2021-03-22 09:03:26 +01:00
{
"pages" : 221 ,
"items" : 51638 ,
"groupedItems" : 8465 ,
2021-03-23 08:08:13 +01:00
"changes" : 663 ,
2021-03-22 09:03:26 +01:00
"schema" : [
{
"name" : "line"
} ,
{
"name" : "x"
} ,
{
"name" : "y"
} ,
{
2021-04-11 18:20:26 +02:00
"name" : "width"
2021-03-22 09:03:26 +01:00
} ,
{
2021-04-11 18:20:26 +02:00
"name" : "height"
2021-03-22 09:03:26 +01:00
} ,
{
2021-04-11 18:20:26 +02:00
"name" : "str"
2021-03-22 09:03:26 +01:00
} ,
{
2021-04-11 18:20:26 +02:00
"name" : "fontName"
2021-03-22 09:03:26 +01:00
} ,
{
2021-04-11 18:20:26 +02:00
"name" : "dir"
2021-03-22 09:03:26 +01:00
}
2021-03-28 10:58:24 +02:00
] ,
"globals" : {
2021-03-28 23:45:26 +02:00
"maxHeight" : 24.7871 ,
"minX" : 52.262 ,
"maxX" : 571.0594300000001 ,
"minY" : 76.19790000000002 ,
"maxY" : 738.022 ,
"pageMapping" : {
"pageFactor" : 1 ,
"detectedOnPage" : true
2021-03-29 07:24:20 +02:00
}
2021-03-28 10:58:24 +02:00
}
2021-03-23 08:08:13 +01:00
}
2021-04-01 18:16:42 +02:00
{ "page" : 4 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "5" , "dir" : "ltr" , "width" : "5.85" , "height" : "11.96" , "transform" : [ "11.96" , "0.00" , "0.00" , "11.96" , "526.49" , "738.02" ] , "fontName" : "LERRTL+CMR12" , "x" : 526.491 , "y" : 738.022 , "line" : 0 }
{ "page" : 5 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "6 Chapter 1. Shortest paths and trees" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "190.74" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 6 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 1.1. Shortest paths with nonnegative lengths 7" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "276.58" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 7 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "8 Chapter 1. Shortest paths and trees" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "190.74" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 8 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 1.2. Speeding up Dijkstra’ s algorithm with heaps 9" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "298.85" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 9 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "10 Chapter 1. Shortest paths and trees" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "196.59" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 10 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 1.2. Speeding up Dijkstra’ s algorithm with heaps 11" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "304.70" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 11 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "12 Chapter 1. Shortest paths and trees" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "196.59" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 12 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 1.3. Shortest paths with arbitrary lengths 13" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "267.15" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 13 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "14 Chapter 1. Shortest paths and trees" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "196.59" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 14 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 1.3. Shortest paths with arbitrary lengths 15" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "267.15" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 15 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "16 Chapter 1. Shortest paths and trees" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "196.59" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 16 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 1.3. Shortest paths with arbitrary lengths 17" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "267.15" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 17 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "18 Chapter 1. Shortest paths and trees" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "196.59" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 18 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 1.4. Minimum spanning trees 19" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "203.02" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 19 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "20 Chapter 1. Shortest paths and trees" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "196.59" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 20 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 1.4. Minimum spanning trees 21" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "203.02" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 21 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "22 Chapter 1. Shortest paths and trees" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "196.59" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 22 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "23" , "dir" : "ltr" , "width" : "11.70" , "height" : "11.96" , "transform" : [ "11.96" , "0.00" , "0.00" , "11.96" , "520.64" , "738.02" ] , "fontName" : "LERRTL+CMR12" , "x" : 520.641 , "y" : 738.022 , "line" : 0 }
{ "page" : 23 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "24 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.37" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 24 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 2.2. Polytopes and polyhedra 25" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "203.44" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 25 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "26 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.37" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 26 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 2.2. Polytopes and polyhedra 27" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "203.44" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 27 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "28 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.37" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 28 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 2.2. Polytopes and polyhedra 29" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "203.44" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 29 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "30 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.37" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 30 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 2.3. Farkas’ lemma 31" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "150.11" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 31 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "32 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.37" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 32 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 2.4. Linear programming 33" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "180.94" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 33 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "34 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.37" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 34 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 2.4. Linear programming 35" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "180.94" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 35 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "36 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.37" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 36 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 2.4. Linear programming 37" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "180.94" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 37 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "38 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.37" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 38 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "39" , "dir" : "ltr" , "width" : "11.70" , "height" : "11.96" , "transform" : [ "11.96" , "0.00" , "0.00" , "11.96" , "520.64" , "738.02" ] , "fontName" : "LERRTL+CMR12" , "x" : 520.641 , "y" : 738.022 , "line" : 0 }
{ "page" : 39 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "40 Chapter 3. Matchings and covers in bipartite graphs" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "281.46" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 40 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 3.3. K ̋onig’ s theorems 41" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "164.65" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 41 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "42 Chapter 3. Matchings and covers in bipartite graphs" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "281.46" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 42 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 3.3. K ̋onig’ s theorems 43" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "164.65" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 43 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "44 Chapter 3. Matchings and covers in bipartite graphs" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "281.46" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 44 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 3.4. Cardinality bipartite matching algorithm 45" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "286.45" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 45 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "46 Chapter 3. Matchings and covers in bipartite graphs" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "281.46" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 46 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 3.5. Weighted bipartite matching 47" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "223.06" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 47 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "48 Chapter 3. Matchings and covers in bipartite graphs" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "281.46" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 48 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 3.5. Weighted bipartite matching 49" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "223.06" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 49 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "50 Chapter 3. Matchings and covers in bipartite graphs" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "281.46" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 50 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 3.6. The matching polytope 51" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "195.73" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 51 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "52 Chapter 3. Matchings and covers in bipartite graphs" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "281.46" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 52 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 3.6. The matching polytope 53" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "195.73" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 53 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "54 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 54 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.1. Menger’ s theorem 55" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "167.52" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 55 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "56 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 56 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.1. Menger’ s theorem 57" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "167.52" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 57 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "58 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 58 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.2. Flows in networks 59" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "168.39" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 59 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "60 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 60 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.3. Finding a maximum flow 61" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "204.35" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 61 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "62 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 62 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.3. Finding a maximum flow 63" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "204.35" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 63 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "64 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 64 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.4. Speeding up the maximum flow algorithm 65" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "291.33" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 65 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "66 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 66 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.4. Speeding up the maximum flow algorithm 67" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "291.33" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 67 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "68 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 68 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.5. Circulations 69" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "137.92" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 69 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "70 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 70 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.6. Minimum-cost flows 71" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "178.63" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 71 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "72 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 72 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.6. Minimum-cost flows 73" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "178.63" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 73 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "74 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 74 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.6. Minimum-cost flows 75" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "178.63" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 75 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "76 Chapter 4. Menger’ s theorem, flows, and circulations" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "283.72" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 76 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 4.6. Minimum-cost flows 77" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "178.63" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 77 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "78 Chapter 5. Nonbipartite matching" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "187.61" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 78 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 5.1. Tutte’ s 1-factor theorem and the Tutte-Berge f ormula 79" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "352.04" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 79 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "80 Chapter 5. Nonbipartite matching" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "187.61" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 80 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 5.2. Cardinality matching algorithm 81" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "238.33" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 81 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "82 Chapter 5. Nonbipartite matching" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "187.61" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 82 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 5.2. Cardinality matching algorithm 83" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "238.33" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 83 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "84 Chapter 5. Nonbipartite matching" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "187.61" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 84 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 5.3. Weighted matching algorithm 85" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "228.25" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 85 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "86 Chapter 5. Nonbipartite matching" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "187.61" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 86 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 5.3. Weighted matching algorithm 87" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "228.25" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 87 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "88 Chapter 5. Nonbipartite matching" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "187.61" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 88 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 5.3. Weighted matching algorithm 89" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "228.25" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 89 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "90 Chapter 5. Nonbipartite matching" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "187.61" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 90 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 5.4. The matching polytope 91" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "195.73" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 91 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "92 Chapter 5. Nonbipartite matching" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "187.61" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 92 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 5.4. The matching polytope 93" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "195.73" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 93 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "94 Chapter 5. Nonbipartite matching" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "187.61" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 94 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 5.5. The Cunningham-Marsh formula 95" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "244.90" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 95 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "96 Chapter 5. Nonbipartite matching" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "187.61" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 96 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "97" , "dir" : "ltr" , "width" : "11.70" , "height" : "11.96" , "transform" : [ "11.96" , "0.00" , "0.00" , "11.96" , "520.64" , "738.02" ] , "fontName" : "LERRTL+CMR12" , "x" : 520.641 , "y" : 738.022 , "line" : 0 }
{ "page" : 97 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "98 Chapter 6. Problems, algorithms, and running time" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "276.68" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 98 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 6.2. Words 99" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "108.66" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 99 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "100 Chapter 6. Problems, algorithms, and running time" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "282.53" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 100 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 6.5. The class NP 101" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "150.17" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 101 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "102 Chapter 6. Problems, algorithms, and running time" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "282.53" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 102 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 6.7. NP-completeness 103" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "169.04" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 103 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "104 Chapter 6. Problems, algorithms, and running time" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "282.53" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 104 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 6.8. NP-completeness of the satisfiability problem 105" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "313.86" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 105 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "106 Chapter 6. Problems, algorithms, and running time" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "282.53" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 106 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 6.9. NP-completeness of some other problems 107" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "292.41" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 107 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "108 Chapter 6. Problems, algorithms, and running time" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "282.53" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 108 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 6.10. Turing machines 109" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "172.39" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 109 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "110 Chapter 6. Problems, algorithms, and running time" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "282.53" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 110 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "111" , "dir" : "ltr" , "width" : "17.55" , "height" : "11.96" , "transform" : [ "11.96" , "0.00" , "0.00" , "11.96" , "514.79" , "738.02" ] , "fontName" : "LERRTL+CMR12" , "x" : 514.791 , "y" : 738.022 , "line" : 0 }
{ "page" : 111 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "112 Chapter 7. Cliques, stable sets, and colourings" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "256.21" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 112 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 7.1. Introduction 113" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "145.99" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 113 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "114 Chapter 7. Cliques, stable sets, and colourings" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "256.21" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 114 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 7.2. Edge-colourings of bipartite graphs 115" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "262.03" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 115 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "116 Chapter 7. Cliques, stable sets, and colourings" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "256.21" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 116 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 7.2. Edge-colourings of bipartite graphs 117" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "262.03" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 117 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "118 Chapter 7. Cliques, stable sets, and colourings" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "256.21" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 118 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 7.2. Edge-colourings of bipartite graphs 119" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "262.03" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 119 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "120 Chapter 7. Cliques, stable sets, and colourings" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "256.21" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 120 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 7.3. Partially ordered sets 121" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "191.47" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 121 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "122 Chapter 7. Cliques, stable sets, and colourings" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "256.21" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 122 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 7.3. Partially ordered sets 123" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "191.47" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 123 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "124 Chapter 7. Cliques, stable sets, and colourings" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "256.21" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 124 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 7.4. Perfect graphs 125" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "155.65" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 125 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "126 Chapter 7. Cliques, stable sets, and colourings" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "256.21" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 126 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 7.4. Perfect graphs 127" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "155.65" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 127 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "128 Chapter 7. Cliques, stable sets, and colourings" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "256.21" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 128 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 7.5. Chordal graphs 129" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "160.69" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 129 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "130 Chapter 7. Cliques, stable sets, and colourings" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "256.21" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 130 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 7.5. Chordal graphs 131" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "160.69" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 131 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "132 Chapter 8. Integer linear programming and totally unimodul ar matrices" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.64" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 132 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 8.1. Integer linear programming 133" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "222.40" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 133 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "134 Chapter 8. Integer linear programming and totally unimodul ar matrices" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.64" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 134 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 8.2. Totally unimodular matrices 135" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "227.99" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 135 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "136 Chapter 8. Integer linear programming and totally unimodul ar matrices" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.64" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 136 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 8.2. Totally unimodular matrices 137" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "227.99" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 137 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "138 Chapter 8. Integer linear programming and totally unimodul ar matrices" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.64" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 138 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 8.3. Totally unimodular matrices from bipartite gr aphs 139" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "341.53" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 139 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "140 Chapter 8. Integer linear programming and totally unimodul ar matrices" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.64" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 140 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 8.3. Totally unimodular matrices from bipartite gr aphs 141" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "341.53" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 141 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "142 Chapter 8. Integer linear programming and totally unimodul ar matrices" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.64" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 142 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 8.4. Totally unimodular matrices from directed gra phs 143" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "338.29" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 143 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "144 Chapter 8. Integer linear programming and totally unimodul ar matrices" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.64" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 144 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 8.4. Totally unimodular matrices from directed gra phs 145" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "338.29" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 145 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "146 Chapter 8. Integer linear programming and totally unimodul ar matrices" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "387.64" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 146 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 8.4. Totally unimodular matrices from directed gra phs 147" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "338.29" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 147 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "148 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 148 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.1. Introduction 149" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "145.99" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 149 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "150 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 150 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.1. Introduction 151" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "145.99" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 151 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "152 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 152 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.2. Two commodities 153" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "172.39" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 153 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "154 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 154 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.2. Two commodities 155" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "172.39" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 155 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "156 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 156 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.3. Disjoint paths in acyclic directed graphs 157" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "288.44" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 157 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "158 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 158 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.4. Vertex-disjoint paths in planar graphs 159" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "276.89" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 159 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "160 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 160 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.4. Vertex-disjoint paths in planar graphs 161" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "276.89" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 161 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "162 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 162 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.4. Vertex-disjoint paths in planar graphs 163" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "276.89" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 163 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "164 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 164 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.5. Edge-disjoint paths in planar graphs 165" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "268.93" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 165 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "166 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 166 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.5. Edge-disjoint paths in planar graphs 167" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "268.93" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 167 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "168 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 168 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.6. A column generation technique for multicommod ity flows 169" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "376.25" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 169 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "170 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 170 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 9.6. A column generation technique for multicommod ity flows 171" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "376.25" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 171 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "172 Chapter 9. Multicommodity flows and disjoint paths" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "287.96" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 172 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "173" , "dir" : "ltr" , "width" : "17.55" , "height" : "11.96" , "transform" : [ "11.96" , "0.00" , "0.00" , "11.96" , "514.79" , "738.02" ] , "fontName" : "LERRTL+CMR12" , "x" : 514.791 , "y" : 738.022 , "line" : 0 }
{ "page" : 173 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "174 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 174 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.1. Matroids and the greedy algorithm 175" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "267.33" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 175 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "176 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 176 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.2. Equivalent axioms for matroids 177" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "248.38" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 177 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "178 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 178 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.2. Equivalent axioms for matroids 179" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "248.38" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 179 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "180 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 180 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.3. Examples of matroids 181" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "199.28" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 181 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "182 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 182 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.4. Two technical lemmas 183" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "201.65" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 183 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "184 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 184 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.5. Matroid intersection 185" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "191.90" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 185 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "186 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 186 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.5. Matroid intersection 187" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "191.90" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 187 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "188 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 188 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.5. Matroid intersection 189" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "191.90" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 189 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "190 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 190 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.6. Weighted matroid intersection 191" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "242.62" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 191 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "192 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 192 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.6. Weighted matroid intersection 193" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "242.62" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 193 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "194 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 194 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.7. Matroids and polyhedra 195" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "211.08" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 195 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "196 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 196 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.7. Matroids and polyhedra 197" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "211.08" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 197 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "198 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 198 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.7. Matroids and polyhedra 199" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "211.08" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 199 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "200 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 200 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.7. Matroids and polyhedra 201" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "211.08" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 201 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "202 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 202 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.7. Matroids and polyhedra 203" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "211.08" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 203 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "204 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 204 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.7. Matroids and polyhedra 205" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "211.08" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 205 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "206 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 206 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.7. Matroids and polyhedra 207" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "211.08" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 207 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "208 Chapter 10. Matroids" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "129.14" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 208 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Section 10.7. Matroids and polyhedra 209" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "211.08" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 209 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "210 Name index" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "78.68" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 210 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Name index 211" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "78.67" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 211 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "212 Subject index" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "87.79" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 212 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Subject index 213" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "87.79" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 213 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "214 Subject index" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "87.79" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 214 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Subject index 215" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "87.79" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 215 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "216 Subject index" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "87.79" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 216 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Subject index 217" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "87.79" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 217 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "218 Subject index" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "87.79" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 218 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Subject index 219" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "87.79" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }
{ "page" : 219 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "220 Subject index" , "line" : 0 , "x" : 72 , "y" : 738.022 , "width" : "87.79" , "height" : "11.96" , "fontName" : [ "LERRTL+CMR12" , "EHNRCF+CMSL12" ] , "dir" : [ "ltr" ] }
{ "page" : 220 , "change" : "Removal" , "score" : "1.43: (1.00 + 0.43)" , "str" : "Subject index 221" , "line" : 0 , "x" : 100.35 , "y" : 738.022 , "width" : "87.79" , "height" : "11.96" , "fontName" : [ "EHNRCF+CMSL12" , "LERRTL+CMR12" ] , "dir" : [ "ltr" ] }