mirror of
https://github.com/jzillmann/pdf-to-markdown.git
synced 2025-06-24 19:41:24 +02:00
Allow for font formats inside of lists/headlines
This commit is contained in:
parent
74c941f88a
commit
c39f410d76
@ -516,7 +516,7 @@ every 5 years—conditional on the energy-related CO2 emission level percentile
|
||||
of the “source” pathway. This method is a further development under this
|
||||
project—building on an earlier Equal Quantile Walk method—and is now better
|
||||
able to capture the emission dynamics of low-mitigation pathways.
|
||||
• Land-based sequestration design: A Monte Carlo analysis across temperate,
|
||||
• _Land-based sequestration design_: A Monte Carlo analysis across temperate,
|
||||
|
||||
```
|
||||
boreal, subtropical and tropical regions has been performed based on various
|
||||
@ -527,8 +527,8 @@ sequestration, which is not reliant on biomass plus sequestration and storage
|
||||
(bioenergy with carbon capture and storage, BECCS).
|
||||
```
|
||||
|
||||
• Carbon cycle and climate modelling (Model for the Assessment of Greenhouse
|
||||
Gas-Induced Climate Change, MAGICC): This study uses the MAGICC climate
|
||||
• _Carbon cycle and climate modelling (Model for the Assessment of Greenhouse_
|
||||
_Gas-Induced Climate Change, MAGICC)_: This study uses the MAGICC climate
|
||||
model, which also underlies the classification used by both the IPCC Fifth
|
||||
Assessment Report and the IPCC Special Report on 1.5 °C in terms of the
|
||||
abilities of various scenarios to maintain the temperature change below 2 °C or
|
||||
@ -543,7 +543,7 @@ it represents one of the most established reduced-complexity climate models in
|
||||
the international community.
|
||||
```
|
||||
|
||||
• Renewable Resource Assessment [R]E-SPACE: RE-SPACE is based on a
|
||||
• _Renewable Resource Assessment [R]E-SPACE_: RE-SPACE is based on a
|
||||
|
||||
```
|
||||
Geographic Information Systems (GIS) approach and provides maps of the solar
|
||||
@ -555,7 +555,7 @@ It also provides an overview of the existing electricity infrastructures for fos
|
||||
fuel and renewable sources.
|
||||
```
|
||||
|
||||
• Transport model (TRAEM): The transport scenario model allows the
|
||||
• _Transport model (TRAEM)_: The transport scenario model allows the
|
||||
|
||||
```
|
||||
representation of long-term transport developments in a consistent and transparent
|
||||
@ -565,7 +565,7 @@ transport demand with powertrain-specific energy demands, using a passenger
|
||||
km (pkm) and tonne km (tkm) activity-based bottom-up approach.
|
||||
```
|
||||
|
||||
• Energy system model (EM): The energy system model (a long-term energy
|
||||
• _Energy system model (EM)_: The energy system model (a long-term energy
|
||||
|
||||
```
|
||||
scenario model) is used as a mathematical accounting system for the energy
|
||||
@ -580,7 +580,7 @@ uncertain cost assumptions. However, an ex-post analysis of costs and investment
|
||||
shows the main economic effects of the pathways.
|
||||
```
|
||||
|
||||
• Power system models [R]E 24/7: Power system models simulate electricity
|
||||
• _Power system models [R]E 24/7_: Power system models simulate electricity
|
||||
|
||||
```
|
||||
systems on an hourly basis with geographic resolution to assess the requirements
|
||||
@ -3354,10 +3354,10 @@ of scenarios in the energy and climate debate.
|
||||
|
||||
**UNFCCC Paris Agreement, Article 2:**
|
||||
|
||||
1. This Agreement, in enhancing the implementation of the Convention,
|
||||
including its objective, aims to strengthen the global response to the threat
|
||||
of climate change,in the context of sustainable development and efforts to
|
||||
eradicate poverty, including by:
|
||||
1. _This Agreement, in enhancing the implementation of the Convention,_
|
||||
_including its objective, aims to strengthen the global response to the threat_
|
||||
_of climate change,in the context of sustainable development and efforts to_
|
||||
_eradicate poverty, including by:_
|
||||
|
||||
```
|
||||
(a) Holding the increase in the global average temperature to well below
|
||||
@ -3432,9 +3432,9 @@ mendations (see e.g., Mai et al. [^2013]:; Mohn [^2016]:).
|
||||
house gas emissions and climate-resilient development.
|
||||
```
|
||||
|
||||
2. This Agreement will be implemented to reflect equity and the principle of
|
||||
common but differentiated responsibilities and respective capabilities, in
|
||||
the light of different national circumstances.
|
||||
2. _This Agreement will be implemented to reflect equity and the principle of_
|
||||
_common but differentiated responsibilities and respective capabilities, in_
|
||||
_the light of different national circumstances._
|
||||
|
||||
```
|
||||
S. Teske and T. Pregger
|
||||
@ -4558,7 +4558,7 @@ energy-2017-natural-gas.pdf According to https://tradingeconomics.com/commodity/
|
||||
gas, gas prices fell by 14% between 2 Jan 2017 and 1 January 2018 (viewed 21 March 2018)
|
||||
BI (2017) Patrick Caughill, “All Dutch Trains Now Run On 100% Wind Power”, Business Insider. 3 June
|
||||
|
||||
2017. http://uk.businessinsider.com/wind-power-trains-in-netherlands-2017-6?r=US&IR=TT
|
||||
2017. [http://uk.businessinsider.com/wind-power-trains-in-netherlands-2017-6?r=US&IR=TT](http://uk.businessinsider.com/wind-power-trains-in-netherlands-2017-6?r=US&IR=TT)
|
||||
|
||||
```
|
||||
S. Teske et al.
|
||||
@ -4834,7 +4834,7 @@ to stay within a 2.0 °C and 1.5 °C global warming limit. The following model
|
||||
|
||||
presented:
|
||||
|
||||
• For the non-energy GHG emission pathways, the Generalized Equal Quantile
|
||||
• For the non-energy GHG emission pathways, the _Generalized Equal Quantile_
|
||||
|
||||
```
|
||||
Walk (GQW) method, the land-based sequestration design method and the
|
||||
@ -5040,12 +5040,12 @@ models:
|
||||
with the following models:
|
||||
|
||||
– Generalized Equal Quantile Walk (GQW): This statistical method is used to
|
||||
complement the CO2 pathways with the non-CO2 regional emissions for the
|
||||
complement the CO[^2]: pathways with the non-CO[^2]: regional emissions for the
|
||||
relevant GHGs and aerosols, based on a statistical analysis of the large num-
|
||||
ber (~700) of multi-gas emission pathways underlying the recent IPCC Fifth
|
||||
Assessment Report and the recently published IPCC Special Report on
|
||||
1.5 °C. The GQW method calculates the median non-CO2 gas emission levels
|
||||
every 5 years, conditional on the energy-related CO2 emission level percentile
|
||||
1.5 °C. The GQW method calculates the median non-CO[^2]: gas emission levels
|
||||
every 5 years, conditional on the energy-related CO[^2]: emission level percentile
|
||||
of the ‘source’ pathway. This method is further developed in this project—
|
||||
building on an earlier ‘Equal Quantile Walk’ method—and is now better able
|
||||
to capture the emission dynamics of low-mitigation pathways.
|
||||
@ -5053,7 +5053,7 @@ to capture the emission dynamics of low-mitigation pathways.
|
||||
boreal, subtropical, and tropical regions has been performed based on various
|
||||
literature-based estimates of sequestration rates, sequestration periods, and the
|
||||
areas available for a number of sequestration options. This approach can be seen
|
||||
as a quantified literature synthesis of the potential for land-based CO2 sequestra-
|
||||
as a quantified literature synthesis of the potential for land-based CO[^2]: sequestra-
|
||||
tion, which is not reliant on bioenergy with sequestration and storage (BECCS)
|
||||
– Carbon cycle and climate modelling (MAGICC): This study used the
|
||||
MAGICC climate model, which also underlies the classification of both the
|
||||
@ -5106,7 +5106,7 @@ the pathways.
|
||||
hourly basis and at geographic resolution to assess the requirements for infra-
|
||||
structure, such as grid connections, between different regions and electricity
|
||||
storages, depending on the demand profiles and power-generation characteristics
|
||||
(Teske 2015). High-penetration or renewable-energy-only scenarios will contain
|
||||
(Teske [^2015]:). High-penetration or renewable-energy-only scenarios will contain
|
||||
significant proportions of variable solar photovoltaic (PV) and wind power
|
||||
because they are inexpensive. Therefore, a power system model is required to
|
||||
assess the demand and supply patterns, the efficiency of power generation, and
|
||||
@ -5951,7 +5951,7 @@ wr
|
||||
world region wr at time step t [pkm/a]
|
||||
```
|
||||
|
||||
– TTED(t): total transport (final) energy demand at time step t [PJ/year]
|
||||
– TTED(t): total transport (final) energy demand at time step _t_ [PJ/year]
|
||||
|
||||
The estimated plug-in hybrid electric vehicles, battery electric vehicles, and fuel-
|
||||
|
||||
@ -6047,7 +6047,7 @@ et
|
||||
fe
|
||||
```
|
||||
|
||||
##### ()= ∑ ()⋅ ()⋅ηet ()
|
||||
##### ()= ∑ ()⋅ ()⋅η_et_ ()
|
||||
|
||||
```
|
||||
FD tFDt
|
||||
@ -6059,7 +6059,7 @@ ss
|
||||
ss
|
||||
```
|
||||
|
||||
##### ()= ∑ fe ()
|
||||
##### ()= ∑ _fe_ ()
|
||||
|
||||
```
|
||||
TFDt FD tFDt UEDtMS
|
||||
@ -6084,7 +6084,7 @@ ss fe et
|
||||
ss ss
|
||||
```
|
||||
|
||||
##### ()= ∑∑()= ∑ ()= ∑∑∑ ()⋅ et tttfe
|
||||
##### ()= ∑∑()= ∑ ()= ∑∑∑ ()⋅ _et tttfe_
|
||||
|
||||
```
|
||||
()⋅ηet ()
|
||||
@ -6093,11 +6093,11 @@ ss ss
|
||||
with:
|
||||
|
||||
• FDss,
|
||||
fe(t): demand of (final) energy carrier fe in sub-sector ss1 at time step t [PJ/
|
||||
fe(t): demand of (final) energy carrier _fe_ in sub-sector _ss_[^1]: at time step _t_ [PJ/
|
||||
year]
|
||||
• FDss,
|
||||
fe(t): total demand of (final) energy carrier fe at time step t [PJ/year]
|
||||
• TFD(t): total final energy demand at time step t [PJ/year]
|
||||
fe(t): total demand of (final) energy carrier _fe_ at time step _t_ [PJ/year]
|
||||
• TFD(t): total final energy demand at time step _t_ [PJ/year]
|
||||
|
||||
[^1]:The sub-sectors include ‘heat’ and ‘non-heat electrical appliances’ in the sectors ‘Industry’ and
|
||||
‘Residential and other’, aviation, road transport, navigation, rail transport, non-energy consump-
|
||||
@ -6183,7 +6183,7 @@ LCOE
|
||||
Fuel production:
|
||||
```
|
||||
|
||||
•H2-production
|
||||
•H[^2]:-production
|
||||
•biofuels
|
||||
•refineriesetc.
|
||||
|
||||
@ -6218,15 +6218,15 @@ S. Teske et al.
|
||||
41
|
||||
```
|
||||
|
||||
• UEDss(t): useful energy demand / transport services in sub-sector ss at time step
|
||||
t [PJ/year]
|
||||
• UEDss(t): useful energy demand / transport services in sub-sector _ss_ at time step
|
||||
_t_ [PJ/year]
|
||||
• MSss
|
||||
et(t): market share of end-sector technology et in sub-sector ss
|
||||
et(t): market share of end-sector technology _et_ in sub-sector _ss_
|
||||
[dimensionless]
|
||||
• ηfe
|
||||
et(t): efficiency of end-sector technology et using energy carrier fe2 at time step
|
||||
t [dimensionless]
|
||||
• t: time step
|
||||
et(t): efficiency of end-sector technology _et_ using energy carrier _fe_[^2]: at time step
|
||||
_t_ [dimensionless]
|
||||
• _t_: time step
|
||||
|
||||
The indices denote:
|
||||
|
||||
@ -6254,30 +6254,30 @@ ct
|
||||
fe
|
||||
```
|
||||
|
||||
##### ()= ∑∑ ()⋅ ()⋅ηct ()
|
||||
##### ()= ∑∑ ()⋅ ()⋅η_ct_ ()
|
||||
|
||||
```
|
||||
TPDt PD t
|
||||
pe
|
||||
```
|
||||
|
||||
##### ()= ∑ pe ()
|
||||
##### ()= ∑ _pe_ ()
|
||||
|
||||
with
|
||||
|
||||
• PDpe(t): total demand of (primary) energy carrier pe at time step t [PJ/year]
|
||||
• TPD(t): total primary energy demand at time step t [PJ/year]
|
||||
• PDpe(t): total demand of (primary) energy carrier _pe_ at time step _t_ [PJ/year]
|
||||
• TPD(t): total primary energy demand at time step _t_ [PJ/year]
|
||||
• MSfe
|
||||
ct(t): market share of conversion technology ct in the generation of final
|
||||
energy carrier fe [dimensionless]
|
||||
ct(t): market share of conversion technology _ct_ in the generation of final
|
||||
energy carrier _fe_ [dimensionless]
|
||||
• ηfe
|
||||
ct(t): efficiency of conversion technology3 ct using the final energy carrier fe at
|
||||
time step t [dimensionless]
|
||||
ct(t): efficiency of conversion technology[^3]: _ct_ using the final energy carrier _fe_ at
|
||||
time step _t_ [dimensionless]
|
||||
|
||||
The indices denote:
|
||||
|
||||
• pe: (primary) energy carrier
|
||||
• ct: conversion sector technology[^4]
|
||||
• _pe_: (primary) energy carrier
|
||||
• _ct_: conversion sector technology[^4]
|
||||
|
||||
The drivers of energy consumption include forecasts of population growth, gross
|
||||
domestic product (GDP), and energy intensities. Specific energy intensities are
|
||||
@ -6369,7 +6369,7 @@ deployment, and financial investment for each of these energy demand types;
|
||||
|
||||
system;
|
||||
|
||||
• energy-related CO2 emissions over the projected period.
|
||||
• energy-related CO[^2]: emissions over the projected period.
|
||||
|
||||
```
|
||||
S. Teske et al.
|
||||
@ -7423,8 +7423,8 @@ putation and to accommodate the paucity of data and uncertainty about the future
|
||||
when designing the interconnector algorithms:
|
||||
|
||||
– Interconnections between the project-defined regions are the only ones consid-
|
||||
ered, so all intra-regional interconnections or line constraints are excluded (‘cop-
|
||||
per plate’);
|
||||
ered, so all intra-regional interconnections or line constraints are excluded (‘_cop-_
|
||||
_per plate_’);
|
||||
– Optimal load flow is neglected because policy and price signals are considered to
|
||||
be the factors dominating the international and inter-regional load flow;
|
||||
– Non-adjacent inter-regional interconnections are neglected for computational
|
||||
@ -7909,7 +7909,7 @@ a
|
||||
=
|
||||
```
|
||||
|
||||
##### 1 ∑ −
|
||||
##### [^1]: ∑ −
|
||||
|
||||
```
|
||||
0
|
||||
@ -8409,14 +8409,14 @@ emissions in the LDF scenarios are assumed to remain constant at zero, the non-C
|
||||
gas emissions are derived from data in the existing literature, as if the scenarios
|
||||
remained at a stringency level of ~3% in the second half of the twenty-first century
|
||||
(see the lower panel in Fig. 3.13).
|
||||
We now have the fossil and industrial CO2 emission levels throughout the twenty-
|
||||
We now have the fossil and industrial CO[^2]: emission levels throughout the twenty-
|
||||
first century for each of the three scenarios, and have complemented these with the
|
||||
‘pseudo’ CO2 emission levels for the second half of the twenty-first century.
|
||||
Therefore, we can derive the corresponding non-CO2 emissions.
|
||||
In the first step, we derived the total non-CO2 emissions for a specific year and
|
||||
‘pseudo’ CO[^2]: emission levels for the second half of the twenty-first century.
|
||||
Therefore, we can derive the corresponding non-CO[^2]: emissions.
|
||||
In the first step, we derived the total non-CO[^2]: emissions for a specific year and
|
||||
for the world as a whole. In the second step, we determined the shares of global fos-
|
||||
sil and industrial emissions versus the land-use-related emissions—again regressed
|
||||
against the overall fossil CO2 emission level as an indicator of the ‘stringency’ of the
|
||||
against the overall fossil CO[^2]: emission level as an indicator of the ‘stringency’ of the
|
||||
scenario. In the third step, we disaggregated these fossil and land-use-specific emis-
|
||||
sion time series into regional time series. Again, the shares of the regional emissions
|
||||
were derived with the same quantile regressions shown in Fig. 3.13 above. With
|
||||
@ -8426,11 +8426,11 @@ sion levels of the other gases. In this study, we do not intend to provide proba
|
||||
emission scenarios and therefore limited our quantile regression choice to the
|
||||
median 50% setting for all regions, sectoral divisions, and other global total gases.
|
||||
The major advantage of this newly developed method compared with the EQW
|
||||
method developed earlier (Meinshausen et al. 2006) is that the negative correlations
|
||||
between CO2 and other gases can also be taken into account. By performing all
|
||||
method developed earlier (Meinshausen et al. [^2006]:) is that the negative correlations
|
||||
between CO[^2]: and other gases can also be taken into account. By performing all
|
||||
quantile regressions in the space defined by the global fossil and industrial CO2
|
||||
emissions in a particular year, any kind of non-linear, positive or negative relation-
|
||||
ship with other non-CO2 gas emission levels, sectoral divisions, or regional divi-
|
||||
ship with other non-CO[^2]: gas emission levels, sectoral divisions, or regional divi-
|
||||
sions are automatically incorporated into the final result—reflecting the overall
|
||||
characteristics of the chosen set of emission scenarios. Not all the 811 emission
|
||||
scenarios contained details of all the sectoral and regional divisions, but the step-
|
||||
@ -8438,7 +8438,7 @@ wise approach of this method can incorporate the characteristics from all the sc
|
||||
narios in whatever detail is available.
|
||||
Figure 3.14 shows sample distributions of the emission scenario characteristics for
|
||||
the year 2040 and a subset of 21 GHGs. The x-axis of each plot shows the global fossil
|
||||
and industrial CO2 emissions, and the y-axis shows the global emission levels of
|
||||
and industrial CO[^2]: emissions, and the y-axis shows the global emission levels of
|
||||
another GHG, with one marker (blue dot) for each literature-reported scenario consid-
|
||||
|
||||
ered. The five red lines are quantile regressions at the levels of 20%, 33%, 50%
|
||||
@ -10391,7 +10391,7 @@ S., Ma, K., Makana, J.-R., Malhi, Y., McMahon, S.M., McShea, W.J., Memiaghe, H.R
|
||||
X., Morecroft, M., Musili, P.M., Myers, J.A., Novotny, V., de Oliveira, A., Ong, P., Orwig,
|
||||
D.A., Ostertag, R., Parker, G.G., Patankar, R., Phillips, R.P., Reynolds, G., Sack, L., Song,
|
||||
G.-Z.M., Su, S.-H., Sukumar, R., Sun, I.-F., Suresh, H.S., Swanson, M.E., Tan, S., Thomas,
|
||||
D.W., Thompson, J., Uriarte, M., Valencia, R., Vicentini, A., Vrška, T., Wang, X., Weiblen,
|
||||
D.W., Thompson, J., Uriarte, M., Valencia, R., Vicentini, A., Vr_š_ka, T., Wang, X., Weiblen,
|
||||
G.D., Wolf, A., Wu, S.-H., Xu, H., Yamakura, T., Yap, S., Zimmerman, J.K., 2018. Global
|
||||
importance of large-diameter trees. Global Ecology and Biogeography 27, 849–864. https://
|
||||
doi.org/10.1111/geb.12747
|
||||
@ -13940,7 +13940,7 @@ Division); IDB-MG-562
|
||||
Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: An Overview. Crop Science 47 (6):2228–
|
||||
|
||||
2237. doi:https://doi.org/10.2135/cropsci2007.03.0166
|
||||
NEEDS (2009) The NEEDS Life Cycle Inventory Database. http://www.needs-project.org/need-
|
||||
NEEDS (2009) The NEEDS Life Cycle Inventory Database. [http://www.needs-project.org/need-](http://www.needs-project.org/need-)
|
||||
swebdb/index.php. Accessed 15th April 2016 2016
|
||||
Nematollahi O, Hoghooghi H, Rasti M, Sedaghat A (2016) Energy demands and renewable energy
|
||||
resources in the Middle East. Renewable and Sustainable Energy Reviews 54:1172–1181.
|
||||
@ -14447,10 +14447,10 @@ transport, it offers a very powerful lever for decarbonisation. In terms of driv
|
||||
electrification, we cluster the world regions into three groups, according to the dif-
|
||||
fusion theory (Rogers [^2003]:):
|
||||
|
||||
• Innovators: OECD North America (excluding Mexico), OECD Europe, OECD
|
||||
• _Innovators_: OECD North America (excluding Mexico), OECD Europe, OECD
|
||||
Pacific, and China
|
||||
• Moderate: Mexico, Non-OECD Asia, India, Eurasia, and Latin America
|
||||
• Late adopters: Africa and the Middle East.
|
||||
• _Moderate_: Mexico, Non-OECD Asia, India, Eurasia, and Latin America
|
||||
• _Late adopters_: Africa and the Middle East.
|
||||
|
||||
Although this clustering is rough, it sufficiently mirrors the basic tendencies we
|
||||
modelled. The regions differ in the speed with which novel technologies, especially
|
||||
@ -17659,7 +17659,7 @@ solar photovoltaic (PV) and concentrated solar power plants:
|
||||
• Intensive agricultural production land;
|
||||
• Nature conservation areas and national parks;
|
||||
• Wetlands and swamps;
|
||||
• Closed grasslands (a land-use type) (GLC 2000).
|
||||
• Closed grasslands (a land-use type) (GLC [^2000]:).
|
||||
|
||||
**7.2.2 Mapping Solar and Wind Potential**
|
||||
|
||||
@ -18297,23 +18297,23 @@ emissions? Dynamic lifecycle analysis of wood bioenergy. Environmental Research
|
||||
015007. https://doi.org/10.1088/1748-9326/aaa512
|
||||
Ter-Mikaelian, M.T., Colombo, S.J. & Chen, J., 2015. The Burning Question: Does Forest
|
||||
Bioenergy Reduce Carbon Emissions? A Review of Common Misconceptions about Forest
|
||||
Carbon Accounting. Journal of Forestry, 113(1), pp. 57–68.
|
||||
Carbon Accounting. _Journal of Forestry_, 113(1), pp. 57–68.
|
||||
Turkenburg, Arent et al 2012, Turkenburg, W. C., D. J. Arent, R. Bertani, A. Faaij, M. Hand,
|
||||
W. Krewitt, E. D. Larson, J. Lund, M. Mehos, T. Merrigan, C. Mitchell, J. R. Moreira, W. Sinke,
|
||||
V. Sonntag-O’Brien, B. Thresher, W. van Sark, E. Usher and E. Usher, 2012: Chapter 11 -
|
||||
Renewable Energy. In Global Energy Assessment - Toward a Sustainable Future, Cambridge
|
||||
University Press, Cambridge, UK and New York, NY, USA and the International Institute for
|
||||
Applied Systems Analysis, Laxenburg, Austria, pp. 761–900.
|
||||
Teske, Pregger 2015, Teske, S, Pregger, T., Naegler, T., Simon, S., Energy [R]evolution -
|
||||
A sustainable World Energy Outlook 2015, Greenpeace International with the German
|
||||
Teske, Pregger 2015, Teske, S, Pregger, T., Naegler, T., Simon, S., _Energy [R]evolution -_
|
||||
_A sustainable World Energy Outlook 2015_, Greenpeace International with the German
|
||||
Aerospace Centre (DLR), Institute of Engineering Thermodynamics, System Analysis and
|
||||
Technology Assessment, Stuttgart, Germany, https://www.scribd.com/document/333565532/
|
||||
Energy-Revolution-2015-Full
|
||||
WBGU 2003, World in Transition Towards Sustainable Energy Systems; German Advisory
|
||||
WBGU 2003, _World in Transition Towards Sustainable Energy Systems;_ German Advisory
|
||||
Council on Global Change (WBGU), H. Graßl, J. Kokott, M. Kulessa, J. Luther, F. Nuscheler,
|
||||
R. Sauerborn, H.-J. Schellnhuber, R. Schubert, E.-D. Schulze
|
||||
WRI 2018, World Resource Institute (WRI), Global Power Plant Database, web-based database,
|
||||
data download June 2018, http://datasets.wri.org/dataset/globalpowerplantdatabase
|
||||
data download June 2018, [http://datasets.wri.org/dataset/globalpowerplantdatabase](http://datasets.wri.org/dataset/globalpowerplantdatabase)
|
||||
|
||||
**Open Access** This chapter is licensed under the terms of the Creative Commons Attribution 4.0
|
||||
International License ([http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/)), which permits use, sharing,
|
||||
@ -19845,7 +19845,7 @@ emissions [Mt/yr]2
|
||||
1.5°C
|
||||
```
|
||||
|
||||
## Fig. 8.13 Global: development of CO2 emissions by sector and cumulative CO2 emissions (since
|
||||
## Fig. 8.13 Global: development of CO[^2]: emissions by sector and cumulative CO[^2]: emissions (since
|
||||
|
||||
2015) in the scenarios (‘Savings’ = lower than in the 5.0 °C Scenario)
|
||||
|
||||
@ -22843,7 +22843,7 @@ nologies is around 45%. For this analysis, we created five different power plant
|
||||
|
||||
categories based on their current usual operation times and areas of use:
|
||||
|
||||
• Limited dispatchable fossil and nuclear power plants: coal, lignite, and
|
||||
• **Limited dispatchable fossil and nuclear power plants**: coal, lignite, and
|
||||
|
||||
```
|
||||
nuclear power plants with limited ability to respond to changes in demand. These
|
||||
@ -22854,7 +22854,7 @@ required. Limited dispatchable power plants cannot deliver these services and ar
|
||||
therefore being phased-out.
|
||||
```
|
||||
|
||||
• Limited dispatchable renewable systems are CSP plants with integrated stor-
|
||||
• **Limited dispatchable renewable systems** are CSP plants with integrated stor-
|
||||
|
||||
```
|
||||
age and co-generation systems with renewable fuels (including geothermal heat).
|
||||
@ -22863,11 +22863,11 @@ demand, but can still be used as dispatch power plants for ‘day ahead’
|
||||
planning.
|
||||
```
|
||||
|
||||
• Dispatchable fossil fuel power plants are gas power plants that have very quick
|
||||
• **Dispatchable fossil fuel power plants** are gas power plants that have very quick
|
||||
|
||||
reaction times and therefore provide valid power system services.
|
||||
|
||||
• Dispatchable renewable power plants are hydropower plants (although they
|
||||
• **Dispatchable renewable power plants** are hydropower plants (although they
|
||||
|
||||
```
|
||||
are dependent on the climatic conditions in the region where the plant is used),
|
||||
@ -22877,7 +22877,7 @@ load-balancing services and is vital for the stability of the power system, as s
|
||||
age systems, interconnections, and, if possible, demand-side management.
|
||||
```
|
||||
|
||||
• Variable renewables are solar PV plants, onshore and offshore wind farms, and
|
||||
• **Variable renewables** are solar PV plants, onshore and offshore wind farms, and
|
||||
|
||||
```
|
||||
ocean energy generators. A sub-category of ocean energy plants—tidal energy
|
||||
@ -26892,7 +26892,7 @@ year to more than $760 billion/year in 2050. In both alternative scenarios, the
|
||||
supply costs in 2050 will be around $690 billion/year The long-term costs for elec-
|
||||
tricity supply in 2050 will be 8%–9% lower than in the 5.0 °C Scenario as a result
|
||||
of the estimated generation costs and the electrification of heating and mobility.
|
||||
Compared with these results, the generation costs when the CO2 emission costs
|
||||
Compared with these results, the generation costs when the CO[^2]: emission costs
|
||||
are not considered will increase in the 5.0 °C case to 7.5 ct/kWh. In the 2.0 °C
|
||||
|
||||
Scenario, they will increase until 2030, when they reach 7.3 ct/kWh, and then drop
|
||||
@ -27689,7 +27689,7 @@ emissions [Mt/yr]2
|
||||
1.5°C
|
||||
```
|
||||
|
||||
## Fig. 8.24 OECD North America: development of CO2 emissions by sector and cumulative CO2
|
||||
## Fig. 8.24 OECD North America: development of CO[^2]: emissions by sector and cumulative CO2
|
||||
|
||||
emissions (after 2015) in the scenarios (‘Savings’ = reduction compared with the 5.0 °C Scenario)
|
||||
|
||||
@ -32560,7 +32560,7 @@ yr
|
||||
1.5°C
|
||||
```
|
||||
|
||||
## Fig. 8.33 Latin America: development of CO2 emissions by sector and cumulative CO2 emissions
|
||||
## Fig. 8.33 Latin America: development of CO[^2]: emissions by sector and cumulative CO[^2]: emissions
|
||||
|
||||
(after 2015) in the scenarios (‘Savings’ = reduction compared with the 5.0 °C Scenario)
|
||||
|
||||
@ -37510,7 +37510,7 @@ emissions 2
|
||||
1.5°C
|
||||
```
|
||||
|
||||
## Fig. 8.42 OECD Europe: development of CO2 emissions by sector and cumulative CO2 emissions
|
||||
## Fig. 8.42 OECD Europe: development of CO[^2]: emissions by sector and cumulative CO[^2]: emissions
|
||||
|
||||
(after 2015) in the scenarios (‘Savings’ = reduction compared with the 5.0 °C Scenario)
|
||||
|
||||
@ -42217,7 +42217,7 @@ emissions
|
||||
1.5°C
|
||||
```
|
||||
|
||||
## Fig. 8.51 Africa: development of CO2 emissions by sector and cumulative CO2 emissions (after
|
||||
## Fig. 8.51 Africa: development of CO[^2]: emissions by sector and cumulative CO[^2]: emissions (after
|
||||
|
||||
2015) in the scenarios (‘Savings’ = reduction compared with the 5.0 °C Scenario)
|
||||
|
||||
@ -46815,7 +46815,7 @@ emissions
|
||||
1.5°C
|
||||
```
|
||||
|
||||
## Fig. 8.60 Middle East: development of CO2 emissions by sector and cumulative CO2 emissions
|
||||
## Fig. 8.60 Middle East: development of CO[^2]: emissions by sector and cumulative CO[^2]: emissions
|
||||
|
||||
(after 2015) in the scenarios (‘Savings’ = reduction compared with the 5.0 °C Scenario)
|
||||
|
||||
@ -51500,7 +51500,7 @@ emissions 2
|
||||
1.5°C
|
||||
```
|
||||
|
||||
### Fig. 8.69 Eastern Europe/Eurasia: development of CO2 emissions by sector and cumulative CO2
|
||||
### Fig. 8.69 Eastern Europe/Eurasia: development of CO[^2]: emissions by sector and cumulative CO2
|
||||
|
||||
emissions (after 2015) in the scenarios (‘Savings’ = reduction compared with the 5.0 °C Scenario)
|
||||
|
||||
@ -56090,7 +56090,7 @@ emissions 2
|
||||
1.5°C
|
||||
```
|
||||
|
||||
## Fig. 8.78 Non-OECD Asia: development of CO2 emissions by sector and cumulative CO2 emis-
|
||||
## Fig. 8.78 Non-OECD Asia: development of CO[^2]: emissions by sector and cumulative CO[^2]: emis-
|
||||
|
||||
sions (after 2015) in the scenarios (‘Savings’ = reduction compared with the 5.0 °C Scenario)
|
||||
|
||||
@ -61056,7 +61056,7 @@ emissions [Mt/yr]2
|
||||
1.5°C
|
||||
```
|
||||
|
||||
## Fig. 8.87 India: development of CO2 emissions by sector and cumulative CO2 emissions (after
|
||||
## Fig. 8.87 India: development of CO[^2]: emissions by sector and cumulative CO[^2]: emissions (after
|
||||
|
||||
2015) in the scenarios (‘Savings’ = reduction compared with the 5.0 °C Scenario)
|
||||
|
||||
@ -64130,7 +64130,7 @@ emissions [Mt/yr]2
|
||||
1.5°C
|
||||
```
|
||||
|
||||
## Fig. 8.96 China: development of CO2 emissions by sector and cumulative CO2 emissions (after
|
||||
## Fig. 8.96 China: development of CO[^2]: emissions by sector and cumulative CO[^2]: emissions (after
|
||||
|
||||
2015) in the scenarios (‘Savings’ = reduction compared with the 5.0 °C Scenario)
|
||||
|
||||
@ -69167,7 +69167,7 @@ emissions [Mt/yr]2
|
||||
1.5°C
|
||||
```
|
||||
|
||||
## Fig. 8.105 OECD Pacific: development of CO2 emissions by sector and cumulative CO2 emis-
|
||||
## Fig. 8.105 OECD Pacific: development of CO[^2]: emissions by sector and cumulative CO[^2]: emis-
|
||||
|
||||
sions (after 2015) in the scenarios (‘Savings’ = reduction compared with the 5.0 °C Scenario)
|
||||
|
||||
@ -73483,18 +73483,18 @@ tends to fall. The multipliers are shown in Table 10.3.
|
||||
Local employment factors were used where possible. These region-specific factors
|
||||
were:
|
||||
|
||||
• OECD Americas—gas and coal fuel, photovoltaics (PV) and offshore wind (all
|
||||
• _OECD Americas—_gas and coal fuel, photovoltaics (PV) and offshore wind (all
|
||||
factors), and solar thermal power (construction and operation and maintenance
|
||||
(O&M)
|
||||
• OECD Europe—gas and coal fuel, offshore wind (all factors), solar thermal
|
||||
• _OECD Europe—_gas and coal fuel, offshore wind (all factors), solar thermal
|
||||
power (construction and O&M), and solar heating
|
||||
• OECD Pacific—gas and coal fuel
|
||||
• Africa—gas, coal, and biomass fuel
|
||||
• China—gas and coal fuel, and solar heating
|
||||
• Eastern Europe/Eurasia—gas and coal fuel
|
||||
• Developing Asia—coal fuel
|
||||
• India – coal fuel and solar heating
|
||||
• Latin America—coal and biomass fuels, onshore wind (all factors), nuclear (con-
|
||||
• _OECD Pacific—_gas and coal fuel
|
||||
• _Africa_—gas, coal, and biomass fuel
|
||||
• _China—_gas and coal fuel, and solar heating
|
||||
• _Eastern Europe/Eurasia—_gas and coal fuel
|
||||
• _Developing Asia_—coal fuel
|
||||
• _India_ – coal fuel and solar heating
|
||||
• _Latin America—_coal and biomass fuels, onshore wind (all factors), nuclear (con-
|
||||
struction and O&M), large hydro (O&M), and small hydro (construction and
|
||||
O&M).
|
||||
|
||||
@ -74480,7 +74480,7 @@ tions of the solar PV and onshore wind industries to date. ISF has extended the
|
||||
|
||||
application of IRENA’s work in two key ways:
|
||||
|
||||
1. Mapping IRENA’s job categories against the International Standard
|
||||
1. **Mapping IRENA’s job categories against the International Standard**
|
||||
|
||||
```
|
||||
Classification of Occupations (ISCO): IRENA uses its own occupational clas-
|
||||
@ -74493,7 +74493,7 @@ occupations in the IRENA studies has been identified at one-digit, two-digit,
|
||||
three-digit, and four-digit levels of the ISCO.
|
||||
```
|
||||
|
||||
2. Unpacking mid- and low-skill job categories in IRENA’s study: Some of the
|
||||
2. **Unpacking mid- and low-skill job categories in IRENA’s study**: Some of the
|
||||
|
||||
```
|
||||
categories in the IRENA studies containe jobs that are of interest from a just
|
||||
@ -81569,7 +81569,7 @@ However, our lower 1.5 °C scenario first undercuts the radiative forcing traje
|
||||
of the SSP1_19 scenario, but then ends up at a similar radiative forcing level by
|
||||
|
||||
2100.
|
||||
Figure 12.2 shows CO2 equivalence concentrations (upper panel) and radiative
|
||||
Figure 12.2 shows CO[^2]: equivalence concentrations (upper panel) and radiative
|
||||
forcing (lower panel) of the main scenarios used in IPCC Assessment Reports and
|
||||
this study’s scenarios. The RCP scenarios (shown in thin dotted lines) underlie the
|
||||
IPCC Fifth Assessment Report and the so-called ‘SSP scenarios’ provide the main
|
||||
|
@ -86,7 +86,7 @@ die das mit sich bringt, kennen nur wenige. Wikimedia Deutschland, Creative Comm
|
||||
und iRights.info wollen das mit dieser Broschüre ändern. Wir freuen uns über Kritik und Anregungen
|
||||
zu diesem Versuch und wünschen viele Aha-Momente beim Nachschlagen.
|
||||
|
||||
#### John H. Weitzmann
|
||||
#### _John H. Weitzmann_
|
||||
|
||||
CC DE Legal Project Lead
|
||||
|
||||
@ -166,13 +166,13 @@ ten. Die Entscheidung für das NC-Modul sollte
|
||||
daher wohl überlegt sein.
|
||||
```
|
||||
|
||||
#### Stell dir eine Welt vor, in der
|
||||
#### _Stell dir eine Welt vor, in der_
|
||||
|
||||
#### jeder Mensch an der Gesamtheit
|
||||
#### _jeder Mensch an der Gesamtheit_
|
||||
|
||||
#### des Wissens teilhaben kann.
|
||||
#### _des Wissens teilhaben kann._
|
||||
|
||||
#### Das ist unsere Mission.
|
||||
#### _Das ist unsere Mission._
|
||||
|
||||
Wikimedia Foundation
|
||||
|
||||
@ -1509,7 +1509,7 @@ gegebenen Freiheiten ist zu finden unter https://creati-
|
||||
vecommons.org/licenses/by-sa/3.0/de/
|
||||
```
|
||||
|
||||
### Paul Klimpel
|
||||
### _Paul Klimpel_
|
||||
|
||||
```
|
||||
Rechtsanwalt & Leiter iRightsLab Kultur
|
||||
|
@ -771,13 +771,13 @@ wash washes
|
||||
Nouns that end in y are formed two ways.
|
||||
```
|
||||
|
||||
1. When letter before y is a vowel, add s.
|
||||
1. When letter before **y** is a vowel, add **s.**
|
||||
valley valleys
|
||||
key keys
|
||||
boy boys
|
||||
day days
|
||||
2. Nouns ending with a consonant and y are formed by changing the y to an i
|
||||
and adding es.
|
||||
2. Nouns ending with a consonant and y are formed by changing the **y** to an **i**
|
||||
and adding **es.**
|
||||
city cities
|
||||
grocery groceries
|
||||
library libraries
|
||||
@ -787,13 +787,13 @@ blueberry blueberries
|
||||
Nouns that end in o are formed two ways.
|
||||
```
|
||||
|
||||
1. When the letter before the o is a vowel, add s. Musical terms ending in o are
|
||||
formed by adding an s.
|
||||
1. When the letter before the **o** is a vowel, add s. Musical terms ending in **o** are
|
||||
formed by adding an **s**.
|
||||
kilo kilos
|
||||
tempo tempos
|
||||
cello cellos
|
||||
|
||||
2. When the letter before the o is a consonant, no standard rule applies. It is
|
||||
2. When the letter before the **o** is a consonant, no standard rule applies. It is
|
||||
helpful to memorize the plural forms of words you use regularly. If you are
|
||||
unsure, you should always check a current dictionary.
|
||||
potato potatoes
|
||||
@ -1358,7 +1358,7 @@ clear which noun the pronoun is replacing. When the pronoun does not match with
|
||||
noun it is replacing, the sentence is very confusing. Using pronouns correctly means
|
||||
following these rules:
|
||||
|
||||
1. The pronoun must have a clear antecedent. If the reader can‟t figure out what the
|
||||
1. **The pronoun must have a clear antecedent.** If the reader can‟t figure out what the
|
||||
pronoun is referring to, then the sentence is too vague.
|
||||
|
||||
```
|
||||
@ -1366,7 +1366,7 @@ pronoun is referring to, then the sentence is too vague.
|
||||
Mary told Sarah that she was in trouble. (Who is in trouble?)
|
||||
```
|
||||
|
||||
2. Pronouns must have the same number (singular or plural) as the antecedent. If
|
||||
2. **Pronouns must have the same number (singular or plural) as the antecedent.** If
|
||||
a pronoun is replacing a plural noun, then the pronoun also needs to be plural. Singular
|
||||
pronouns replace singular nouns.
|
||||
|
||||
@ -1378,8 +1378,8 @@ antecedent, singular pronoun)
|
||||
plural pronoun)
|
||||
```
|
||||
|
||||
3. Pronouns must have the same gender (masculine, feminine, or neutral) as the
|
||||
antecedent. A masculine pronoun replaces a masculine noun. A feminine pronoun
|
||||
3. **Pronouns must have the same gender (masculine, feminine, or neutral) as the**
|
||||
**antecedent**. A masculine pronoun replaces a masculine noun. A feminine pronoun
|
||||
replaces a feminine noun. It is important that the pronoun agrees with the antecedent.
|
||||
|
||||
```
|
||||
@ -1571,11 +1571,11 @@ the action of the verb or be the object of the preposition.
|
||||
_Who_ is used as a subjective case pronoun, and _whom_ is used as an objective case
|
||||
pronoun. Still not 100 percent clear? There are a few tricks to make this easier.
|
||||
|
||||
1. If who/whom follows a preposition, then the choice is always whom. To whom,
|
||||
at whom, for whom, from whom.
|
||||
2. Mentally replace the word who/whom in your sentence with he or him. If your
|
||||
sentence makes sense switching the word to he, then who is the correct choice. Both
|
||||
he and who are subjective case pronouns, so they work the same way. If your sentence
|
||||
1. **If who/whom follows a preposition, then the choice is always whom. To whom,**
|
||||
**at whom, for whom, from whom.**
|
||||
2. **Mentally replace the word who/whom in your sentence with he or him.** If your
|
||||
sentence makes sense switching the word to _he_, then _who_ is the correct choice. Both
|
||||
_he_ and _who_ are subjective case pronouns, so they work the same way. If your sentence
|
||||
|
||||
makes sense switching the word to _him_, then _whom_ is the correct choice. Both _him_ and
|
||||
_whom_ are objective case pronouns, and they follow the same rules. It is easy to
|
||||
@ -1591,10 +1591,10 @@ remember that _him_ and _whom_ go together because they both end with the letter
|
||||
This trick doesn‟t work for every sentence. If it doesn‟t work for your sentence, the next
|
||||
trick will work.
|
||||
|
||||
3. Who/Whom phrases are often questions. One trick to discovering whether to use who
|
||||
or whom is to just answer the question. If the answer could be he, then who is the
|
||||
correct choice for your sentence. If the answer could be him, then whom is the correct
|
||||
choice. If the sentence is not a question, you can isolate the who/whom phrase and
|
||||
3. _Who/Whom_ phrases are often questions. One trick to discovering whether to use _who_
|
||||
or _whom_ is to just answer the question. If the answer could be _he_, then _who_ is the
|
||||
correct choice for your sentence. If the answer could be _him_, then _whom_ is the correct
|
||||
choice. If the sentence is not a question, you can isolate the _who/whom_ phrase and
|
||||
read it as a question.
|
||||
|
||||
```
|
||||
@ -1949,7 +1949,7 @@ feel felt
|
||||
Why are participles important? Participles are important to learn because they are used
|
||||
three different ways.
|
||||
|
||||
1. Participles combine with helping verbs to form verb phrases. Neither present
|
||||
1. **Participles combine with helping verbs to form verb phrases.** Neither present
|
||||
participles nor past participles can act as a verb in a sentence without helping verbs.
|
||||
Helping verbs are required for a participle to work as a verb.
|
||||
|
||||
@ -1964,19 +1964,19 @@ the past participle of the verb blend.)
|
||||
participle of the verb study.)
|
||||
```
|
||||
|
||||
2. Present and past participles can also work as adjectives. Adjectives describe
|
||||
2. **Present and past participles can also work as adjectives.** Adjectives describe
|
||||
nouns or pronouns.
|
||||
Sarah enjoyed her swimming lessons. (The present participle swimming is
|
||||
describing the lessons.)
|
||||
The dripping faucet kept them awake. (The present participle dripping is
|
||||
describing the faucet.)
|
||||
The wrecked car was towed to the repair shop. (The past participle wrecked is
|
||||
The **wrecked** car was towed to the repair shop. (The past participle _wrecked_ is
|
||||
describing the car.)
|
||||
The broken window was repaired quickly. (The past participle broken is
|
||||
The **broken** window was repaired quickly. (The past participle _broken_ is
|
||||
describing the window.)
|
||||
|
||||
3. Present participles can also work as nouns. When present participles are acting as a
|
||||
noun, they are called gerunds. A gerund might look like a verb, but it is acting like a
|
||||
noun, they are called **gerunds**. A gerund might look like a verb, but it is acting like a
|
||||
noun. Gerunds always end in -ing.
|
||||
|
||||
```
|
||||
|
@ -11598,26 +11598,26 @@ Consumption. New York: Harper Business,
|
||||
```
|
||||
|
||||
2010.
|
||||
Boyle, James. The Public Domain: Enclosing the
|
||||
Commons of the Mind. New Haven: Yale
|
||||
Boyle, James. _The Public Domain: Enclosing the_
|
||||
_Commons of the Mind._ New Haven: Yale
|
||||
University Press, 2008.
|
||||
www.thepublicdomain.org/download/
|
||||
[www.thepublicdomain.org/download/](www.thepublicdomain.org/download/)
|
||||
(licensed under CC BY-NC-SA).
|
||||
Capra, Fritjof, and Ugo Mattei. The Ecology of
|
||||
Law: Toward a Legal System in Tune with
|
||||
Nature and Community. Oakland, CA: Ber-
|
||||
Capra, Fritjof, and Ugo Mattei. _The Ecology of_
|
||||
_Law: Toward a Legal System in Tune with_
|
||||
_Nature and Community_. Oakland, CA: Ber-
|
||||
rett-Koehler, 2015.
|
||||
Chesbrough, Henry. Open Business Models:
|
||||
How to Thrive in the New Innovation Land-
|
||||
scape. Boston: Harvard Business School
|
||||
Chesbrough, Henry. _Open Business Models:_
|
||||
_How to Thrive in the New Innovation Land-_
|
||||
_scape._ Boston: Harvard Business School
|
||||
Press, 2006.
|
||||
———. Open Innovation: The New Imperative
|
||||
for Creating and Profiting from Technology.
|
||||
———. _Open Innovation: The New Imperative_
|
||||
_for Creating and Profiting from Technology._
|
||||
Boston: Harvard Business Review Press,
|
||||
2006.
|
||||
City of Bologna. Regulation on Collaboration
|
||||
between Citizens and the City for the Care
|
||||
and Regeneration of Urban Commons.
|
||||
City of Bologna. _Regulation on Collaboration_
|
||||
_between Citizens and the City for the Care_
|
||||
_and Regeneration of Urban Commons._
|
||||
Translated by LabGov (LABoratory for the
|
||||
|
||||
GOVernance of Commons). Bologna, Italy:
|
||||
@ -11683,43 +11683,43 @@ ers Drives Our Success. New York: Viking,
|
||||
```
|
||||
|
||||
2013.
|
||||
Haiven, Max. Crises of Imagination, Crises of
|
||||
Power: Capitalism, Creativity and the Com-
|
||||
mons. New York: Zed Books, 2014.
|
||||
Harris, Malcom, ed. Share or Die: Voices of the
|
||||
Get Lost Generation in the Age of Crisis. With
|
||||
Haiven, Max. _Crises of Imagination, Crises of_
|
||||
_Power: Capitalism, Creativity and the Com-_
|
||||
_mons._ New York: Zed Books, 2014.
|
||||
Harris, Malcom, ed. _Share or Die: Voices of the_
|
||||
_Get Lost Generation in the Age of Crisis._ With
|
||||
Neal Gorenflo. Gabriola Island, BC: New
|
||||
Society, 2012.
|
||||
Hermida, Alfred. Tell Everyone: Why We Share
|
||||
and Why It Matters. Toronto: Doubleday
|
||||
Hermida, Alfred. _Tell Everyone: Why We Share_
|
||||
_and Why It Matters._ Toronto: Doubleday
|
||||
Canada, 2014.
|
||||
Hyde, Lewis. Common as Air: Revolution, Art,
|
||||
and Ownership. New York: Farrar, Straus
|
||||
Hyde, Lewis. _Common as Air: Revolution, Art,_
|
||||
_and Ownership_. New York: Farrar, Straus
|
||||
and Giroux, 2010.
|
||||
———. The Gift: Creativity and the Artist in the
|
||||
Modern World. 2nd Vintage Books edition.
|
||||
———. _The Gift: Creativity and the Artist in the_
|
||||
_Modern World_. 2nd Vintage Books edition.
|
||||
New York: Vintage Books, 2007.
|
||||
Kelley, Tom, and David Kelley. Creative Confi-
|
||||
dence: Unleashing the Potential within Us All.
|
||||
Kelley, Tom, and David Kelley. _Creative Confi-_
|
||||
_dence: Unleashing the Potential within Us All._
|
||||
New York: Crown, 2013.
|
||||
Kelly, Marjorie. Owning Our Future: The Emerg-
|
||||
ing Ownership Revolution; Journeys to a
|
||||
Generative Economy. San Francisco:
|
||||
Kelly, Marjorie. _Owning Our Future: The Emerg-_
|
||||
_ing Ownership Revolution; Journeys to a_
|
||||
_Generative Economy_. San Francisco:
|
||||
Berrett-Koehler, 2012.
|
||||
Kleon, Austin. Show Your Work: 10 Ways to
|
||||
Share Your Creativity and Get Discovered.
|
||||
Kleon, Austin. _Show Your Work: 10 Ways to_
|
||||
_Share Your Creativity and Get Discovered._
|
||||
New York: Workman, 2014.
|
||||
———. Steal Like an Artist: 10 Things Nobody
|
||||
Told You about Being Creative. New York:
|
||||
———. _Steal Like an Artist: 10 Things Nobody_
|
||||
_Told You about Being Creative._ New York:
|
||||
Workman, 2012.
|
||||
Kramer, Bryan. Shareology: How Sharing Is
|
||||
Powering the Human Economy. New York:
|
||||
Kramer, Bryan. _Shareology: How Sharing Is_
|
||||
_Powering the Human Economy._ New York:
|
||||
Morgan James, 2016.
|
||||
Lee, David. “Inside Medium: An Attempt to
|
||||
Bring Civility to the Internet.” BBC News,
|
||||
March 3, 2016. www.bbc.com/news
|
||||
/technology-35709680
|
||||
Lessig, Lawrence. Remix: Making Art and Com-
|
||||
Lessig, Lawrence. _Remix: Making Art and Com-_
|
||||
|
||||
_merce Thrive in the Hybrid Economy_. New
|
||||
York: Penguin Press, 2008.
|
||||
@ -11730,46 +11730,46 @@ Mason, Paul. _Postcapitalism: A Guide to Our Fu-_
|
||||
_ture._ New York: Farrar, Straus and Giroux,
|
||||
|
||||
2015.
|
||||
New York Times Customer Insight Group. The
|
||||
Psychology of Sharing: Why Do People Share
|
||||
Online? New York: New York Times Cus-
|
||||
New York Times Customer Insight Group. _The_
|
||||
_Psychology of Sharing: Why Do People Share_
|
||||
_Online?_ New York: New York Times Cus-
|
||||
tomer Insight Group, 2011. www.iab.net
|
||||
/media/file/POSWhitePaper.pdf.
|
||||
Osterwalder, Alex, and Yves Pigneur. Business
|
||||
Model Generation. Hoboken, NJ: John Wiley
|
||||
Osterwalder, Alex, and Yves Pigneur. _Business_
|
||||
_Model Generation._ Hoboken, NJ: John Wiley
|
||||
and Sons, 2010. A preview of the book is
|
||||
available at strategyzer.com/books
|
||||
/business-model-generation.
|
||||
Osterwalder, Alex, Yves Pigneur, Greg Ber-
|
||||
narda, and Adam Smith. Value Proposition
|
||||
Design. Hoboken, NJ: John Wiley and Sons,
|
||||
narda, and Adam Smith. _Value Proposition_
|
||||
_Design._ Hoboken, NJ: John Wiley and Sons,
|
||||
2014. A preview of the book is available at
|
||||
strategyzer.com/books/value
|
||||
-proposition-design.
|
||||
Palmer, Amanda. The Art of Asking: Or How I
|
||||
Learned to Stop Worrying and Let People
|
||||
Help. New York: Grand Central, 2014.
|
||||
Pekel, Joris. Democratising the Rijksmuseum:
|
||||
Why Did the Rijksmuseum Make Available
|
||||
Their Highest Quality Material without
|
||||
Restrictions, and What Are the Results? The
|
||||
Palmer, Amanda. _The Art of Asking: Or How I_
|
||||
_Learned to Stop Worrying and Let People_
|
||||
_Help._ New York: Grand Central, 2014.
|
||||
Pekel, Joris. _Democratising the Rijksmuseum:_
|
||||
_Why Did the Rijksmuseum Make Available_
|
||||
_Their Highest Quality Material without_
|
||||
_Restrictions, and What Are the Results?_ The
|
||||
Hague, Netherlands: Europeana Founda-
|
||||
tion, 2014. pro.europeana.eu/publication
|
||||
/democratising-the-rijksmuseum (licensed
|
||||
under CC BY-SA).
|
||||
Ramos, José Maria, ed. The City as Commons: A
|
||||
Policy Reader. Melbourne, Australia: Com-
|
||||
Ramos, José Maria, ed. _The City as Commons: A_
|
||||
_Policy Reader._ Melbourne, Australia: Com-
|
||||
mons Transition Coalition, 2016. www
|
||||
.academia.edu/27143172/The_City_as
|
||||
_Commons_a_Policy_Reader (licensed
|
||||
under CC BY-NC-ND).
|
||||
Raymond, Eric S. The Cathedral and the Bazaar:
|
||||
Musings on Linux and Open Source by an Ac-
|
||||
cidental Revolutionary. Rev. ed. Sebastopol,
|
||||
Raymond, Eric S. _The Cathedral and the Bazaar:_
|
||||
_Musings on Linux and Open Source by an Ac-_
|
||||
_cidental Revolutionary_. Rev. ed. Sebastopol,
|
||||
CA: O’Reilly Media, 2001. See esp. “The
|
||||
Magic Cauldron.” www.catb.org/esr
|
||||
/writings/cathedral-bazaar/.
|
||||
Rries, Eric. The Lean Startup: How Today’s
|
||||
Rries, Eric. _The Lean Startup: How Today’s_
|
||||
|
||||
```
|
||||
Entrepreneurs Use Continuous Innovation to
|
||||
@ -11795,33 +11795,33 @@ Sharing Economy. New York: OR Books,
|
||||
```
|
||||
|
||||
2015.
|
||||
Stephany, Alex. The Business of Sharing: Mak-
|
||||
ing in the New Sharing Economy. New York:
|
||||
Stephany, Alex. _The Business of Sharing: Mak-_
|
||||
_ing in the New Sharing Economy._ New York:
|
||||
Palgrave Macmillan, 2015.
|
||||
Stepper, John. Working Out Loud: For a Better
|
||||
Career and Life. New York: Ikigai Press,
|
||||
Stepper, John. _Working Out Loud: For a Better_
|
||||
_Career and Life._ New York: Ikigai Press,
|
||||
2015.
|
||||
Sull, Donald, and Kathleen M. Eisenhardt. Sim-
|
||||
ple Rules: How to Thrive in a Complex World.
|
||||
Sull, Donald, and Kathleen M. Eisenhardt. _Sim-_
|
||||
_ple Rules: How to Thrive in a Complex World._
|
||||
Boston: Houghton Mifflin Harcourt, 2015.
|
||||
Sundararajan, Arun. The Sharing Economy: The
|
||||
End of Employment and the Rise of Crowd-
|
||||
Based Capitalism. Cambridge, MA: MIT
|
||||
Sundararajan, Arun. _The Sharing Economy: The_
|
||||
_End of Employment and the Rise of Crowd-_
|
||||
_Based Capitalism_. Cambridge, MA: MIT
|
||||
Press, 2016.
|
||||
Surowiecki, James. The Wisdom of Crowds. New
|
||||
Surowiecki, James. _The Wisdom of Crowds._ New
|
||||
York: Anchor Books, 2005.
|
||||
Tapscott, Don, and Alex Tapscott. Blockchain
|
||||
Revolution: How the Technology Behind
|
||||
Bitcoin Is Changing Money, Business, and the
|
||||
World. Toronto: Portfolio, 2016.
|
||||
Tharp, Twyla. The Creative Habit: Learn It and
|
||||
Use It for Life. With Mark Reiter. New York:
|
||||
Tapscott, Don, and Alex Tapscott. _Blockchain_
|
||||
_Revolution: How the Technology Behind_
|
||||
_Bitcoin Is Changing Money, Business, and the_
|
||||
_World._ Toronto: Portfolio, 2016.
|
||||
Tharp, Twyla. _The Creative Habit: Learn It and_
|
||||
_Use It for Life_. With Mark Reiter. New York:
|
||||
Simon and Schuster, 2006.
|
||||
Tkacz, Nathaniel. Wikipedia and the Politics of
|
||||
Openness. Chicago: University of Chicago
|
||||
Tkacz, Nathaniel. _Wikipedia and the Politics of_
|
||||
_Openness._ Chicago: University of Chicago
|
||||
Press, 2015.
|
||||
Van Abel, Bass, Lucas Evers, Roel Klaassen,
|
||||
and Peter Troxler, eds. Open Design Now:
|
||||
and Peter Troxler, eds. _Open Design Now:_
|
||||
|
||||
_Why Design Cannot Remain Exclusive._ Am-
|
||||
sterdam: BIS Publishers, with Creative
|
||||
|
@ -2338,7 +2338,7 @@ Appendix M: Summary of the six step improvement process for transfer of care
|
||||
|
||||
**1**
|
||||
|
||||
• Start out (page 10)
|
||||
• **Start out (page 10)**
|
||||
• Refer to existing policies and procedures for transfers of care in your organisation
|
||||
• Observe, measure and process map the current communication process
|
||||
• What does good look like? Compare your policy and communication process with the good practice checklist.
|
||||
@ -2346,7 +2346,7 @@ Appendix M: Summary of the six step improvement process for transfer of care
|
||||
|
||||
**2**
|
||||
|
||||
• Define and scope (page 13)
|
||||
• **Define and scope (page 13)**
|
||||
• Begin to answer the three questions of the model for improvement (Appendix C)
|
||||
• Set your project aim and scope and link this to your organisational big issues on a driver diagram (page 22)
|
||||
• Engage staff, patients, clients and residents using patient stories and evidence from useful resources
|
||||
@ -2355,12 +2355,12 @@ Appendix M: Summary of the six step improvement process for transfer of care
|
||||
|
||||
**3**
|
||||
|
||||
• Measure and understand (page 19)
|
||||
• **Measure and understand (page 19)**
|
||||
• Choose and define your outcomes and process measures, collect baseline data and display on run or SPC charts
|
||||
|
||||
**4**
|
||||
|
||||
• Design and plan (page 24)
|
||||
• **Design and plan (page 24)**
|
||||
• Design your standard transfer of care template and test using Plan Do Study Act (PDSA) cycles (Appendix I & J)
|
||||
• Use dot voting to define your minimum data set (Appendix G)
|
||||
• Select a standardised communication tool (e.g. SBAR) to organise your minimum data set
|
||||
@ -2369,7 +2369,7 @@ Appendix M: Summary of the six step improvement process for transfer of care
|
||||
|
||||
**5**
|
||||
|
||||
• Pilot and implement (page 34)
|
||||
• **Pilot and implement (page 34)**
|
||||
• Document your new standardised transfer of care process
|
||||
• Plan your tests for implementation using PDSA cycles. Plan training, measurement, resources & stakeholder
|
||||
engagement. (Appendix I & J)
|
||||
@ -2377,7 +2377,7 @@ engagement. (Appendix I & J)
|
||||
|
||||
**6**
|
||||
|
||||
• Sustain and share (page 38)
|
||||
• **Sustain and share (page 38)**
|
||||
• Use the sustainability guide to ensure your changes will be sustained
|
||||
• Celebrate and spread your success through conferences, posters, journal articles etc. (Appendix L)
|
||||
|
||||
|
@ -2155,27 +2155,27 @@ Oxfordshire District Council, Dec
|
||||
```
|
||||
|
||||
2010.
|
||||
UpMyStreet
|
||||
Cottsway Housing Association
|
||||
Police UK
|
||||
Thames Valley Police
|
||||
West Oxfordshire Community Safety
|
||||
Partnership
|
||||
Witney Neighbourhood Action
|
||||
Group
|
||||
Witney Music Festival
|
||||
Witney Book Festival
|
||||
Witney Film Festival
|
||||
Witney TV
|
||||
Witney Art Studios
|
||||
The Henry Box School
|
||||
St Mary’s Infant School
|
||||
The Batt C of E Primary School
|
||||
Wood Green School
|
||||
Cokethorpe School
|
||||
The Kings School
|
||||
Abingdon & Witney College
|
||||
Citizens Advice Bureau
|
||||
**UpMyStreet**
|
||||
**Cottsway Housing Association**
|
||||
**Police UK**
|
||||
**Thames Valley Police**
|
||||
**West Oxfordshire Community Safety**
|
||||
**Partnership**
|
||||
**Witney Neighbourhood Action**
|
||||
**Group**
|
||||
**Witney Music Festival**
|
||||
**Witney Book Festival**
|
||||
**Witney Film Festival**
|
||||
**Witney TV**
|
||||
**Witney Art Studios**
|
||||
**The Henry Box School**
|
||||
**St Mary’s Infant School**
|
||||
**The Batt C of E Primary School**
|
||||
**Wood Green School**
|
||||
**Cokethorpe School**
|
||||
**The Kings School**
|
||||
**Abingdon & Witney College**
|
||||
**Citizens Advice Bureau**
|
||||
|
||||
Burwell (top) and Wood Green (above)
|
||||
|
||||
|
@ -1478,15 +1478,15 @@ _the nations of the earth, must come in God's appointed time!_
|
||||
—HENRY W. GRADY, The Race Problem.
|
||||
```
|
||||
|
||||
... I WOULD CALL HIM NAPOLEON, but Napoleon made his way
|
||||
to empire over broken oaths and through a sea of blood. This man
|
||||
... _I WOULD CALL HIM NAPOLEON_, but Napoleon made his way
|
||||
to empire _over broken oaths and through a sea of blood._ This man
|
||||
never broke his word. "No Retaliation" was his great motto and the
|
||||
rule of his life; AND THE LAST WORDS UTTERED TO HIS SON
|
||||
IN FRANCE WERE THESE: "My boy, you will one day go back to
|
||||
Santo Domingo; forget that France murdered your father." I
|
||||
WOULD CALL HIM CROMWELL, but Cromwell was only a
|
||||
soldier, and the state he founded went down with him into his grave.
|
||||
I WOULD CALL HIM WASHINGTON, but the great Virginian held
|
||||
rule of his life; _AND THE LAST WORDS UTTERED TO HIS SON_
|
||||
_IN FRANCE WERE THESE: "My boy, you will one day go back to_
|
||||
_Santo Domingo; forget that France murdered your father." I_
|
||||
_WOULD CALL HIM CROMWELL,_ but Cromwell _was only a_
|
||||
_soldier, and the state he founded went down with him into his grave._
|
||||
_I WOULD CALL HIM WASHINGTON,_ but the great Virginian _held_
|
||||
|
||||
```
|
||||
slaves. THIS MAN RISKED HIS EMPIRE rather than permit the
|
||||
@ -2921,14 +2921,18 @@ emphasis.
|
||||
|
||||
can.
|
||||
|
||||
4. Do the same for the rising inflection.
|
||||
5. How does the voice bend in expressing ( _a_ ) surprise? ( _b_ ) shame? ( _c_ ) hate? ( _d_ )
|
||||
formality? ( _e_ ) excitement?
|
||||
6. Reread some sentence several times and by using different inflections change
|
||||
the meaning with each reading.
|
||||
7. Note the inflections employed in some speech or conversation. Were they the
|
||||
best that could be used to bring out the meaning? Criticise and illustrate.
|
||||
8. Render the following passages:
|
||||
[^4]:. Do the same for the rising inflection.
|
||||
|
||||
[^5]:. How does the voice bend in expressing (_a_) surprise? (_b_) shame? (_c_) hate? (_d_)
|
||||
formality? (_e_) excitement?
|
||||
|
||||
[^6]:. Reread some sentence several times and by using different inflections change
|
||||
the meaning with each reading.
|
||||
|
||||
[^7]:. Note the inflections employed in some speech or conversation. Were they the
|
||||
best that could be used to bring out the meaning? Criticise and illustrate.
|
||||
|
||||
[^8]:. Render the following passages:
|
||||
|
||||
```
|
||||
Has the gentleman done? Has he completely done?
|
||||
|
@ -1,12 +1,12 @@
|
||||
### Andrew W. Mellon Foundation
|
||||
### _Andrew W. Mellon Foundation_
|
||||
|
||||
### Grant 1711-05155
|
||||
### _Grant 1711-05155_
|
||||
|
||||
### December 19, 2019
|
||||
### _December_ [^19]:_, 2019_
|
||||
|
||||
### John Kiplinger
|
||||
### _John Kiplinger_
|
||||
|
||||
### Valerie Yaw
|
||||
### _Valerie Yaw_
|
||||
|
||||
# The Impact of Open Access
|
||||
|
||||
|
@ -81,7 +81,7 @@ ambulatory, and yet I cannot walk. I cannot
|
||||
even hop or waddle. I would fain travel, roam,
|
||||
promenade, circulate in the busy paths of men,
|
||||
but I am chained to this accursed shelf. I am no
|
||||
better off than these barbarian heads — I, a man
|
||||
better off than these barbarian heads—I, a man
|
||||
of science! I am compelled to sit here on my
|
||||
neck and see sandpipers and storks all around
|
||||
me, with legs and to spare. Look at that infernal
|
||||
@ -100,8 +100,8 @@ perhaps his condition had its compensations in
|
||||
immunity from corns and the gout.
|
||||
"And as to arms," he went on, "there's
|
||||
another misfortune for you! I am unable to
|
||||
brush away the flies that get in here — Lord
|
||||
knows how — in the summertime. I cannot
|
||||
brush away the flies that get in here—Lord
|
||||
knows how—in the summertime. I cannot
|
||||
reach over and cuff that confounded Chinook
|
||||
mummy that sits there grinning at me like a
|
||||
jack-in-the-box. I cannot scratch my head or
|
||||
@ -171,7 +171,7 @@ conversation with the Head.
|
||||
"Think of putting a wooden-headed idiot like
|
||||
that," said the Professor, after I had opened his
|
||||
glass prison, "in charge of a portion, however
|
||||
small, of a man of science — of the inventor of
|
||||
small, of a man of science—of the inventor of
|
||||
the Telepomp! Paris! Murderer! Last century,
|
||||
indeed!" and the Head shook with laughter
|
||||
until I feared that it would tumble off the shelf.
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1278,7 +1278,7 @@ Cr (tot)[mg/kg]
|
||||
|
||||
_Feuchtig_
|
||||
|
||||
-
|
||||
_-_
|
||||
|
||||
```
|
||||
keit [%] > 20 1,0 81,7 2,6 1,6 0,2 2,0 3,0 3,7 6,6 1,4 1,7 3,0
|
||||
@ -1306,16 +1306,16 @@ C [%] > 20 68,680,248,067,0 79,091,669,5 69,5 55,248,162,141,4 48,571,123,9 84,9
|
||||
Grenzw
|
||||
```
|
||||
|
||||
.
|
||||
_._
|
||||
|
||||
```
|
||||
A B C D E F G H I M R100R75 R50 O
|
||||
```
|
||||
|
||||
-R
|
||||
O
|
||||
-C
|
||||
Q
|
||||
_-R_
|
||||
_O_
|
||||
_-C_
|
||||
_Q_
|
||||
|
||||
Basso, Cordioli, Bonadio, Patuzzi, Dal Savio, Mimmo, Baratieri
|
||||
|
||||
@ -1468,7 +1468,7 @@ Cr (tot)[mg/kg]
|
||||
Feuchtig
|
||||
```
|
||||
|
||||
-
|
||||
_-_
|
||||
|
||||
```
|
||||
keit [%] ≥ 20 1,8 2,2 2,6 3,6 1,5 1,5 1,5 1,0 1,9 2,2 2,5 1,7
|
||||
@ -1495,7 +1495,7 @@ C [%] > 20 75,4 79,2 68,9 67,7 48,7 47,3 85,5 90,2 68,3 69,0 29,5 29,6
|
||||
Grenzw
|
||||
```
|
||||
|
||||
.
|
||||
_._
|
||||
|
||||
```
|
||||
MSP550MSP700OSR550OSR700RH550RH700SWP550SWP700WSP550WSP700SS550SS700
|
||||
@ -1549,8 +1549,8 @@ PCB
|
||||
[ng/kg]0,2
|
||||
```
|
||||
|
||||
-0,5
|
||||
<1 <1 <1 <1 <1 <1 <1 <1
|
||||
_-0,5_
|
||||
_<1 <1 <1 <1 <1 <1 <1 <1_
|
||||
|
||||
```
|
||||
∑
|
||||
@ -1574,16 +1574,16 @@ Cd
|
||||
[mg/kg]1,4
|
||||
```
|
||||
|
||||
-[^39]
|
||||
1,5 2,4 0,1 1,7 1,8 0,5 0,4 0,1 6,1 0,3 0,0 0,1 0,4 0,1 0,5 0,0
|
||||
_-_[^39]
|
||||
_1,5 2,4 0,1 1,7 1,8 0,5 0,4 0,1 6,1 0,3 0,0 0,1 0,4 0,1 0,5 0,0_
|
||||
|
||||
```
|
||||
Zn
|
||||
[mg/kg]200
|
||||
```
|
||||
|
||||
-[^7000]
|
||||
478,1246,81316,9182,6263,184,0 397,4346,6586,2418,929,0 95,2 205,214,8 288,948,5
|
||||
_-_[^7000]
|
||||
_478,1246,81316,9182,6263,184,0 397,4346,6586,2418,929,0 95,2 205,214,8 288,948,5_
|
||||
|
||||
```
|
||||
Cu
|
||||
@ -1606,7 +1606,7 @@ Cr (tot)[mg/kg]64-
|
||||
Feuchtig
|
||||
```
|
||||
|
||||
-
|
||||
_-_
|
||||
|
||||
```
|
||||
keit[%] -- 1,0 81,7 2,6 1,6 0,2 2,0 3,0 3,7 6,6 1,4 1,7 3,0
|
||||
@ -1633,10 +1633,10 @@ C [%] ≥ 10 68,6 80,2 48,0 67,0 79,0 91,6 69,5 69,5 55,2 48,1 62,1 41,4 48,5 71
|
||||
IBI A B C D E F G H I M R100R75 R50 O
|
||||
```
|
||||
|
||||
-R
|
||||
O
|
||||
-C
|
||||
Q
|
||||
_-R_
|
||||
_O_
|
||||
_-C_
|
||||
_Q_
|
||||
|
||||
```
|
||||
Neuester Stand der Technik der Vergasung von Holzbiomasse in Südtirol
|
||||
@ -1726,7 +1726,7 @@ Cr (tot)[mg/kg]
|
||||
|
||||
_Feuchtig_
|
||||
|
||||
-
|
||||
_-_
|
||||
|
||||
```
|
||||
keit[%] -- 1,0 81,7 2,6 1,6 0,2 2,0 3,0 3,7 6,6 1,4 1,7 3,0
|
||||
@ -1753,10 +1753,10 @@ C [%] > 50 68,6 80,2 48,0 67,0 79,0 91,6 69,5 69,5 55,2 48,1 62,1 41,4 48,5 71,1
|
||||
EBC A B C D E F G H I M R100R75 R50 O
|
||||
```
|
||||
|
||||
-R
|
||||
O
|
||||
-C
|
||||
Q
|
||||
_-R_
|
||||
_O_
|
||||
_-C_
|
||||
_Q_
|
||||
|
||||
Basso, Cordioli, Bonadio, Patuzzi, Dal Savio, Mimmo, Baratieri
|
||||
|
||||
@ -1847,7 +1847,7 @@ Cr (tot)[mg/kg]
|
||||
|
||||
_Feuchtig_
|
||||
|
||||
-
|
||||
_-_
|
||||
|
||||
```
|
||||
keit[%] 1,0 81,7 2,6 1,6 0,2 2,0 3,0 3,7 6,6 1,4 1,7 3,0
|
||||
@ -1874,10 +1874,10 @@ C [%] 68,6 80,2 48,0 67,0 79,0 91,6 69,5 69,5 55,2 48,1 62,1 41,4 48,5 71,1 23,9
|
||||
BQMA B C D E F G H I M R100R75 R50 O
|
||||
```
|
||||
|
||||
-R
|
||||
O
|
||||
-C
|
||||
Q
|
||||
_-R_
|
||||
_O_
|
||||
_-C_
|
||||
_Q_
|
||||
|
||||
```
|
||||
Neuester Stand der Technik der Vergasung von Holzbiomasse in Südtirol
|
||||
@ -1924,18 +1924,18 @@ Basso, Cordioli, Bonadio, Patuzzi, Dal Savio, Mimmo, Baratieri
|
||||
_eines von folgenden Dekreten vorgesehenen Förderprogramms in Betrieb_
|
||||
_genommen wurden:_
|
||||
|
||||
- Ministerialdekret vom 18. Dezember 2008 (allumfassender Tarif)
|
||||
- Ministerialdekret vom 6. Juli 2012 (FER-Dekret 2012)
|
||||
- Ministerialdekret vom 16. Juni 2016 (FER-Dekret 2016)
|
||||
Da die Untersuchungen im Laufe des Projekts ergeben haben, dass in Südtirol
|
||||
keine Anlagen ohne diese Förderprogramme in Betrieb genommen wurden,
|
||||
schien es unnötig, alternative und mit den aufgezählten nicht kumulative För-
|
||||
dermechanismen wie das Net-Metering (scambio sul posto) und die Abnahme
|
||||
zu einem festgesetzten Preis durch den Netzbetreiber (ritiro dedicato) in Be-
|
||||
tracht zu ziehen. Die berücksichtigten Tarife werden automatisch unter An-
|
||||
gabe des Zeitraums der offiziellen Inbetriebnahme der Anlage ausgewählt;
|
||||
jährliche Kürzungen werden in Betracht gezogen, sofern von den Bestimmun-
|
||||
gen vorgesehen.
|
||||
_- Ministerialdekret vom 18. Dezember 2008 (allumfassender Tarif)_
|
||||
_- Ministerialdekret vom 6. Juli 2012 (FER-Dekret 2012)_
|
||||
_- Ministerialdekret vom 16. Juni 2016 (FER-Dekret 2016)_
|
||||
_Da die Untersuchungen im Laufe des Projekts ergeben haben, dass in Südtirol_
|
||||
_keine Anlagen ohne diese Förderprogramme in Betrieb genommen wurden,_
|
||||
_schien es unnötig, alternative und mit den aufgezählten nicht kumulative För-_
|
||||
_dermechanismen wie das Net-Metering (scambio sul posto) und die Abnahme_
|
||||
_zu einem festgesetzten Preis durch den Netzbetreiber (ritiro dedicato) in Be-_
|
||||
_tracht zu ziehen. Die berücksichtigten Tarife werden automatisch unter An-_
|
||||
_gabe des Zeitraums der offiziellen Inbetriebnahme der Anlage ausgewählt;_
|
||||
_jährliche Kürzungen werden in Betracht gezogen, sofern von den Bestimmun-_
|
||||
_gen vorgesehen._
|
||||
|
||||
4.3 Wirtschaftliche Analyse möglicher Optimierungseingriffe
|
||||
_Die Schwierigkeit, einen Zusammenhang zwischen den technischen Betriebs-_
|
||||
@ -1946,16 +1946,16 @@ _der erzeugten Kohle verhindert. Im Laufe des Projekts hat sich auch die Mög-_
|
||||
_lichkeit der Erprobung empirischer Optimierungslösungen als nicht praktika-_
|
||||
_bel erwiesen, und zwar aus verschiedenen Gründen:_
|
||||
|
||||
- Mangelnde Möglichkeit einer Änderung der Betriebsparameter der Anla-
|
||||
gen infolge der Risiken in Verbindung mit einer Profitverringerung auf-
|
||||
grund der Ausscheidung aus dem Förderprogramm und mit den daraus
|
||||
entstehenden möglichen Schäden und Funktionsstörungen der Anlage;
|
||||
- Besonderheit des Genehmigungsverfahrens, das eine Betriebseignungsbe-
|
||||
wertung (seitens des Amts für Luft und Lärm) auf Grundlage eines genau
|
||||
definierten Projekts vorsieht, an dem im Laufe der technischen Lebens-
|
||||
dauer keine „bedeutenden/wesentlichen“ Änderungen vorgenommen
|
||||
werden dürfen, da ansonsten die Genehmigung verfällt. Daraus hat sich
|
||||
automatisch die mangelnde Möglichkeit der Durchführung relevanter Op-
|
||||
_- Mangelnde Möglichkeit einer Änderung der Betriebsparameter der Anla-_
|
||||
_gen infolge der Risiken in Verbindung mit einer Profitverringerung auf-_
|
||||
_grund der Ausscheidung aus dem Förderprogramm und mit den daraus_
|
||||
_entstehenden möglichen Schäden und Funktionsstörungen der Anlage;_
|
||||
_- Besonderheit des Genehmigungsverfahrens, das eine Betriebseignungsbe-_
|
||||
_wertung (seitens des Amts für Luft und Lärm) auf Grundlage eines genau_
|
||||
_definierten Projekts vorsieht, an dem im Laufe der technischen Lebens-_
|
||||
_dauer keine „bedeutenden/wesentlichen“ Änderungen vorgenommen_
|
||||
_werden dürfen, da ansonsten die Genehmigung verfällt. Daraus hat sich_
|
||||
_automatisch die mangelnde Möglichkeit der Durchführung relevanter Op-_
|
||||
|
||||
```
|
||||
Neuester Stand der Technik der Vergasung von Holzbiomasse in Südtirol
|
||||
@ -1967,23 +1967,23 @@ pus auszutauschen oder der Anlage neue Teile hinzuzufügen, z. B. durch
|
||||
Anwendung eines „Reformers“.
|
||||
```
|
||||
|
||||
- Mangelnde Bereitschaft der Anlagenbetreiber, „empirische“ Veränderun-
|
||||
gen, also Änderungen mit unsicherem Resultat, an der Anlage vorzuneh-
|
||||
men;
|
||||
- Mangelnde Bereitschaft der Partner, eine Laboreinrichtung mit marktähn-
|
||||
lichen Dimensionen zu suchen, in der Lösungen und Strategien zur Qua-
|
||||
litätsverbesserung der erzeugten Kohle frei erprobt werden können.
|
||||
Dies vorausgesetzt, wurde vereinbart, die wirtschaftliche Analyse einer mögli-
|
||||
chen Veränderung der Anlage, mit der die gewonnene Kohle von einem „Kos-
|
||||
tenpunkt“ (wegen ihrer schlechten Qualität und der daraus resultierenden Not-
|
||||
wendigkeit, als Abfall entsorgt zu werden) in eine „Ressource“ (also ein Pro-
|
||||
dukt, das auf dem Markt verkauft wird) verwandelt werden kann, mit einem
|
||||
„Rückwärtsansatz“ durchzuführen. Die wirtschaftliche Rückwärtsanalyse
|
||||
wurde wie folgt durchgeführt: nach Festsetzung von drei möglichen Verkaufs-
|
||||
preisen für die Kohle in Abhängigkeit ihrer aktuellen Marktnotierung im Agr-
|
||||
arbereich wurde der für Veränderungen an der Anlage verfügbare Höchstbe-
|
||||
trag (aus dem Kohleverkauf) berechnet, wobei als Abschreibungsdauer für die
|
||||
Investition die Restlebensdauer der Anlage zu Grunde gelegt wurde.
|
||||
_- Mangelnde Bereitschaft der Anlagenbetreiber, „empirische“ Veränderun-_
|
||||
_gen, also Änderungen mit unsicherem Resultat, an der Anlage vorzuneh-_
|
||||
_men;_
|
||||
_- Mangelnde Bereitschaft der Partner, eine Laboreinrichtung mit marktähn-_
|
||||
_lichen Dimensionen zu suchen, in der Lösungen und Strategien zur Qua-_
|
||||
_litätsverbesserung der erzeugten Kohle frei erprobt werden können._
|
||||
_Dies vorausgesetzt, wurde vereinbart, die wirtschaftliche Analyse einer mögli-_
|
||||
_chen Veränderung der Anlage, mit der die gewonnene Kohle von einem „Kos-_
|
||||
_tenpunkt“ (wegen ihrer schlechten Qualität und der daraus resultierenden Not-_
|
||||
_wendigkeit, als Abfall entsorgt zu werden) in eine „Ressource“ (also ein Pro-_
|
||||
_dukt, das auf dem Markt verkauft wird) verwandelt werden kann, mit einem_
|
||||
_„Rückwärtsansatz“ durchzuführen. Die wirtschaftliche Rückwärtsanalyse_
|
||||
_wurde wie folgt durchgeführt: nach Festsetzung von drei möglichen Verkaufs-_
|
||||
_preisen für die Kohle in Abhängigkeit ihrer aktuellen Marktnotierung im Agr-_
|
||||
_arbereich wurde der für Veränderungen an der Anlage verfügbare Höchstbe-_
|
||||
_trag (aus dem Kohleverkauf) berechnet, wobei als Abschreibungsdauer für die_
|
||||
_Investition die Restlebensdauer der Anlage zu Grunde gelegt wurde._
|
||||
|
||||
4.4 Definition der Originalkonfiguration
|
||||
_Die wirtschaftliche Analyse der beiden Konfigurationen – Originalkonfigura-_
|
||||
@ -1996,9 +1996,9 @@ _Südtirol untersuchten Anlagen entsprechen. Bei der Definition der einzelnen_
|
||||
_Anlagenparameter in der „Originalkonfiguration“ wurden die im Folgenden_
|
||||
_erläuterten Betrachtungen angestellt._
|
||||
|
||||
- Aus der Analyse der Vergasungsanlagen in Südtirol geht hervor, dass zwi-
|
||||
schen 2012 und 2015, unter dem damals sehr vorteilhaften Förderpro-
|
||||
gramm, 35 der 44 derzeit aktiven Holzvergasungsanlagen gebaut wurden.
|
||||
_- Aus der Analyse der Vergasungsanlagen in Südtirol geht hervor, dass zwi-_
|
||||
_schen 2012 und 2015, unter dem damals sehr vorteilhaften Förderpro-_
|
||||
_gramm, 35 der 44 derzeit aktiven Holzvergasungsanlagen gebaut wurden._
|
||||
|
||||
Basso, Cordioli, Bonadio, Patuzzi, Dal Savio, Mimmo, Baratieri
|
||||
|
||||
@ -2007,19 +2007,19 @@ Aus diesem Grund wurde entschieden, der Analyse eine hypothetische
|
||||
Anlage, die 2013 in Betrieb genommen wurde, zu Grunde zu legen.
|
||||
```
|
||||
|
||||
- Auch die Wahl der Leistung dieser Anlage wurde unter Berücksichtigung
|
||||
der Eigenschaften der aktuell betriebenen Anlagen getroffen. Genauer ge-
|
||||
sagt fiel die Wahl auf eine aus zwei Modulen mit einer elektrischen Nenn-
|
||||
leistung von 45 kW und einer thermischen Nennleistung von 100 kW be-
|
||||
stehende Anlage (dies entspricht den Eigenschaften der meisten Anlagen).
|
||||
- Die übrigen für die Originalkonfiguration verwendeten technischen und
|
||||
wirtschaftlichen Parameter wurden ausgehend von den Durchschnitts-
|
||||
werten der bei der Untersuchung der Anlagen erhobenen Daten ermittelt;
|
||||
gleichzeitig wurde eine vergleichende Evaluierung der Parameter in Be-
|
||||
zug auf die Werte der einzelnen Anlagen, die eine ähnliche Leistung wie
|
||||
die des Projekts haben, durchgeführt.
|
||||
In Tabelle 15 sind die Werte der für die Charakterisierung der „Originalkon-
|
||||
figuration“ der Anlage gewählten Parameter aufgeführt.
|
||||
_- Auch die Wahl der Leistung dieser Anlage wurde unter Berücksichtigung_
|
||||
_der Eigenschaften der aktuell betriebenen Anlagen getroffen. Genauer ge-_
|
||||
_sagt fiel die Wahl auf eine aus zwei Modulen mit einer elektrischen Nenn-_
|
||||
_leistung von 45 kW und einer thermischen Nennleistung von 100 kW be-_
|
||||
_stehende Anlage (dies entspricht den Eigenschaften der meisten Anlagen)._
|
||||
_- Die übrigen für die Originalkonfiguration verwendeten technischen und_
|
||||
_wirtschaftlichen Parameter wurden ausgehend von den Durchschnitts-_
|
||||
_werten der bei der Untersuchung der Anlagen erhobenen Daten ermittelt;_
|
||||
_gleichzeitig wurde eine vergleichende Evaluierung der Parameter in Be-_
|
||||
_zug auf die Werte der einzelnen Anlagen, die eine ähnliche Leistung wie_
|
||||
_die des Projekts haben, durchgeführt._
|
||||
_In Tabelle_ [^1]:[^5]: _sind die Werte der für die Charakterisierung der „Originalkon-_
|
||||
_figuration“ der Anlage gewählten Parameter aufgeführt._
|
||||
|
||||
4.5 Definition der „optimierten Konfiguration“
|
||||
_Die Analyse wurde unter Berücksichtigung eines Kohleverkaufspreises zwi-_
|
||||
@ -2027,19 +2027,19 @@ _schen 0 €/t und 500 €/t durchgeführt. Im Folgenden werden die Parameter un
|
||||
_die hypothetischen Betriebsmerkmale sowie die Gründe für deren Annahme_
|
||||
_erläutert._
|
||||
|
||||
- „Investitionsjahr“: die Wahl des Jahres, in dem der Eingriff vorgenommen
|
||||
werden soll, wurde unter Berücksichtigung der folgenden beiden Fakto-
|
||||
ren getroffen:
|
||||
- Die meisten in der Region angesiedelten Anlagen wurden zwischen
|
||||
2013 und 2015 genehmigt (27 von 44 aktuell betriebenen Anlagen) und
|
||||
können daher die noch für weitere 13–15 Jahre vorgesehene Förderung
|
||||
in Anspruch nehmen;
|
||||
- vermutlich werden noch einige Jahre Forschung erforderlich sein, um
|
||||
potenzielle Änderungen an den Anlagen zur Verbesserung der Koh-
|
||||
lequalität zu ermitteln und zu entwickeln.
|
||||
- Eine Hypothese sieht vor, die Änderungen an der Anlage im 10. Betriebs-
|
||||
jahr vorzunehmen (in der Annahme, dass man in diesem Jahr bereits den
|
||||
aus der Anlagenoptimierung entstandenen Vorteil genießt); somit wurde
|
||||
_- „Investitionsjahr“: die Wahl des Jahres, in dem der Eingriff vorgenommen_
|
||||
_werden soll, wurde unter Berücksichtigung der folgenden beiden Fakto-_
|
||||
_ren getroffen:_
|
||||
_- Die meisten in der Region angesiedelten Anlagen wurden zwischen_
|
||||
_2013 und 2015 genehmigt (27 von 44 aktuell betriebenen Anlagen) und_
|
||||
_können daher die noch für weitere 13–15 Jahre vorgesehene Förderung_
|
||||
_in Anspruch nehmen;_
|
||||
_- vermutlich werden noch einige Jahre Forschung erforderlich sein, um_
|
||||
_potenzielle Änderungen an den Anlagen zur Verbesserung der Koh-_
|
||||
_lequalität zu ermitteln und zu entwickeln._
|
||||
_- Eine Hypothese sieht vor, die Änderungen an der Anlage im 10. Betriebs-_
|
||||
_jahr vorzunehmen (in der Annahme, dass man in diesem Jahr bereits den_
|
||||
_aus der Anlagenoptimierung entstandenen Vorteil genießt); somit wurde_
|
||||
|
||||
```
|
||||
Neuester Stand der Technik der Vergasung von Holzbiomasse in Südtirol
|
||||
@ -2051,10 +2051,10 @@ für die Optimierung der Anlage erwächst (unter Veranschlagung einer der
|
||||
Förderdauer entsprechenden Nutzungsdauer der Anlage von 20 Jahren).
|
||||
```
|
||||
|
||||
- Es wurde außerdem angenommen, dass ebenso viel elektrische und ther-
|
||||
mische Energie und Kohle erzeugt wird wie in der Anlage der Original-
|
||||
konfiguration.
|
||||
Tabelle 15 – Parameter der „Originalkonfiguration“ einer idealen Anlage mit repräsentativen
|
||||
_- Es wurde außerdem angenommen, dass ebenso viel elektrische und ther-_
|
||||
_mische Energie und Kohle erzeugt wird wie in der Anlage der Original-_
|
||||
_konfiguration._
|
||||
Tabelle [^15]: – Parameter der „Originalkonfiguration“ einer idealen Anlage mit repräsentativen
|
||||
Betriebsparametern
|
||||
|
||||
_Element Wert Element Wert_
|
||||
@ -2123,27 +2123,27 @@ _Förderung [Jahre]_[^20]
|
||||
|
||||
Basso, Cordioli, Bonadio, Patuzzi, Dal Savio, Mimmo, Baratieri
|
||||
|
||||
- Auf Grundlage des Marktpreises der Kohle in der Agrarbranche wurden
|
||||
vier verschiedene optimierte Anlagenkonfigurationen erstellt, die sich je-
|
||||
weils durch einen Verkaufszielpreis für die Kohle auf dem Markt kenn-
|
||||
zeichnen:
|
||||
- Optimierte Konfiguration 1 – Preis für die Kohleaufwertung = 0 €/t;
|
||||
- Optimierte Konfiguration 2 – Preis für die Kohleaufwertung = 100 €/t;
|
||||
- Optimierte Konfiguration 3 – Preis für die Kohleaufwertung = 200 €/t;
|
||||
- Optimierte Konfiguration 4 – Preis für die Kohleaufwertung = 500 €/t.
|
||||
- In der optimierten Konfiguration 1 wurde angenommen, dass die Qualität
|
||||
der Kohle nicht ausreicht, um in der Landwirtschaft genutzt werden zu
|
||||
können, aber dass die Kohle von der Anlage kostenfrei entsorgt werden
|
||||
kann (zum Beispiel als in der Baubranche wiederverwendbares Nebenpro-
|
||||
dukt). Hypothese 4 sieht hingegen den besten Fall vor, und zwar dass die
|
||||
Qualität der Kohle es ermöglicht, einen Verkaufspreis von 500 €/t zu erzie-
|
||||
len.
|
||||
Durchgeführt wurde eine Rückwärtsanalyse und daher bei Anwendung des
|
||||
Tools mit der Anlagenoptimierung verbundene Investitionskosten in Höhe
|
||||
von null Euro eingegeben. Der verfügbare Höchstbetrag für die Umsetzung
|
||||
der Änderungen an den Anlagen wurden daher für jede optimierte Konfigu-
|
||||
ration (von 1 bis 4) als Differenz zwischen dem nach 20 Betriebsjahren kumu-
|
||||
lierten Kapital in der optimierten und in der Originalkonfiguration errechnet.
|
||||
_- Auf Grundlage des Marktpreises der Kohle in der Agrarbranche wurden_
|
||||
_vier verschiedene optimierte Anlagenkonfigurationen erstellt, die sich je-_
|
||||
_weils durch einen Verkaufszielpreis für die Kohle auf dem Markt kenn-_
|
||||
_zeichnen:_
|
||||
_- Optimierte Konfiguration_ [^1]: _– Preis für die Kohleaufwertung = 0 €/t;_
|
||||
_- Optimierte Konfiguration_ [^2]: _– Preis für die Kohleaufwertung =_ [^100]: _€/t;_
|
||||
_- Optimierte Konfiguration_ [^3]: _– Preis für die Kohleaufwertung =_ [^200]: _€/t;_
|
||||
_- Optimierte Konfiguration_ [^4]: _– Preis für die Kohleaufwertung =_ [^500]: _€/t._
|
||||
_- In der optimierten Konfiguration 1 wurde angenommen, dass die Qualität_
|
||||
_der Kohle nicht ausreicht, um in der Landwirtschaft genutzt werden zu_
|
||||
_können, aber dass die Kohle von der Anlage kostenfrei entsorgt werden_
|
||||
_kann (zum Beispiel als in der Baubranche wiederverwendbares Nebenpro-_
|
||||
_dukt). Hypothese 4 sieht hingegen den besten Fall vor, und zwar dass die_
|
||||
_Qualität der Kohle es ermöglicht, einen Verkaufspreis von 500 €/t zu erzie-_
|
||||
_len._
|
||||
_Durchgeführt wurde eine Rückwärtsanalyse und daher bei Anwendung des_
|
||||
_Tools mit der Anlagenoptimierung verbundene Investitionskosten in Höhe_
|
||||
_von null Euro eingegeben. Der verfügbare Höchstbetrag für die Umsetzung_
|
||||
_der Änderungen an den Anlagen wurden daher für jede optimierte Konfigu-_
|
||||
_ration (von 1 bis 4) als Differenz zwischen dem nach 20 Betriebsjahren kumu-_
|
||||
_lierten Kapital in der optimierten und in der Originalkonfiguration errechnet._
|
||||
|
||||
4.6 Ergebnisse der wirtschaftlichen Analyse
|
||||
_In Tabelle 16 und den Abbildungen 4 und 5 sind für jede optimierte Konfigu-_
|
||||
@ -2245,10 +2245,10 @@ _Zum besseren Verständnis der Resultate und in Bezug auf jede optimierte_
|
||||
_Konfiguration sind in Abbildung 6 die jährlichen Einnahmen der Anlagen_
|
||||
_aufgeführt, die zurückzuführen sind auf:_
|
||||
|
||||
- Förderung und Verkauf der erzeugten elektrischen Energie
|
||||
- Verkauf der Wärmeenergie
|
||||
- Einsparung der Entsorgungskosten und/oder Verkauf der Kohle (in der
|
||||
Grafik bezeichnet als „Einnahmen aus der optimierten Konfiguration“).
|
||||
_- Förderung und Verkauf der erzeugten elektrischen Energie_
|
||||
_- Verkauf der Wärmeenergie_
|
||||
_- Einsparung der Entsorgungskosten und/oder Verkauf der Kohle (in der_
|
||||
_Grafik bezeichnet als „Einnahmen aus der optimierten Konfiguration“)._
|
||||
|
||||
_Es wird deutlich, dass die mit der Anlagenoptimierung und dem Verkauf der_
|
||||
_qualitativ hochwertigeren Kohle verbundenen höheren Jahreseinnahmen_
|
||||
@ -2869,13 +2869,13 @@ Extraktion aus Holzrückständen
|
||||
_Zeit) weist eine charakteristische Form auf, die qualitativ durch Teilung des_
|
||||
_Signals in drei unterschiedliche Phasen erklärt werden kann:_
|
||||
|
||||
- eine erste Phase, bestehend aus einer anfänglichen Verzögerungszeit,
|
||||
während der die erzeugte Wärmemenge unerheblich ist
|
||||
- eine zweite Phase, in welcher der Wärmefluss in Verbindung mit dem me-
|
||||
tabolischen Zellwachstum exponentiell ansteigt
|
||||
- eine dritte Phase, in der man eine schnelle Wärmeflussverringerung be-
|
||||
obachten kann, sobald der Sauerstoff oder die nötigen Nährstoffe abneh-
|
||||
men und das Wachstum der Mikroorganismen dadurch gehemmt wird.
|
||||
_- eine erste Phase, bestehend aus einer anfänglichen Verzögerungszeit,_
|
||||
_während der die erzeugte Wärmemenge unerheblich ist_
|
||||
_- eine zweite Phase, in welcher der Wärmefluss in Verbindung mit dem me-_
|
||||
_tabolischen Zellwachstum exponentiell ansteigt_
|
||||
_- eine dritte Phase, in der man eine schnelle Wärmeflussverringerung be-_
|
||||
_obachten kann, sobald der Sauerstoff oder die nötigen Nährstoffe abneh-_
|
||||
_men und das Wachstum der Mikroorganismen dadurch gehemmt wird._
|
||||
|
||||
Abb. 2 –Während des Mikrobenwachstums von _S. thermophilus_ bei Vorhandensein von Sauerstoff
|
||||
mit einer Konzentration von 10⁷ log(KBE/ml) erzeugter Wärmefluss (durchgehende schwarze Linie).
|
||||
@ -3157,7 +3157,7 @@ _wurde zwischen dem Logarithmus der Mikrobenkonzentration und der Ver-_
|
||||
_zögerungszeit (_λ_) oder der Zeit beobachtet, zu welcher der höchste Wärme-_
|
||||
_fluss gemessen wurde (tp), mit Pearson- Koeffizienten von_
|
||||
|
||||
-0.995 bzw. -0,990 (n = 7, p = 0,01).
|
||||
_-0.995 bzw. -0,990 (n = 7, p = 0,01)._
|
||||
|
||||
Tabelle 3 – Pearson-Korrelationsindex zwischen der mikrobiellen Anfangskonzentration und den
|
||||
thermokinetischen Parametern aus den Thermogrammen des Mikrobenwachstums. **Signifikante
|
||||
@ -3201,21 +3201,21 @@ tp
|
||||
(h)
|
||||
```
|
||||
|
||||
-0,995** -0,625 -
|
||||
_-0,995** -0,625 -_
|
||||
|
||||
```
|
||||
Qtot
|
||||
(J)
|
||||
```
|
||||
|
||||
-0,439 -0,358 0,402 -
|
||||
_-0,439 -0,358 0,402 -_
|
||||
|
||||
```
|
||||
tp
|
||||
(h)
|
||||
```
|
||||
|
||||
-0,990** -0,600 0,993** 0,497 -
|
||||
_-0,990** -0,600 0,993** 0,497 -_
|
||||
|
||||
```
|
||||
Φmax
|
||||
@ -3325,7 +3325,7 @@ tp
|
||||
(μW)
|
||||
```
|
||||
|
||||
- 6,7 ± 0,1 4,8 ± 0,3 2,2 ± 0,4 6 ± 0,3 259 ± 11
|
||||
_- 6,7 ± 0,1 4,8 ± 0,3 2,2 ± 0,4 6 ± 0,3 259 ± 11_
|
||||
|
||||
_Überkritisches_
|
||||
_Kohlendioxid_
|
||||
@ -3382,7 +3382,7 @@ tp
|
||||
(μW)
|
||||
```
|
||||
|
||||
- 6,0 ± 0,1 6,4 ± 0,3 2,8 ± 0,5 8 ± 1 229 ± 11
|
||||
_- 6,0 ± 0,1 6,4 ± 0,3 2,8 ± 0,5 8 ± 1 229 ± 11_
|
||||
|
||||
_Überkritisches_
|
||||
_Kohlendioxid_
|
||||
@ -4076,12 +4076,12 @@ _dungen wie PAK, PCB, Dioxine und Schwermetalle sind vom Gesetz folgende_
|
||||
_Grenzwerte vorgegeben, (D. lgs., 29 aprile 2010, n. 75; D. lgs., 3 aprile 2006, n._
|
||||
_152), wobei TS für Trockensubstanz steht:_
|
||||
|
||||
- PAK (Σ16 Moleküle) < 6 mg kg TS-[^1];
|
||||
- PCB < 0,06 mg kg TS-[^1];
|
||||
- Dioxine < 10 ng I-TEQ kg TS-[^1]
|
||||
- Cd < 1,5 mg kg TS-[^1];
|
||||
- Cr < 0,5 mg kg TS-[^1];
|
||||
- Zn < 500 mg kg TS-[^1]
|
||||
_- PAK (Σ16 Moleküle) < 6 mg kg TS-_[^1]_;_
|
||||
_- PCB < 0,06 mg kg TS-_[^1]_;_
|
||||
_- Dioxine < 10 ng I-TEQ kg TS-_[^1]
|
||||
_- Cd < 1,5 mg kg TS-_[^1]_;_
|
||||
_- Cr < 0,5 mg kg TS-_[^1]_;_
|
||||
_- Zn < 500 mg kg TS-_[^1]
|
||||
|
||||
_Aus den Werten in Tabelle 2 ist klar ersichtlich, dass nur der PAK-Gehalt der_
|
||||
_Kohle der Technologie C unter dem Grenzwert lag (D. lgs., 3 aprile 2006, n._
|
||||
@ -4189,8 +4189,8 @@ der experimentellen Periode des Phytotoxizitätstests, der insgesamt fünf Woche
|
||||
der Umpflanzung der Sämlinge in die Gefäße dauerte; diese Gefäße enthielten den mit zwei
|
||||
verschiedenen Konzentrationen (2,5 = 8,5 gcharkgBoden
|
||||
|
||||
-1; 5 = 17 gcharkgBoden
|
||||
-1) der drei verschiedenen
|
||||
-[^1]:; 5 = 17 gcharkgBoden
|
||||
-[^1]:) der drei verschiedenen
|
||||
Kohlenproben (F, B und H) versetzten Boden. Die Daten stellen die Mittelwerte ± SF
|
||||
(Standardfehler) von fünf unabhängigen Pflanzen für jede Behandlung dar. Verschiedene
|
||||
Buchstaben stehen für statistisch unterschiedliche Werte (P < 0,05)
|
||||
@ -4200,8 +4200,8 @@ der experimentellen Periode des Phytotoxizitätstests, der insgesamt fünf Woche
|
||||
der Umpflanzung der Sämlinge in die Gefäße dauerte; diese Gefäße enthielten den mit zwei
|
||||
verschiedenen Konzentrationen (2,5 = 8,5 gcharkgBoden
|
||||
|
||||
-1; 5 = 17 gcharkgBoden
|
||||
-1) der drei verschiedenen
|
||||
-[^1]:; 5 = 17 gcharkgBoden
|
||||
-[^1]:) der drei verschiedenen
|
||||
Kohlenproben (F, B und H) versetzten Boden. Die Daten stellen die Mittelwerte ± SF
|
||||
(Standardfehler) von fünf unabhängigen Pflanzen für jede Behandlung dar. Verschiedene
|
||||
Buchstaben stehen für statistisch unterschiedliche Werte (P < 0,05)
|
||||
@ -4672,8 +4672,8 @@ lungen
|
||||
Wiederh.
|
||||
```
|
||||
|
||||
1. Moarhof Meran 46°40'2.7"N
|
||||
11°11'43.5"E
|
||||
_1. Moarhof Meran 46°40'2.7"N_
|
||||
_11°11'43.5"E_
|
||||
|
||||
```
|
||||
~600 m Vitis vinifera cv.
|
||||
@ -4684,14 +4684,14 @@ Müller Thurgau
|
||||
N – C – B1 – B2
|
||||
```
|
||||
|
||||
– B1C – B2C
|
||||
_– B1C – B2C_
|
||||
|
||||
```
|
||||
4
|
||||
```
|
||||
|
||||
2. WeißplatterMeran 46°39'17.27"N
|
||||
11°11'28.49"E
|
||||
_2. WeißplatterMeran 46°39'17.27"N_
|
||||
_11°11'28.49"E_
|
||||
|
||||
```
|
||||
~550 m Vitis vinifera cv.
|
||||
@ -4702,14 +4702,14 @@ Sauvignon Blanc
|
||||
N – C – B1 – B2
|
||||
```
|
||||
|
||||
– B1C – B2C
|
||||
_– B1C – B2C_
|
||||
|
||||
```
|
||||
4
|
||||
```
|
||||
|
||||
3. Block 65 Laimburg 46°23'23.16"N
|
||||
11°17'29.74"E
|
||||
_3. Block_ [^65]: _Laimburg 46°23'23.16"N_
|
||||
_11°17'29.74"E_
|
||||
|
||||
```
|
||||
~225 m Malus domestica
|
||||
@ -6792,16 +6792,16 @@ _Der zunehmende Trockenstress, unter dem die Weinpflanzen litten, die über-_
|
||||
_haupt kein Wasser mehr erhielten, wurde durch Ermittlung folgender auf_
|
||||
_Blattebene gemessener physiologischer Parameter überwacht._
|
||||
|
||||
- Wasserpotenzial des Stammes um 12 Uhr mittags (ΨMD, Werte in MPa),
|
||||
gemessen an einem Blatt pro Pflanze (drei Messungen pro Behandlung
|
||||
und pro Zeitraum). Die Messungen wurden mithilfe einer Druckkammer
|
||||
(Pump-up Pressure Chamber, PMS Instrument Comp. USA) in Abständen
|
||||
von 3-4 Tagen während beider Stresszyklen und während der späteren Er-
|
||||
holung nach der Bewässerung (Rewatering) vorgenommen.
|
||||
- Nettoassimilation von CO2(oder Nettofotosynthese, μmol/m[^2]s), gemessen
|
||||
an einem Blatt pro Pflanze (drei Messungen pro Behandlung und Zeit-
|
||||
raum). Für die Messungen wurde ein tragbarer Infrarot-Gasanalysator
|
||||
verwendet (LC-pro ADC, Hoddesdon Bioscientific, Ltd., UK).
|
||||
_- Wasserpotenzial des Stammes um 12 Uhr mittags (ΨMD, Werte in MPa),_
|
||||
_gemessen an einem Blatt pro Pflanze (drei Messungen pro Behandlung_
|
||||
_und pro Zeitraum). Die Messungen wurden mithilfe einer Druckkammer_
|
||||
_(Pump-up Pressure Chamber, PMS Instrument Comp. USA) in Abständen_
|
||||
_von 3-4 Tagen während beider Stresszyklen und während der späteren Er-_
|
||||
_holung nach der Bewässerung (Rewatering) vorgenommen._
|
||||
_- Nettoassimilation von CO_[^2]:_(oder Nettofotosynthese, μmol/m_[^2]_s), gemessen_
|
||||
_an einem Blatt pro Pflanze (drei Messungen pro Behandlung und Zeit-_
|
||||
_raum). Für die Messungen wurde ein tragbarer Infrarot-Gasanalysator_
|
||||
_verwendet (LC-pro ADC, Hoddesdon Bioscientific, Ltd., UK)._
|
||||
|
||||
4.1.3 Statistische Analyse
|
||||
_Die Daten wurden mit der Software R durch Vergleich der Gruppen mittels_
|
||||
@ -8225,9 +8225,9 @@ _Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., ... Paz-Ferreiro, J.
|
||||
_Biochar’s effect on crop productivity and the dependence on experimental_
|
||||
_conditions — a meta-analysis of literature data. Plant and Soil,_ [^373]:_(1), 583–_
|
||||
|
||||
594. https://doi.org/10.1007/s11104-013-1806-x
|
||||
Lu, X., Li, Y., Wang, H., Singh, B. P., Hu, S., Luo, Y., ... Li, Y. (2019). Responses
|
||||
of soil greenhouse gas emissions to different application rates of biochar
|
||||
_594. https://doi.org/10.1007/s11104-_[^013]:_-_[^1806]:_-x_
|
||||
_Lu, X., Li, Y., Wang, H., Singh, B. P., Hu, S., Luo, Y., ... Li, Y. (2019). Responses_
|
||||
_of soil greenhouse gas emissions to different application rates of biochar_
|
||||
|
||||
```
|
||||
Wirkung des Zusatzes von Biochar zum Boden
|
||||
@ -8285,10 +8285,10 @@ _decomposition in two European short rotation coppices. GCB Bioenergy,_
|
||||
_Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: meta-_
|
||||
_analysis of decomposition and priming effects. GCB Bioenergy,_ [^8]:_(3), 512–_
|
||||
|
||||
523. https://doi.org/10.1111/gcbb.12266
|
||||
Zimmerman, A. R. (2010). Abiotic and Microbial Oxidation of Laboratory-
|
||||
Produced Black Carbon (Biochar). Environmental Science and Technology, 44,
|
||||
1295–1301. https://doi.org/10.1021/es903140c
|
||||
_523. https://doi.org/10.1111/gcbb.12266_
|
||||
_Zimmerman, A. R. (2010). Abiotic and Microbial Oxidation of Laboratory-_
|
||||
_Produced Black Carbon (Biochar). Environmental Science and Technology,_ [^44]:_,_
|
||||
[^1295]:_–1301. https://doi.org/10.1021/es903140c_
|
||||
|
||||
## Erzeugung und Nutzung von Biochar in Südtirol:
|
||||
|
||||
@ -8484,7 +8484,7 @@ Transport der Biomasse mit Lkw und Bahn(innerhalb von Südtirol und aus
|
||||
Österreich, Polen und Slowenien)Sensibilitäts
|
||||
```
|
||||
|
||||
-
|
||||
**-**
|
||||
|
||||
```
|
||||
analyse
|
||||
@ -8612,25 +8612,25 @@ _zum nächsten Prozess (Abb. 1)._
|
||||
|
||||
_Im Folgenden werden die sieben untersuchten Szenarien vorgestellt:_
|
||||
|
||||
- Szenario 1 – Aktuelle Situation: Evaluierung der aktuell in Südtirol ge-
|
||||
nutzten Vergasungsprozesse: die aktuelle Art und Herkunft der verwen-
|
||||
deten Biomasse, keine Extraktion von hochwertigen Verbindungen aus
|
||||
der Biomasse vor der Vergasung, die aktuellen Technologien der Verga-
|
||||
sungsanlagen, Entsorgung aller aus der Vergasung stammenden Produkte
|
||||
(Kohle, Asche, Teer) ohne Einsatz von Biochar auf landwirtschaftlichen
|
||||
Böden.
|
||||
- Szenario 2 – Aktuelle Situation + Extraktion von hochwertigen Verbindun-
|
||||
gen: ein Szenario mit den gleichen Voraussetzungen wie im Szenario 1,
|
||||
aber mit Extraktion hochwertiger Verbindungen (ätherische Öle) aus der
|
||||
Holzbiomasse vor der Vergasung. Aus dem Vergleich dieses Szenarios mit
|
||||
dem Szenario 1 kann die Wirkung des Extraktionsprozesses ätherischer
|
||||
Öle auf die Emissionen des CO2-Äquivalents und den Verbrauch fossiler
|
||||
Energiequellen ermittelt werden. Die Extraktion kann mit der Soxhlet-Me-
|
||||
thode oder mit überkritischem Kohlendioxid erfolgen.
|
||||
- Szenario 3 – Aktuelle Situation + Verbesserte Vergasung: ein Szenario mit
|
||||
den gleichen Voraussetzungen wie Szenario 1, aber mit dem Einsatz von
|
||||
Vergasungstechnologien, die in der Lage sind, ein für die Nutzung in der
|
||||
Landwirtschaft geeignetes Biochar zu produzieren, übereinstimmend mit
|
||||
_- Szenario 1 – Aktuelle Situation: Evaluierung der aktuell in Südtirol ge-_
|
||||
_nutzten Vergasungsprozesse: die aktuelle Art und Herkunft der verwen-_
|
||||
_deten Biomasse, keine Extraktion von hochwertigen Verbindungen aus_
|
||||
_der Biomasse vor der Vergasung, die aktuellen Technologien der Verga-_
|
||||
_sungsanlagen, Entsorgung aller aus der Vergasung stammenden Produkte_
|
||||
_(Kohle, Asche, Teer) ohne Einsatz von Biochar auf landwirtschaftlichen_
|
||||
_Böden._
|
||||
_- Szenario 2 – Aktuelle Situation + Extraktion von hochwertigen Verbindun-_
|
||||
_gen: ein Szenario mit den gleichen Voraussetzungen wie im Szenario 1,_
|
||||
_aber mit Extraktion hochwertiger Verbindungen (ätherische Öle) aus der_
|
||||
_Holzbiomasse vor der Vergasung. Aus dem Vergleich dieses Szenarios mit_
|
||||
_dem Szenario 1 kann die Wirkung des Extraktionsprozesses ätherischer_
|
||||
_Öle auf die Emissionen des CO2-Äquivalents und den Verbrauch fossiler_
|
||||
_Energiequellen ermittelt werden. Die Extraktion kann mit der Soxhlet-Me-_
|
||||
_thode oder mit überkritischem Kohlendioxid erfolgen._
|
||||
_- Szenario 3 – Aktuelle Situation + Verbesserte Vergasung: ein Szenario mit_
|
||||
_den gleichen Voraussetzungen wie Szenario 1, aber mit dem Einsatz von_
|
||||
_Vergasungstechnologien, die in der Lage sind, ein für die Nutzung in der_
|
||||
_Landwirtschaft geeignetes Biochar zu produzieren, übereinstimmend mit_
|
||||
|
||||
Criscuoli, Panzacchi, Rossberg, Mwabonje, Cooper, Woods, Tonon
|
||||
|
||||
@ -8640,35 +8640,35 @@ nen die Wirkungen der aktuell angewandten Vergasungstechnologien mit
|
||||
denen der verbesserten Technologien verglichen werden.
|
||||
```
|
||||
|
||||
- Szenario 4 – Aktuelle Situation + Extraktion von hochwertigen Verbindun-
|
||||
gen: ein Szenario mit den gleichen Voraussetzungen wie Szenario 3, aber
|
||||
mit zusätzlicher Extraktion hochwertiger Verbindungen (ätherische Öle)
|
||||
aus der Holzbiomasse vor der Vergasung.
|
||||
- Szenario 5 – Verbesserte Vergasung + Anwendung von Biochar auf land-
|
||||
wirtschaftlichen Böden (Weinberg): ein Szenario mit den gleichen Parame-
|
||||
tern wie Szenario 3, aber mit Anwendung von Biochar in den Weinbergen
|
||||
Südtirols. Statt entsorgt zu werden kann das Biochar dank der Nutzung
|
||||
verbesserter Vergasungstechnologien als Bodenverbesserungsmittel in
|
||||
der Landwirtschaft eingesetzt werden. Mit diesem Szenario können die
|
||||
Vorteile oder Umweltwirkungen gemessen werden, die entstehen, wenn
|
||||
das Biochar auf landwirtschaftlichen Böden eingesetzt wird, statt als Ab-
|
||||
fall entsorgt zu werden.
|
||||
- Szenario 6 – Verbesserte Vergasung + Anwendung von Biochar auf land-
|
||||
wirtschaftlichen Böden (Apfelplantage): ein Szenario mit den gleichen Pa-
|
||||
rametern wie Szenario 5, aber mit Verteilung von Biochar in den Apfel-
|
||||
plantagen statt in den Weinbergen Südtirols. Dieses Szenario dient zur Er-
|
||||
leichterung des Vergleichs der Wirkungen/Vorteile einer Anwendung von
|
||||
Biochar in den wichtigsten landwirtschaftlichen Kulturen Südtirols.
|
||||
- Szenario 7– Aktuelle Situation + Extraktion von hochwertigen Verbindun-
|
||||
gen + Anwendung vonBiochar in der Landwirtschaft: ein Szenario mit den
|
||||
gleichen Parametern wie Szenario 5, aber mit zusätzlicher Extraktion
|
||||
hochwertiger Verbindungen (ätherische Öle) aus der Holzbiomasse vor
|
||||
der Vergasung.
|
||||
- Dynamisches Szenario: ein Szenario, das von Mal zu Mal definiert wird, je
|
||||
nachdem, welche Hypothesen überprüft werden sollen. Das dynamische
|
||||
Szenario ist ein nützliches Mittel zur Bewertung der einzelnen Auswir-
|
||||
kungen aller Prozesse der Produktionskette und zur Umsetzung der Sen-
|
||||
sibilitätsanalysen.
|
||||
_- Szenario 4 – Aktuelle Situation + Extraktion von hochwertigen Verbindun-_
|
||||
_gen: ein Szenario mit den gleichen Voraussetzungen wie Szenario 3, aber_
|
||||
_mit zusätzlicher Extraktion hochwertiger Verbindungen (ätherische Öle)_
|
||||
_aus der Holzbiomasse vor der Vergasung._
|
||||
_- Szenario 5 – Verbesserte Vergasung + Anwendung von Biochar auf land-_
|
||||
_wirtschaftlichen Böden (Weinberg): ein Szenario mit den gleichen Parame-_
|
||||
_tern wie Szenario 3, aber mit Anwendung von Biochar in den Weinbergen_
|
||||
_Südtirols. Statt entsorgt zu werden kann das Biochar dank der Nutzung_
|
||||
_verbesserter Vergasungstechnologien als Bodenverbesserungsmittel in_
|
||||
_der Landwirtschaft eingesetzt werden. Mit diesem Szenario können die_
|
||||
_Vorteile oder Umweltwirkungen gemessen werden, die entstehen, wenn_
|
||||
_das Biochar auf landwirtschaftlichen Böden eingesetzt wird, statt als Ab-_
|
||||
_fall entsorgt zu werden._
|
||||
_- Szenario 6 – Verbesserte Vergasung + Anwendung von Biochar auf land-_
|
||||
_wirtschaftlichen Böden (Apfelplantage): ein Szenario mit den gleichen Pa-_
|
||||
_rametern wie Szenario 5, aber mit Verteilung von Biochar in den Apfel-_
|
||||
_plantagen statt in den Weinbergen Südtirols. Dieses Szenario dient zur Er-_
|
||||
_leichterung des Vergleichs der Wirkungen/Vorteile einer Anwendung von_
|
||||
_Biochar in den wichtigsten landwirtschaftlichen Kulturen Südtirols._
|
||||
_- Szenario 7– Aktuelle Situation + Extraktion von hochwertigen Verbindun-_
|
||||
_gen + Anwendung vonBiochar in der Landwirtschaft: ein Szenario mit den_
|
||||
_gleichen Parametern wie Szenario 5, aber mit zusätzlicher Extraktion_
|
||||
_hochwertiger Verbindungen (ätherische Öle) aus der Holzbiomasse vor_
|
||||
_der Vergasung._
|
||||
_- Dynamisches Szenario: ein Szenario, das von Mal zu Mal definiert wird, je_
|
||||
_nachdem, welche Hypothesen überprüft werden sollen. Das dynamische_
|
||||
_Szenario ist ein nützliches Mittel zur Bewertung der einzelnen Auswir-_
|
||||
_kungen aller Prozesse der Produktionskette und zur Umsetzung der Sen-_
|
||||
_sibilitätsanalysen._
|
||||
|
||||
```
|
||||
Erzeugung und Nutzung von Biochar in Südtirol
|
||||
@ -9044,11 +9044,11 @@ _In diesem Kapitel sind die Ergebnisse für die Anwendung einer Dosis Biochar_
|
||||
_von 25 Tonnen pro Hektar aufgeführt. Insbesondere wurde untersucht, wel-_
|
||||
_che Wirkung 25 t/ha Biochar auf folgende Aspekte haben:_
|
||||
|
||||
- Einsatz von synthetischen Düngemitteln;
|
||||
- Einsatz von Bewässerung;
|
||||
- Kohlenstoffbindung im Boden;
|
||||
- Vom Boden ausgehende Treibhausgasemissionen: Distickstoffmonoxid
|
||||
(N2O) und Methan (CH4).
|
||||
_- Einsatz von synthetischen Düngemitteln;_
|
||||
_- Einsatz von Bewässerung;_
|
||||
_- Kohlenstoffbindung im Boden;_
|
||||
_- Vom Boden ausgehende Treibhausgasemissionen: Distickstoffmonoxid_
|
||||
_(N_[^2]:_O) und Methan (CH_[^4]:_)._
|
||||
|
||||
_Die Wirkung von Biochar auf den Einsatz von Düngemitteln wurde auf_
|
||||
_Grundlage seiner chemischen Zusammensetzung (verfügbare Mengen an N,_
|
||||
@ -9268,8 +9268,8 @@ _gleicher Menge an erzeugtem Biochar (1.250 t/Jahr, funktionelle Einheit der_
|
||||
_LCA) deutlich höher aus. Demzufolge ist der Posten „Einsparung fossiler_
|
||||
_Energie durch Vergasung“ in Szenario 3 größer (-17.669,_[^09]: _t Öläquivalent und_
|
||||
|
||||
-52.458,81 t CO2eq) als in Szenario 1 (-6.554,09 t Öläquivalent und -19.700,04 t
|
||||
CO2eq).
|
||||
_-52.458,81 t CO_[^2]:_eq) als in Szenario 1 (-6.554,09 t Öläquivalent und -19.700,04 t_
|
||||
_CO_[^2]:_eq)._
|
||||
|
||||
3.4 Szenario 4 – Verbesserte Vergasung + Extraktion
|
||||
hochwertiger Verbindungen
|
||||
@ -9820,17 +9820,17 @@ _Uzoma, K. C., Inoue, M., Andry, H., Zahoor, A., & Nishihara, E. (2011)._
|
||||
_Influence of biochar application on sandy soil hydraulic properties and_
|
||||
_nutrient retention. Journal of Food, Agriculture and Environment,_ [^9]:_, 1137–_
|
||||
|
||||
1143. https://doi.org/10.1234/4.2011.2517
|
||||
Ventura, M. et al. (2015). Biochar mineralization and priming effect on SOM
|
||||
decomposition in two European short rotation coppices. GCB Bioenergy,
|
||||
7(5), 1150–1160. https://doi.org/10.1111/gcbb.12219
|
||||
Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: meta-
|
||||
analysis of decomposition and priming effects. GCB Bioenergy, 8(3), 512–
|
||||
523. https://doi.org/10.1111/gcbb.12266
|
||||
Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema,
|
||||
B. (2016). The ecoinvent database version 3 (part I): overview and
|
||||
methodology. The International Journal of Life Cycle Assessment, 21, 1218–
|
||||
1230. https://doi.org/https://doi.org/10.1007/s11367-016-1087-8
|
||||
_1143. https://doi.org/10.1234/4.2011.2517_
|
||||
_Ventura, M. et al. (2015). Biochar mineralization and priming effect on SOM_
|
||||
_decomposition in two European short rotation coppices. GCB Bioenergy,_
|
||||
[^7]:_(5), 1150–1160. https://doi.org/10.1111/gcbb.12219_
|
||||
_Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: meta-_
|
||||
_analysis of decomposition and priming effects. GCB Bioenergy,_ [^8]:_(3), 512–_
|
||||
_523. https://doi.org/10.1111/gcbb.12266_
|
||||
_Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema,_
|
||||
_B. (2016). The ecoinvent database version 3 (part I): overview and_
|
||||
_methodology. The International Journal of Life Cycle Assessment,_ [^21]:_, 1218–_
|
||||
_1230. https://doi.org/https://doi.org/10.1007/s11367-_[^016]:_-1087-8_
|
||||
|
||||
## Schlussfolgerungen
|
||||
|
||||
|
@ -937,11 +937,11 @@ for loop _LR_ (_R_ for loop being recorded) and we reach the header
|
||||
of a different loop _LO_ (_O_ for other loop). Note that _LO_ must be an
|
||||
inner loop of _LR_ because we stop the trace when we exit a loop.
|
||||
|
||||
• If LO has a type-matching compiled trace tree, we call LO as
|
||||
• If _LO_ has a type-matching compiled trace tree, we call _LO_ as
|
||||
a nested trace tree. If the call succeeds, then we record the call
|
||||
in the trace for LR. On future executions, the trace for LR will
|
||||
in the trace for _LR_. On future executions, the trace for _LR_ will
|
||||
call the inner trace directly.
|
||||
• If LO does not have a type-matching compiled trace tree yet,
|
||||
• If _LO_ does not have a type-matching compiled trace tree yet,
|
||||
we have to obtain it before we are able to proceed. In order
|
||||
to do this, we simply abort recording the first trace. The trace
|
||||
monitor will see the inner loop header, and will immediately
|
||||
@ -1078,7 +1078,7 @@ converts floating-point LIR instructions to sequences of integer
|
||||
instructions.
|
||||
• CSE (constant subexpression elimination),
|
||||
• expression simplification, including constant folding and a few
|
||||
algebraic identities (e.g., a − a = 0), and
|
||||
algebraic identities (e.g., _a_ − _a_ = 0), and
|
||||
• source language semantic-specific expression simplification,
|
||||
primarily algebraic identities that allow DOUBLE to be replaced
|
||||
with INT. For example, LIR that converts an INT to a DOUBLE
|
||||
|
@ -2562,7 +2562,7 @@ possibly taking vertices (edges, respectively) more than once.
|
||||
(iii) Show that ν2(G) + ρ2(G) = 2|V |.
|
||||
```
|
||||
|
||||
### 3.2. M-augmenting paths
|
||||
### 3.2. _M_-augmenting paths
|
||||
|
||||
```
|
||||
Basic in matching theory are M-augmenting paths, which are defined as follows. Let
|
||||
@ -5850,7 +5850,7 @@ _U_⊆_V_
|
||||
2
|
||||
```
|
||||
|
||||
.
|
||||
_._
|
||||
|
||||
**Proof.** By Gallai’s theorem (Theorem 3.1) and the Tutte-Berge formula (Theorem
|
||||
5.1),
|
||||
@ -5873,7 +5873,7 @@ U⊆V
|
||||
2
|
||||
```
|
||||
|
||||
.
|
||||
_._
|
||||
|
||||
**Exercises**
|
||||
|
||||
@ -6089,10 +6089,10 @@ M△{v0v1, v1v2,... , vi−1vi}. Then C := (vi, vi+1,... , vj) is an M-blossom.
|
||||
Apply the algorithm (recursively) to G′ = G/C and M′ := M/C.
|
||||
```
|
||||
|
||||
• If it gives an M′-augmenting path P′ in G′, transform P′ to an
|
||||
M-augmenting path in G (as in the proof of Theorem 5.2).
|
||||
• If it concludes that M′ has maximum size in G′, then M has max-
|
||||
imum size in G (by Theorem 5.2).
|
||||
• If it gives an _M_′-augmenting path _P_′ in _G_′, transform _P_′ to an
|
||||
_M_-augmenting path in _G_ (as in the proof of Theorem 5.2).
|
||||
• If it concludes that _M_′ has maximum size in _G_′, then _M_ has max-
|
||||
imum size in _G_ (by Theorem 5.2).
|
||||
|
||||
```
|
||||
This gives a polynomial-time algorithm to find a maximum-size matching, which
|
||||
@ -9544,7 +9544,7 @@ w
|
||||
)
|
||||
```
|
||||
|
||||
.
|
||||
_._
|
||||
|
||||
This contradicts the fact that _z_ is a vertex of _Q_.]
|
||||
So, by assumption, _z_′′ is integer. Hence also _z_′ = _b_ − _Az_′′ is integer, and hence _z_
|
||||
@ -10070,7 +10070,7 @@ is again an interval matrix. Let _N_ be the _t_ × _t_ matrix given by:
|
||||
.........
|
||||
...
|
||||
..................
|
||||
0 0 0 ··· ··· 1 −1
|
||||
0 0 0 ··· ··· [^1]: −1
|
||||
0 0 0 ··· ··· 0 1
|
||||
|
||||
```
|
||||
@ -10081,7 +10081,7 @@ is again an interval matrix. Let _N_ be the _t_ × _t_ matrix given by:
|
||||
|
||||
```
|
||||
|
||||
.
|
||||
_._
|
||||
|
||||
Then the matrix _N_ · _BT_ is a {[^0]:_,_±[^1]:} matrix, with at most one +1 and at most one
|
||||
−1 in each column.
|
||||
@ -13094,8 +13094,8 @@ We show:
|
||||
|
||||
**Proof.** Order the elements of _X_ as _y_[^1]:_,... , ym_ in such a way that _w_(_y_[^1]:) ≥ _w_(_y_[^2]:) ≥
|
||||
|
||||
... w(ym). Let n be the largest index for which w(yn) ≥ 0. Define Xi := {y1,... , yi}
|
||||
for i = 0,... , m and
|
||||
_... w_(_ym_). Let _n_ be the largest index for which _w_(_yn_) ≥ 0. Define _Xi_ := {_y_[^1]:_,... , yi_}
|
||||
for _i_ = 0_,... , m_ and
|
||||
|
||||
(44) _Y_ := {_yi_ | _i_ ≤ _n_;_rM_(_Xi_) _> rM_(_Xi_−[^1]:)}_._
|
||||
|
||||
@ -13447,10 +13447,10 @@ Ohio, 1971), The Association for Computing Machinery, New York, 1971, pp. 151–
|
||||
|
||||
158.
|
||||
[1978] W.H. Cunningham, A.B. Marsh, III, A primal algorithm for optimum matching,
|
||||
[in: Polyhedral Combinatorics — Dedicated to the Memory of D.R. Fulkerson (M.L.
|
||||
Balinski, A.J. Hoffman, eds.)] Mathematical Programming Study 8 (1978) 50–72.
|
||||
[1951a] G.B. Dantzig, Application of the simplex method to a transportation problem, in: Ac-
|
||||
tivity Analysis of Production and Allocation — Proceedings of a Conference (Proceed-
|
||||
[in: _Polyhedral Combinatorics — Dedicated to the Memory of D.R. Fulkerson_ (M.L.
|
||||
Balinski, A.J. Hoffman, eds.)] _Mathematical Programming Study_ 8 (1978) 50–72.
|
||||
[1951a] G.B. Dantzig, Application of the simplex method to a transportation problem, in: _Ac-_
|
||||
_tivity Analysis of Production and Allocation — Proceedings of a Conference_ (Proceed-
|
||||
ings Conference on Linear Programming, Chicago, Illinois, 1949; Tj.C. Koopmans,
|
||||
ed.), Wiley, New York, 1951, pp. 359–373.
|
||||
|
||||
@ -13728,8 +13728,8 @@ pp. 129–146.
|
||||
salesman problem, _Proceedings of the American Mathematical Society_ 7 (1956) 48–
|
||||
|
||||
50.
|
||||
[1955] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Research
|
||||
Logistics Quarterly 2 (1955) 83–97.
|
||||
[1955] H.W. Kuhn, The Hungarian method for the assignment problem, _Naval Research_
|
||||
_Logistics Quarterly_ 2 (1955) 83–97.
|
||||
|
||||
[1976] E.L. Lawler, _Combinatorial Optimization: Networks and Matroids_, Holt, Rinehart
|
||||
and Winston, New York, 1976.
|
||||
|
@ -1,7 +1,7 @@
|
||||
import { groupByBlock, groupByLine } from '../support/groupingUtils';
|
||||
import Item from '../Item';
|
||||
import { Converter } from '../convert';
|
||||
import { TextType, headlineLevel } from '../text-types';
|
||||
import { TextType, discardTokenTypes, headlineLevel, isHeadline } from '../text-types';
|
||||
import {
|
||||
TokenType,
|
||||
attachWithoutWhitespace,
|
||||
@ -19,7 +19,7 @@ export default class MarkdownConverter implements Converter {
|
||||
const blockTypes: TextType[] = blockItems[0].data['types'] || [];
|
||||
let blockContent = '';
|
||||
groupByLine(blockItems).forEach((lineItems) => {
|
||||
blockContent += lineToText(lineItems, blockTypes.length > 0);
|
||||
blockContent += lineToText(lineItems, blockTypes);
|
||||
blockContent += '\n';
|
||||
});
|
||||
content += elementToText(blockContent, blockTypes[0]);
|
||||
@ -51,7 +51,7 @@ function toWords(text: string): string[] {
|
||||
return text.split(' ').filter((string) => string.trim().length > 0);
|
||||
}
|
||||
|
||||
export function lineToText(lineItems: Item[], disableInlineFormats: boolean = false) {
|
||||
export function lineToText(lineItems: Item[], blockTypes: TextType[]) {
|
||||
let text = '';
|
||||
let openFormat: TokenType;
|
||||
|
||||
@ -64,14 +64,13 @@ export function lineToText(lineItems: Item[], disableInlineFormats: boolean = fa
|
||||
lineItems.forEach((lineItem, lineIndex) => {
|
||||
const words = toWords(lineItem.data['str']);
|
||||
words.forEach((word, wordIndex) => {
|
||||
const wordType = lineItem.tokenTypes[0]; // footnote, link, etc...
|
||||
const wordFormat = lineItem.tokenTypes[0]; // bold, oblique, etc...
|
||||
const wordFormat = lineItem.tokenTypes[0]; // bold, oblique, footnote etc...
|
||||
if (openFormat && (!wordFormat || wordFormat !== openFormat)) {
|
||||
closeFormat();
|
||||
}
|
||||
if (
|
||||
(wordIndex > 0 || lineIndex > 0) &&
|
||||
!(wordType && attachWithoutWhitespace(wordType)) &&
|
||||
!(wordFormat && attachWithoutWhitespace(wordFormat)) &&
|
||||
!isPunctationCharacter(word)
|
||||
) {
|
||||
let insertWhitespace = true;
|
||||
@ -86,12 +85,14 @@ export function lineToText(lineItems: Item[], disableInlineFormats: boolean = fa
|
||||
}
|
||||
}
|
||||
|
||||
const disableInlineFormats =
|
||||
wordFormat && (discardTokenTypes(blockTypes) || (blockTypes.find(isHeadline) && wordFormat === 'BOLD'));
|
||||
if (wordFormat && !openFormat && !disableInlineFormats) {
|
||||
openFormat = wordFormat;
|
||||
text += startSymbol(openFormat);
|
||||
}
|
||||
|
||||
if (wordType && (!disableInlineFormats || plainTextFormat(wordType))) {
|
||||
if (wordFormat && (!disableInlineFormats || plainTextFormat(wordFormat))) {
|
||||
text += tokenToText(word, wordFormat);
|
||||
} else {
|
||||
text += word;
|
||||
|
@ -43,3 +43,11 @@ export function mergeFollowingNonTypedItems(type: TextType) {
|
||||
export function mergeFollowingNonTypedItemsWithSmallDistance(type: TextType) {
|
||||
return types('LIST', 'NUMBERED_LIST').includes(type);
|
||||
}
|
||||
|
||||
// Discard token types like bold for certain text types
|
||||
export function discardTokenTypes(blockTypes: TextType[]) {
|
||||
if (blockTypes.includes('CODE')) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user