{"page":1,"change":"ContentChange","types":["TOC"],"str":"1. Shortest paths and trees 5","dir":"ltr","width":"186.01","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","665.68"],"fontName":"KXBFBK+CMBX12","x":84.9512,"y":665.6799,"line":1}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"1.1. Shortest paths with nonnegative lengths 5","dir":"ltr","width":"235.58","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","641.77"],"fontName":"LNAVFB+CMR10","x":104.193,"y":641.7669999999999,"line":2}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"1.2. Speeding up Dijkstra’s algorithm with heaps 9","dir":"ltr","width":"256.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","625.65"],"fontName":"LNAVFB+CMR10","x":104.193,"y":625.6478999999999,"line":3}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"1.3. Shortest paths with arbitrary lengths 12","dir":"ltr","width":"226.89","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","609.53"],"fontName":"LNAVFB+CMR10","x":104.193,"y":609.5287999999999,"line":4}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"1.4. Minimum spanning trees 19","dir":"ltr","width":"167.04","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","593.41"],"fontName":"LNAVFB+CMR10","x":104.193,"y":593.4096999999999,"line":5}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"2. Polytopes, polyhedra, Farkas’ lemma, and linear program ming 23","line":6,"x":84.9512,"y":558.6514999999999,"width":"416.16","height":"11.96","fontName":["KXBFBK+CMBX12"],"dir":["ltr"]}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"2.2. Polytopes and polyhedra 25","dir":"ltr","width":"167.44","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","518.62"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":518.6194999999999,"line":8}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"2.4. Linear programming 33","dir":"ltr","width":"146.53","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","486.38"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":486.3812999999999,"line":10}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"3. Matchings and covers in bipartite graphs 39","dir":"ltr","width":"290.40","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","451.62"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":451.6234999999999,"line":11}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"3.1. Matchings, covers, and Gallai’s theorem 39","dir":"ltr","width":"239.63","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","427.72"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":427.71919999999994,"line":12}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"3.2. M -augmenting paths 40","line":13,"x":104.19320000000005,"y":411.60009999999994,"width":"142.29","height":"10.91","fontName":["LNAVFB+CMR10","LSUYZV+CMMI10"],"dir":["ltr"]}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"3.3. K ̋onig’s theorems 41","dir":"ltr","width":"131.28","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","395.47"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":395.4719999999999,"line":14}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"3.6. The matching polytope 50","dir":"ltr","width":"160.23","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","347.11"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":347.1146999999999,"line":17}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"4. Menger’s theorem, flows, and circulations 54","dir":"ltr","width":"293.70","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","312.36"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":312.3568999999999,"line":18}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"4.2. Flows in networks 58","dir":"ltr","width":"134.77","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","272.33"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":272.3334999999999,"line":20}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"4.3. Finding a maximum flow 60","dir":"ltr","width":"168.26","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","256.21"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":256.2143999999999,"line":21}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"4.4. Speeding up the maximum flow algorithm 65","dir":"ltr","width":"249.35","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","240.10"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":240.0952999999999,"line":22}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"5.1. Tutte’s 1-factor theorem and the Tutte-Berge formula 7 8","line":26,"x":104.19320000000005,"y":149.1859999999999,"width":"306.01","height":"10.91","fontName":["LNAVFB+CMR10"],"dir":["ltr"]}
{"page":1,"change":"ContentChange","types":["TOC"],"str":"5.4. The matching polytope 91","dir":"ltr","width":"160.23","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","100.83"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":100.8290999999999,"line":29}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"5.5. The Cunningham-Marsh formula 94","dir":"ltr","width":"206.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","701.16"],"fontName":"LNAVFB+CMR10","x":132.543,"y":701.158,"line":0}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"6. Problems, algorithms, and running time 97","dir":"ltr","width":"284.88","height":"11.96","transform":["11.96","0.00","0.00","11.96","113.30","667.09"],"fontName":"KXBFBK+CMBX12","x":113.30120000000001,"y":667.0928,"line":1}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"6.2. Words 98","dir":"ltr","width":"79.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","627.63"],"fontName":"LNAVFB+CMR10","x":132.543,"y":627.628,"line":3}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"6.4. Algorithms and running time 100","dir":"ltr","width":"193.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","595.61"],"fontName":"LNAVFB+CMR10","x":132.543,"y":595.6148000000001,"line":5}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"6.5. The class NP 101","dir":"ltr","width":"117.77","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","579.60"],"fontName":"LNAVFB+CMR10","x":132.543,"y":579.6039000000001,"line":6}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"6.6. The class co-NP 102","dir":"ltr","width":"131.71","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","563.59"],"fontName":"LNAVFB+CMR10","x":132.543,"y":563.5930000000001,"line":7}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"6.8. NP-completeness of the satisfiability problem 103","dir":"ltr","width":"270.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","531.58"],"fontName":"LNAVFB+CMR10","x":132.543,"y":531.5801000000001,"line":9}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"6.9. NP-completeness of some other problems 106","dir":"ltr","width":"250.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","515.57"],"fontName":"LNAVFB+CMR10","x":132.543,"y":515.5692000000001,"line":10}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"8. Integer linear programming and totally unimodular matri ces 132","line":18,"x":113.30119000000003,"y":343.9397000000002,"width":"412.86","height":"11.96","fontName":["KXBFBK+CMBX12"],"dir":["ltr"]}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"8.1. Integer linear programming 132","dir":"ltr","width":"185.19","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","320.49"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":320.4858000000002,"line":19}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"9.2. Two commodities 153","dir":"ltr","width":"138.47","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","198.93"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":198.9312000000002,"line":25}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"9.3. Disjoint paths in acyclic directed graphs 157","dir":"ltr","width":"246.67","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","182.93"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":182.92920000000018,"line":26}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"9.4. Vertex-disjoint paths in planar graphs 159","dir":"ltr","width":"235.94","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","166.92"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":166.9183000000002,"line":27}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"9.5. Edge-disjoint paths in planar graphs 165","dir":"ltr","width":"228.49","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","150.91"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":150.9074000000002,"line":28}
{"page":2,"change":"ContentChange","types":["TOC"],"str":"9.6. A column generation technique for multicommodity flows 168","line":29,"x":132.54319000000004,"y":134.8965000000002,"width":"313.53","height":"10.91","fontName":["LNAVFB+CMR10"],"dir":["ltr"]}
{"page":3,"change":"ContentChange","types":["TOC"],"str":"10.1. Matroids and the greedy algorithm 173","dir":"ltr","width":"227.04","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","701.16"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":701.158,"line":0}
{"page":3,"change":"ContentChange","types":["TOC"],"str":"10.2. Equivalent axioms for matroids 176","dir":"ltr","width":"209.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","685.12"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":685.1197,"line":1}
{"page":3,"change":"ContentChange","types":["TOC"],"str":"10.3. Examples of matroids 180","dir":"ltr","width":"163.56","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","669.08"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":669.0813999999999,"line":2}
{"page":3,"change":"ContentChange","types":["TOC"],"str":"10.4. Two technical lemmas 183","dir":"ltr","width":"165.74","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","653.03"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":653.0344999999999,"line":3}
{"page":3,"change":"ContentChange","types":["TOC"],"str":"10.7. Matroids and polyhedra 194","dir":"ltr","width":"174.58","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","604.92"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":604.9195999999997,"line":6}
{"page":3,"change":"ContentChange","types":["TOC"],"str":"Name index 210","dir":"ltr","width":"109.62","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","539.78"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":539.7773999999997,"line":8}
{"page":3,"change":"ContentChange","types":["TOC"],"str":"Subject index 212","dir":"ltr","width":"119.83","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","509.70"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":509.6992999999997,"line":9}