x| x.item)
.unwrap_or_else(|| "value".to_string());
Ok(histogram_impl(
inputs,
&value_column_name,
calc_method,
&freq_column,
head_span,
))
}
fn histogram_impl(
inputs: Vec<HashableValue>,
value_column_name: &str,
calc_method: PercentageCalcMethod,
freq_column: &str,
span: Span,
) -> PipelineData {
// here we can make sure that inputs is not empty, and every elements
// is a simple val and ok to make count.
let mut counter = HashMap::new();
let mut max_cnt = 0;
let total_cnt = inputs.len();
for i in inputs {
let new_cnt = *counter.get(&i).unwrap_or(&0) + 1;
counter.insert(i, new_cnt);
if new_cnt > max_cnt {
max_cnt = new_cnt;
}
}
let mut result = vec![];
let result_cols = vec![
value_column_name.to_string(),
"count".to_string(),
"quantile".to_string(),
"percentage".to_string(),
freq_column.to_string(),
];
const MAX_FREQ_COUNT: f64 = 100.0;
for (val, count) in counter.into_iter() {
let quantile = match calc_method {
PercentageCalcMethod::Normalize => count as f64 / total_cnt as f64,
PercentageCalcMethod::Relative => count as f64 / max_cnt as f64,
};
let percentage = format!("{:.2}%", quantile * 100_f64);
let freq = "*".repeat((MAX_FREQ_COUNT * quantile).floor() as usize);
result.push(Value::Record {
cols: result_cols.clone(),
vals: vec![
val.into_value(),
Value::Int { val: count, span },
Value::Float {
val: quantile,
span,
},
Value::String {
val: percentage,
span,
},
Value::String { val: freq, span },
],
span,
});
}
Value::List { vals: result, span }.into_pipeline_data()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_examples() {
use crate::test_examples;
test_examples(Histogram)
}
}