nushell/crates/nu-cmd-dataframe/src/dataframe/lazy/fill_nan.rs
Jack Wright f879c00f9d
The ability to specify a schema when using dfr open and dfr into-df (#11634)
# Description

There are times where explicitly specifying a schema for a dataframe is
needed such as:
- Opening CSV and JSON lines files and needing provide more information
to polars to keep it from failing or in a desire to override default
type conversion
- When converting a nushell value to a dataframe and wanting to override
the default conversion behaviors.

This pull requests provides:
- A flag to allow specifying a schema when using dfr into-df
- A flag to allow specifying a schema when using dfr open that works for
CSV and JSON types
- A new command `dfr schema` which displays schema information and will
allow display support schema dtypes

Schema is specified creating a record that has the key value and the
dtype. Examples usages:

```
{a:1, b:{a:2}} | dfr into-df -s {a: u8, b: {a: i32}} | dfr schema
{a: 1, b: {a: [1 2 3]}, c: [a b c]} | dfr into-df -s {a: u8, b: {a: list<u64>}, c: list<str>} | dfr schema
 dfr open -s {pid: i32, ppid: i32, name: str, status: str, cpu: f64, mem: i64, virtual: i64} /tmp/ps.jsonl  | dfr schema
```

Supported dtypes:
null                                                   
bool                                                   
u8                                                     
u16                                                    
u32                                                    
u64                                                    
i8                                                     
i16                                                    
i32                                                    
i64                                                    
f32                                                    
f64                                                    
str                                                    
binary                                                 
date                                                   
datetime[time_unit: (ms, us, ns) timezone (optional)]  
duration[time_unit: (ms, us, ns)]                      
time                                                   
object                                                 
unknown                                                
list[dtype]


structs are also supported but are specified via another record:
{a: u8, b: {d: str}}

Another feature with the dfr schema command is that it returns the data
back in a format that can be passed to provide a valid schema that can
be passed in as schema argument:

<img width="638" alt="Screenshot 2024-01-29 at 10 23 58"
src="https://github.com/nushell/nushell/assets/56345/b49c3bff-5cda-4c86-975a-dfd91d991373">

---------

Co-authored-by: Jack Wright <jack.wright@disqo.com>
2024-01-29 13:26:04 -06:00

149 lines
5.1 KiB
Rust

use crate::dataframe::values::{Column, NuDataFrame, NuExpression};
use nu_engine::CallExt;
use nu_protocol::{
ast::Call,
engine::{Command, EngineState, Stack},
Category, Example, PipelineData, ShellError, Signature, Span, SyntaxShape, Type, Value,
};
#[derive(Clone)]
pub struct LazyFillNA;
impl Command for LazyFillNA {
fn name(&self) -> &str {
"dfr fill-nan"
}
fn usage(&self) -> &str {
"Replaces NaN values with the given expression."
}
fn signature(&self) -> Signature {
Signature::build(self.name())
.required(
"fill",
SyntaxShape::Any,
"Expression to use to fill the NAN values",
)
.input_output_type(
Type::Custom("dataframe".into()),
Type::Custom("dataframe".into()),
)
.category(Category::Custom("lazyframe".into()))
}
fn examples(&self) -> Vec<Example> {
vec![
Example {
description: "Fills the NaN values with 0",
example: "[1 2 NaN 3 NaN] | dfr into-df | dfr fill-nan 0",
result: Some(
NuDataFrame::try_from_columns(
vec![Column::new(
"0".to_string(),
vec![
Value::test_int(1),
Value::test_int(2),
Value::test_int(0),
Value::test_int(3),
Value::test_int(0),
],
)],
None,
)
.expect("Df for test should not fail")
.into_value(Span::test_data()),
),
},
Example {
description: "Fills the NaN values of a whole dataframe",
example: "[[a b]; [0.2 1] [0.1 NaN]] | dfr into-df | dfr fill-nan 0",
result: Some(
NuDataFrame::try_from_columns(
vec![
Column::new(
"a".to_string(),
vec![Value::test_float(0.2), Value::test_float(0.1)],
),
Column::new(
"b".to_string(),
vec![Value::test_int(1), Value::test_int(0)],
),
],
None,
)
.expect("Df for test should not fail")
.into_value(Span::test_data()),
),
},
]
}
fn run(
&self,
engine_state: &EngineState,
stack: &mut Stack,
call: &Call,
input: PipelineData,
) -> Result<PipelineData, ShellError> {
let fill: Value = call.req(engine_state, stack, 0)?;
let value = input.into_value(call.head);
if NuExpression::can_downcast(&value) {
let expr = NuExpression::try_from_value(value)?;
let fill = NuExpression::try_from_value(fill)?.into_polars();
let expr: NuExpression = expr.into_polars().fill_nan(fill).into();
Ok(PipelineData::Value(
NuExpression::into_value(expr, call.head),
None,
))
} else {
let val_span = value.span();
let frame = NuDataFrame::try_from_value(value)?;
let columns = frame.columns(val_span)?;
let dataframe = columns
.into_iter()
.map(|column| {
let column_name = column.name().to_string();
let values = column
.into_iter()
.map(|value| {
let span = value.span();
match value {
Value::Float { val, .. } => {
if val.is_nan() {
fill.clone()
} else {
value
}
}
Value::List { vals, .. } => {
NuDataFrame::fill_list_nan(vals, span, fill.clone())
}
_ => value,
}
})
.collect::<Vec<Value>>();
Column::new(column_name, values)
})
.collect::<Vec<Column>>();
Ok(PipelineData::Value(
NuDataFrame::try_from_columns(dataframe, None)?.into_value(call.head),
None,
))
}
}
}
#[cfg(test)]
mod test {
use super::super::super::test_dataframe::test_dataframe;
use super::*;
#[test]
fn test_examples() {
test_dataframe(vec![Box::new(LazyFillNA {})])
}
}