{ "pages": 221, "items": 51186, "groupedItems": 8248, "changes": 81, "schema": [ { "name": "line" }, { "name": "types", "annotation": "ADDED" }, { "name": "x" }, { "name": "y" }, { "name": "width" }, { "name": "height" }, { "name": "str" }, { "name": "fontName" }, { "name": "dir" } ], "globals": { "maxHeight": 24.7871, "mostUsedHeight": 11.9551, "minX": 52.262, "maxX": 571.0594300000001, "minY": 76.19790000000002, "maxY": 738.022, "pageMapping": { "pageFactor": 1, "detectedOnPage": true }, "toc": { "pages": [ 1, 2, 3 ], "entries": [ { "level": 0, "text": "1. Shortest paths and trees", "verified": true, "linkedPage": 5 }, { "level": 0, "text": "1.1. Shortest paths with nonnegative lengths", "verified": true, "linkedPage": 5 }, { "level": 0, "text": "1.2. Speeding up Dijkstra’s algorithm with heaps", "verified": true, "linkedPage": 9 }, { "level": 0, "text": "1.3. Shortest paths with arbitrary lengths", "verified": true, "linkedPage": 12 }, { "level": 0, "text": "1.4. Minimum spanning trees", "verified": true, "linkedPage": 19 }, { "level": 0, "text": "2. Polytopes, polyhedra, Farkas’ lemma, and linear programming", "verified": true, "linkedPage": 23 }, { "level": 0, "text": "2.1. Convex sets", "verified": true, "linkedPage": 23 }, { "level": 0, "text": "2.2. Polytopes and polyhedra", "verified": true, "linkedPage": 25 }, { "level": 0, "text": "2.3. Farkas’ lemma", "verified": true, "linkedPage": 30 }, { "level": 0, "text": "2.4. Linear programming", "verified": true, "linkedPage": 33 }, { "level": 0, "text": "3. Matchings and covers in bipartite graphs", "verified": true, "linkedPage": 39 }, { "level": 0, "text": "3.1. Matchings, covers, and Gallai’s theorem", "verified": true, "linkedPage": 39 }, { "level": 0, "text": "3.2. M -augmenting paths", "verified": true, "linkedPage": 40 }, { "level": 0, "text": "3.3. K ̋onig’s theorems", "verified": true, "linkedPage": 41 }, { "level": 0, "text": "3.4. Cardinality bipartite matching algorithm", "verified": true, "linkedPage": 45 }, { "level": 0, "text": "3.5. Weighted bipartite matching", "verified": true, "linkedPage": 47 }, { "level": 0, "text": "3.6. The matching polytope", "verified": true, "linkedPage": 50 }, { "level": 0, "text": "4. Menger’s theorem, flows, and circulations", "verified": true, "linkedPage": 54 }, { "level": 0, "text": "4.1. Menger’s theorem", "verified": true, "linkedPage": 54 }, { "level": 0, "text": "4.2. Flows in networks", "verified": true, "linkedPage": 58 }, { "level": 0, "text": "4.3. Finding a maximum flow", "verified": true, "linkedPage": 60 }, { "level": 0, "text": "4.4. Speeding up the maximum flow algorithm", "verified": true, "linkedPage": 65 }, { "level": 0, "text": "4.5. Circulations", "verified": true, "linkedPage": 68 }, { "level": 0, "text": "4.6. Minimum-cost flows", "verified": true, "linkedPage": 70 }, { "level": 0, "text": "5. Nonbipartite matching", "verified": true, "linkedPage": 78 }, { "level": 0, "text": "5.1. Tutte’s 1-factor theorem and the Tutte-Berge formula", "verified": true, "linkedPage": 78 }, { "level": 0, "text": "5.2. Cardinality matching algorithm", "verified": true, "linkedPage": 81 }, { "level": 0, "text": "5.3. Weighted matching algorithm", "verified": true, "linkedPage": 85 }, { "level": 0, "text": "5.4. The matching polytope", "verified": true, "linkedPage": 91 }, { "level": 0, "text": "5.5. The Cunningham-Marsh formula", "verified": true, "linkedPage": 94 }, { "level": 0, "text": "6. Problems, algorithms, and running time", "verified": true, "linkedPage": 97 }, { "level": 0, "text": "6.1. Introduction", "verified": true, "linkedPage": 97 }, { "level": 0, "text": "6.2. Words", "verified": true, "linkedPage": 98 }, { "level": 0, "text": "6.3. Problems", "verified": true, "linkedPage": 100 }, { "level": 0, "text": "6.4. Algorithms and running time", "verified": true, "linkedPage": 100 }, { "level": 0, "text": "6.5. The class NP", "verified": true, "linkedPage": 101 }, { "level": 0, "text": "6.6. The class co-NP", "verified": true, "linkedPage": 102 }, { "level": 0, "text": "6.7. NP-completeness", "verified": true, "linkedPage": 103 }, { "level": 0, "text": "6.8. NP-completeness of the satisfiability problem", "verified": true, "linkedPage": 103 }, { "level": 0, "text": "6.9. NP-completeness of some other problems", "verified": true, "linkedPage": 106 }, { "level": 0, "text": "6.10. Turing machines", "verified": true, "linkedPage": 108 }, { "level": 0, "text": "7. Cliques, stable sets, and colourings", "verified": true, "linkedPage": 111 }, { "level": 0, "text": "7.1. Introduction", "verified": true, "linkedPage": 111 }, { "level": 0, "text": "7.2. Edge-colourings of bipartite graphs", "verified": true, "linkedPage": 115 }, { "level": 0, "text": "7.3. Partially ordered sets", "verified": true, "linkedPage": 121 }, { "level": 0, "text": "7.4. Perfect graphs", "verified": true, "linkedPage": 125 }, { "level": 0, "text": "7.5. Chordal graphs", "verified": true, "linkedPage": 128 }, { "level": 0, "text": "8. Integer linear programming and totally unimodular matrices", "verified": true, "linkedPage": 132 }, { "level": 0, "text": "8.1. Integer linear programming", "verified": true, "linkedPage": 132 }, { "level": 0, "text": "8.2. Totally unimodular matrices", "verified": true, "linkedPage": 134 }, { "level": 0, "text": "8.3. Totally unimodular matrices from bipartite graphs", "verified": true, "linkedPage": 139 }, { "level": 0, "text": "8.4. Totally unimodular matrices from directed graphs", "verified": true, "linkedPage": 143 }, { "level": 0, "text": "9. Multicommodity flows and disjoint paths", "verified": true, "linkedPage": 148 }, { "level": 0, "text": "9.1. Introduction", "verified": true, "linkedPage": 148 }, { "level": 0, "text": "9.2. Two commodities", "verified": true, "linkedPage": 153 }, { "level": 0, "text": "9.3. Disjoint paths in acyclic directed graphs", "verified": true, "linkedPage": 157 }, { "level": 0, "text": "9.4. Vertex-disjoint paths in planar graphs", "verified": true, "linkedPage": 159 }, { "level": 0, "text": "9.5. Edge-disjoint paths in planar graphs", "verified": true, "linkedPage": 165 }, { "level": 0, "text": "9.6. A column generation technique for multicom- modity flows", "verified": true, "linkedPage": 168 }, { "level": 0, "text": "10. Matroids", "verified": true, "linkedPage": 173 }, { "level": 0, "text": "10.1. Matroids and the greedy algorithm", "verified": true, "linkedPage": 173 }, { "level": 0, "text": "10.2. Equivalent axioms for matroids", "verified": true, "linkedPage": 176 }, { "level": 0, "text": "10.3. Examples of matroids", "verified": true, "linkedPage": 180 }, { "level": 0, "text": "10.4. Two technical lemmas", "verified": true, "linkedPage": 183 }, { "level": 0, "text": "10.5. Matroid intersection", "verified": true, "linkedPage": 184 }, { "level": 0, "text": "10.6. Weighted matroid intersection", "verified": true, "linkedPage": 190 }, { "level": 0, "text": "10.7. Matroids and polyhedra", "verified": true, "linkedPage": 194 }, { "level": 0, "text": "References", "verified": true, "linkedPage": 199 }, { "level": 0, "text": "Name index", "verified": true, "linkedPage": 210 }, { "level": 0, "text": "Subject index", "verified": true, "linkedPage": 212 } ] } } } {"page":1,"change":"ContentChange","str":"1. Shortest paths and trees 5","dir":"ltr","width":"186.01","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","665.68"],"fontName":"KXBFBK+CMBX12","x":84.9512,"y":665.6799,"line":1,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"1.1. Shortest paths with nonnegative lengths 5","dir":"ltr","width":"235.58","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","641.77"],"fontName":"LNAVFB+CMR10","x":104.193,"y":641.7669999999999,"line":2,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"1.2. Speeding up Dijkstra’s algorithm with heaps 9","dir":"ltr","width":"256.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","625.65"],"fontName":"LNAVFB+CMR10","x":104.193,"y":625.6478999999999,"line":3,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"1.3. Shortest paths with arbitrary lengths 12","dir":"ltr","width":"226.89","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","609.53"],"fontName":"LNAVFB+CMR10","x":104.193,"y":609.5287999999999,"line":4,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"1.4. Minimum spanning trees 19","dir":"ltr","width":"167.04","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","593.41"],"fontName":"LNAVFB+CMR10","x":104.193,"y":593.4096999999999,"line":5,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"2. Polytopes, polyhedra, Farkas’ lemma, and linear program ming 23","line":6,"x":84.9512,"y":558.6514999999999,"width":"416.16","height":"11.96","fontName":["KXBFBK+CMBX12"],"dir":["ltr"],"types":["TOC"]} {"page":1,"change":"ContentChange","str":"2.1. Convex sets 23","dir":"ltr","width":"105.19","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","534.74"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":534.7385999999999,"line":7,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"2.2. Polytopes and polyhedra 25","dir":"ltr","width":"167.44","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","518.62"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":518.6194999999999,"line":8,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"2.3. Farkas’ lemma 30","dir":"ltr","width":"117.74","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","502.50"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":502.5003999999999,"line":9,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"2.4. Linear programming 33","dir":"ltr","width":"146.53","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","486.38"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":486.3812999999999,"line":10,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"3. Matchings and covers in bipartite graphs 39","dir":"ltr","width":"290.40","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","451.62"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":451.6234999999999,"line":11,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"3.1. Matchings, covers, and Gallai’s theorem 39","dir":"ltr","width":"239.63","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","427.72"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":427.71919999999994,"line":12,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"3.2. M -augmenting paths 40","line":13,"x":104.19320000000005,"y":411.60009999999994,"width":"142.29","height":"10.91","fontName":["LNAVFB+CMR10","LSUYZV+CMMI10"],"dir":["ltr"],"types":["TOC"]} {"page":1,"change":"ContentChange","str":"3.3. K ̋onig’s theorems 41","dir":"ltr","width":"131.28","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","395.47"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":395.4719999999999,"line":14,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"3.4. Cardinality bipartite matching algorithm 45","dir":"ltr","width":"244.86","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","379.35"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":379.3528999999999,"line":15,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"3.5. Weighted bipartite matching 47","dir":"ltr","width":"185.71","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","363.23"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":363.2337999999999,"line":16,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"3.6. The matching polytope 50","dir":"ltr","width":"160.23","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","347.11"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":347.1146999999999,"line":17,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"4. Menger’s theorem, flows, and circulations 54","dir":"ltr","width":"293.70","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","312.36"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":312.3568999999999,"line":18,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"4.1. Menger’s theorem 54","dir":"ltr","width":"133.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","288.45"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":288.4525999999999,"line":19,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"4.2. Flows in networks 58","dir":"ltr","width":"134.77","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","272.33"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":272.3334999999999,"line":20,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"4.3. Finding a maximum flow 60","dir":"ltr","width":"168.26","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","256.21"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":256.2143999999999,"line":21,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"4.4. Speeding up the maximum flow algorithm 65","dir":"ltr","width":"249.35","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","240.10"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":240.0952999999999,"line":22,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"4.5. Circulations 68","dir":"ltr","width":"106.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","223.98"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":223.9761999999999,"line":23,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"4.6. Minimum-cost flows 70","dir":"ltr","width":"144.29","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","207.86"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":207.8570999999999,"line":24,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"5. Nonbipartite matching 78","dir":"ltr","width":"182.27","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","173.09"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":173.0902999999999,"line":25,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"5.1. Tutte’s 1-factor theorem and the Tutte-Berge formula 7 8","line":26,"x":104.19320000000005,"y":149.1859999999999,"width":"306.01","height":"10.91","fontName":["LNAVFB+CMR10"],"dir":["ltr"],"types":["TOC"]} {"page":1,"change":"ContentChange","str":"5.2. Cardinality matching algorithm 81","dir":"ltr","width":"199.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","133.07"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":133.0672999999999,"line":27,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"5.3. Weighted matching algorithm 85","dir":"ltr","width":"190.56","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","116.95"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":116.9481999999999,"line":28,"types":["TOC"]} {"page":1,"change":"ContentChange","str":"5.4. The matching polytope 91","dir":"ltr","width":"160.23","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","100.83"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":100.8290999999999,"line":29,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"5.5. The Cunningham-Marsh formula 94","dir":"ltr","width":"206.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","701.16"],"fontName":"LNAVFB+CMR10","x":132.543,"y":701.158,"line":0,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6. Problems, algorithms, and running time 97","dir":"ltr","width":"284.88","height":"11.96","transform":["11.96","0.00","0.00","11.96","113.30","667.09"],"fontName":"KXBFBK+CMBX12","x":113.30120000000001,"y":667.0928,"line":1,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6.1. Introduction 97","dir":"ltr","width":"108.43","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","643.64"],"fontName":"LNAVFB+CMR10","x":132.543,"y":643.6389,"line":2,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6.2. Words 98","dir":"ltr","width":"79.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","627.63"],"fontName":"LNAVFB+CMR10","x":132.543,"y":627.628,"line":3,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6.3. Problems 100","dir":"ltr","width":"98.64","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","611.62"],"fontName":"LNAVFB+CMR10","x":132.543,"y":611.6171,"line":4,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6.4. Algorithms and running time 100","dir":"ltr","width":"193.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","595.61"],"fontName":"LNAVFB+CMR10","x":132.543,"y":595.6148000000001,"line":5,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6.5. The class NP 101","dir":"ltr","width":"117.77","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","579.60"],"fontName":"LNAVFB+CMR10","x":132.543,"y":579.6039000000001,"line":6,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6.6. The class co-NP 102","dir":"ltr","width":"131.71","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","563.59"],"fontName":"LNAVFB+CMR10","x":132.543,"y":563.5930000000001,"line":7,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6.7. NP-completeness 103","dir":"ltr","width":"135.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","547.58"],"fontName":"LNAVFB+CMR10","x":132.543,"y":547.5821000000001,"line":8,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6.8. NP-completeness of the satisfiability problem 103","dir":"ltr","width":"270.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","531.58"],"fontName":"LNAVFB+CMR10","x":132.543,"y":531.5801000000001,"line":9,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6.9. NP-completeness of some other problems 106","dir":"ltr","width":"250.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","515.57"],"fontName":"LNAVFB+CMR10","x":132.543,"y":515.5692000000001,"line":10,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"6.10. Turing machines 108","dir":"ltr","width":"138.49","height":"10.91","transform":["10.91","0.00","0.00","10.91","127.09","499.56"],"fontName":"LNAVFB+CMR10","x":127.08909000000001,"y":499.55830000000014,"line":11,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"7. Cliques, stable sets, and colourings 111","dir":"ltr","width":"260.98","height":"11.96","transform":["11.96","0.00","0.00","11.96","113.30","465.49"],"fontName":"KXBFBK+CMBX12","x":113.30119000000002,"y":465.49310000000014,"line":12,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"7.1. Introduction 111","dir":"ltr","width":"113.89","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","442.04"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":442.03920000000016,"line":13,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"7.2. Edge-colourings of bipartite graphs 115","dir":"ltr","width":"222.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","426.04"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":426.03720000000015,"line":14,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"7.3. Partially ordered sets 121","dir":"ltr","width":"156.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","410.03"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":410.02630000000016,"line":15,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"7.4. Perfect graphs 125","dir":"ltr","width":"122.91","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","394.02"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":394.01540000000017,"line":16,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"7.5. Chordal graphs 128","dir":"ltr","width":"127.61","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","378.00"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":378.0045000000002,"line":17,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"8. Integer linear programming and totally unimodular matri ces 132","line":18,"x":113.30119000000003,"y":343.9397000000002,"width":"412.86","height":"11.96","fontName":["KXBFBK+CMBX12"],"dir":["ltr"],"types":["TOC"]} {"page":2,"change":"ContentChange","str":"8.1. Integer linear programming 132","dir":"ltr","width":"185.19","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","320.49"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":320.4858000000002,"line":19,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"8.2. Totally unimodular matrices 134","dir":"ltr","width":"190.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","304.48"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":304.4838000000002,"line":20,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"8.3. Totally unimodular matrices from bipartite graphs 139","dir":"ltr","width":"296.25","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","288.47"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":288.4725000000002,"line":21,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"8.4. Totally unimodular matrices from directed graphs 143","dir":"ltr","width":"293.22","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","272.46"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":272.4612000000002,"line":22,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"9. Multicommodity flows and disjoint paths 148","dir":"ltr","width":"297.13","height":"11.96","transform":["11.96","0.00","0.00","11.96","113.30","238.40"],"fontName":"KXBFBK+CMBX12","x":113.30139000000004,"y":238.3964000000002,"line":23,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"9.1. Introduction 148","dir":"ltr","width":"113.89","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","214.94"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":214.9425000000002,"line":24,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"9.2. Two commodities 153","dir":"ltr","width":"138.47","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","198.93"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":198.9312000000002,"line":25,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"9.3. Disjoint paths in acyclic directed graphs 157","dir":"ltr","width":"246.67","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","182.93"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":182.92920000000018,"line":26,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"9.4. Vertex-disjoint paths in planar graphs 159","dir":"ltr","width":"235.94","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","166.92"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":166.9183000000002,"line":27,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"9.5. Edge-disjoint paths in planar graphs 165","dir":"ltr","width":"228.49","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","150.91"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":150.9074000000002,"line":28,"types":["TOC"]} {"page":2,"change":"ContentChange","str":"9.6. A column generation technique for multicommodity flows 168","line":29,"x":132.54319000000004,"y":134.8965000000002,"width":"313.53","height":"10.91","fontName":["LNAVFB+CMR10"],"dir":["ltr"],"types":["TOC"]} {"page":2,"change":"ContentChange","str":"10. Matroids 173","dir":"ltr","width":"115.13","height":"11.96","transform":["11.96","0.00","0.00","11.96","106.57","100.83"],"fontName":"KXBFBK+CMBX12","x":106.57019000000003,"y":100.8313000000002,"line":30,"types":["TOC"]} {"page":3,"change":"ContentChange","str":"10.1. Matroids and the greedy algorithm 173","dir":"ltr","width":"227.04","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","701.16"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":701.158,"line":0,"types":["TOC"]} {"page":3,"change":"ContentChange","str":"10.2. Equivalent axioms for matroids 176","dir":"ltr","width":"209.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","685.12"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":685.1197,"line":1,"types":["TOC"]} {"page":3,"change":"ContentChange","str":"10.3. Examples of matroids 180","dir":"ltr","width":"163.56","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","669.08"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":669.0813999999999,"line":2,"types":["TOC"]} {"page":3,"change":"ContentChange","str":"10.4. Two technical lemmas 183","dir":"ltr","width":"165.74","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","653.03"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":653.0344999999999,"line":3,"types":["TOC"]} {"page":3,"change":"ContentChange","str":"10.5. Matroid intersection 184","dir":"ltr","width":"156.71","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","637.00"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":636.9961999999998,"line":4,"types":["TOC"]} {"page":3,"change":"ContentChange","str":"10.6. Weighted matroid intersection 190","dir":"ltr","width":"203.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","620.96"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":620.9578999999998,"line":5,"types":["TOC"]} {"page":3,"change":"ContentChange","str":"10.7. Matroids and polyhedra 194","dir":"ltr","width":"174.58","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","604.92"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":604.9195999999997,"line":6,"types":["TOC"]} {"page":3,"change":"ContentChange","str":"References 199","dir":"ltr","width":"101.76","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","569.86"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":569.8554999999997,"line":7,"types":["TOC"]} {"page":3,"change":"ContentChange","str":"Name index 210","dir":"ltr","width":"109.62","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","539.78"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":539.7773999999997,"line":8,"types":["TOC"]} {"page":3,"change":"ContentChange","str":"Subject index 212","dir":"ltr","width":"119.83","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","509.70"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":509.6992999999997,"line":9,"types":["TOC"]}