pdf-to-markdown/examples/dict/detectTOC.json
Johannes Zillmann 46234417ad Fine tune line detection
* Before lines where assembled that really separate lines
2021-07-18 13:07:06 -06:00

547 lines
30 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"pages": 221,
"items": 51181,
"groupedItems": 8552,
"changes": 81,
"schema": [
{
"name": "line"
},
{
"name": "types",
"annotation": "ADDED"
},
{
"name": "x"
},
{
"name": "y"
},
{
"name": "width"
},
{
"name": "height"
},
{
"name": "str"
},
{
"name": "fontName"
},
{
"name": "dir"
}
],
"globals": {
"maxHeight": 24.7871,
"mostUsedHeight": 11.9551,
"minX": 52.262,
"maxX": 571.0594300000001,
"minY": 76.19790000000002,
"maxY": 738.022,
"pageMapping": {
"pageFactor": 1,
"detectedOnPage": true
},
"toc": {
"pages": [
1,
2,
3
],
"entries": [
{
"level": 0,
"text": "1. Shortest paths and trees",
"verified": true,
"linkedPage": 5
},
{
"level": 0,
"text": "1.1. Shortest paths with nonnegative lengths",
"verified": true,
"linkedPage": 5
},
{
"level": 0,
"text": "1.2. Speeding up Dijkstras algorithm with heaps",
"verified": true,
"linkedPage": 9
},
{
"level": 0,
"text": "1.3. Shortest paths with arbitrary lengths",
"verified": true,
"linkedPage": 12
},
{
"level": 0,
"text": "1.4. Minimum spanning trees",
"verified": true,
"linkedPage": 19
},
{
"level": 0,
"text": "2. Polytopes, polyhedra, Farkas lemma, and linear programming",
"verified": true,
"linkedPage": 23
},
{
"level": 0,
"text": "2.1. Convex sets",
"verified": true,
"linkedPage": 23
},
{
"level": 0,
"text": "2.2. Polytopes and polyhedra",
"verified": true,
"linkedPage": 25
},
{
"level": 0,
"text": "2.3. Farkas lemma",
"verified": true,
"linkedPage": 30
},
{
"level": 0,
"text": "2.4. Linear programming",
"verified": true,
"linkedPage": 33
},
{
"level": 0,
"text": "3. Matchings and covers in bipartite graphs",
"verified": true,
"linkedPage": 39
},
{
"level": 0,
"text": "3.1. Matchings, covers, and Gallais theorem",
"verified": true,
"linkedPage": 39
},
{
"level": 0,
"text": "3.2. M -augmenting paths",
"verified": true,
"linkedPage": 40
},
{
"level": 0,
"text": "3.3. K ̋onigs theorems",
"verified": true,
"linkedPage": 41
},
{
"level": 0,
"text": "3.4. Cardinality bipartite matching algorithm",
"verified": true,
"linkedPage": 45
},
{
"level": 0,
"text": "3.5. Weighted bipartite matching",
"verified": true,
"linkedPage": 47
},
{
"level": 0,
"text": "3.6. The matching polytope",
"verified": true,
"linkedPage": 50
},
{
"level": 0,
"text": "4. Mengers theorem, flows, and circulations",
"verified": true,
"linkedPage": 54
},
{
"level": 0,
"text": "4.1. Mengers theorem",
"verified": true,
"linkedPage": 54
},
{
"level": 0,
"text": "4.2. Flows in networks",
"verified": true,
"linkedPage": 58
},
{
"level": 0,
"text": "4.3. Finding a maximum flow",
"verified": true,
"linkedPage": 60
},
{
"level": 0,
"text": "4.4. Speeding up the maximum flow algorithm",
"verified": true,
"linkedPage": 65
},
{
"level": 0,
"text": "4.5. Circulations",
"verified": true,
"linkedPage": 68
},
{
"level": 0,
"text": "4.6. Minimum-cost flows",
"verified": true,
"linkedPage": 70
},
{
"level": 0,
"text": "5. Nonbipartite matching",
"verified": true,
"linkedPage": 78
},
{
"level": 0,
"text": "5.1. Tuttes 1-factor theorem and the Tutte-Berge formula",
"verified": true,
"linkedPage": 78
},
{
"level": 0,
"text": "5.2. Cardinality matching algorithm",
"verified": true,
"linkedPage": 81
},
{
"level": 0,
"text": "5.3. Weighted matching algorithm",
"verified": true,
"linkedPage": 85
},
{
"level": 0,
"text": "5.4. The matching polytope",
"verified": true,
"linkedPage": 91
},
{
"level": 0,
"text": "5.5. The Cunningham-Marsh formula",
"verified": true,
"linkedPage": 94
},
{
"level": 0,
"text": "6. Problems, algorithms, and running time",
"verified": true,
"linkedPage": 97
},
{
"level": 0,
"text": "6.1. Introduction",
"verified": true,
"linkedPage": 97
},
{
"level": 0,
"text": "6.2. Words",
"verified": true,
"linkedPage": 98
},
{
"level": 0,
"text": "6.3. Problems",
"verified": true,
"linkedPage": 100
},
{
"level": 0,
"text": "6.4. Algorithms and running time",
"verified": true,
"linkedPage": 100
},
{
"level": 0,
"text": "6.5. The class NP",
"verified": true,
"linkedPage": 101
},
{
"level": 0,
"text": "6.6. The class co-NP",
"verified": true,
"linkedPage": 102
},
{
"level": 0,
"text": "6.7. NP-completeness",
"verified": true,
"linkedPage": 103
},
{
"level": 0,
"text": "6.8. NP-completeness of the satisfiability problem",
"verified": true,
"linkedPage": 103
},
{
"level": 0,
"text": "6.9. NP-completeness of some other problems",
"verified": true,
"linkedPage": 106
},
{
"level": 0,
"text": "6.10. Turing machines",
"verified": true,
"linkedPage": 108
},
{
"level": 0,
"text": "7. Cliques, stable sets, and colourings",
"verified": true,
"linkedPage": 111
},
{
"level": 0,
"text": "7.1. Introduction",
"verified": true,
"linkedPage": 111
},
{
"level": 0,
"text": "7.2. Edge-colourings of bipartite graphs",
"verified": true,
"linkedPage": 115
},
{
"level": 0,
"text": "7.3. Partially ordered sets",
"verified": true,
"linkedPage": 121
},
{
"level": 0,
"text": "7.4. Perfect graphs",
"verified": true,
"linkedPage": 125
},
{
"level": 0,
"text": "7.5. Chordal graphs",
"verified": true,
"linkedPage": 128
},
{
"level": 0,
"text": "8. Integer linear programming and totally unimodular matrices",
"verified": true,
"linkedPage": 132
},
{
"level": 0,
"text": "8.1. Integer linear programming",
"verified": true,
"linkedPage": 132
},
{
"level": 0,
"text": "8.2. Totally unimodular matrices",
"verified": true,
"linkedPage": 134
},
{
"level": 0,
"text": "8.3. Totally unimodular matrices from bipartite graphs",
"verified": true,
"linkedPage": 139
},
{
"level": 0,
"text": "8.4. Totally unimodular matrices from directed graphs",
"verified": true,
"linkedPage": 143
},
{
"level": 0,
"text": "9. Multicommodity flows and disjoint paths",
"verified": true,
"linkedPage": 148
},
{
"level": 0,
"text": "9.1. Introduction",
"verified": true,
"linkedPage": 148
},
{
"level": 0,
"text": "9.2. Two commodities",
"verified": true,
"linkedPage": 153
},
{
"level": 0,
"text": "9.3. Disjoint paths in acyclic directed graphs",
"verified": true,
"linkedPage": 157
},
{
"level": 0,
"text": "9.4. Vertex-disjoint paths in planar graphs",
"verified": true,
"linkedPage": 159
},
{
"level": 0,
"text": "9.5. Edge-disjoint paths in planar graphs",
"verified": true,
"linkedPage": 165
},
{
"level": 0,
"text": "9.6. A column generation technique for multicom- modity flows",
"verified": true,
"linkedPage": 168
},
{
"level": 0,
"text": "10. Matroids",
"verified": true,
"linkedPage": 173
},
{
"level": 0,
"text": "10.1. Matroids and the greedy algorithm",
"verified": true,
"linkedPage": 173
},
{
"level": 0,
"text": "10.2. Equivalent axioms for matroids",
"verified": true,
"linkedPage": 176
},
{
"level": 0,
"text": "10.3. Examples of matroids",
"verified": true,
"linkedPage": 180
},
{
"level": 0,
"text": "10.4. Two technical lemmas",
"verified": true,
"linkedPage": 183
},
{
"level": 0,
"text": "10.5. Matroid intersection",
"verified": true,
"linkedPage": 184
},
{
"level": 0,
"text": "10.6. Weighted matroid intersection",
"verified": true,
"linkedPage": 190
},
{
"level": 0,
"text": "10.7. Matroids and polyhedra",
"verified": true,
"linkedPage": 194
},
{
"level": 0,
"text": "References",
"verified": true,
"linkedPage": 199
},
{
"level": 0,
"text": "Name index",
"verified": true,
"linkedPage": 210
},
{
"level": 0,
"text": "Subject index",
"verified": true,
"linkedPage": 212
}
]
}
}
}
{"page":1,"change":"ContentChange","str":"1. Shortest paths and trees 5","dir":"ltr","width":"186.01","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","665.68"],"fontName":"KXBFBK+CMBX12","x":84.9512,"y":665.6799,"line":1,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"1.1. Shortest paths with nonnegative lengths 5","dir":"ltr","width":"235.58","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","641.77"],"fontName":"LNAVFB+CMR10","x":104.193,"y":641.7669999999999,"line":2,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"1.2. Speeding up Dijkstras algorithm with heaps 9","dir":"ltr","width":"256.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","625.65"],"fontName":"LNAVFB+CMR10","x":104.193,"y":625.6478999999999,"line":3,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"1.3. Shortest paths with arbitrary lengths 12","dir":"ltr","width":"226.89","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","609.53"],"fontName":"LNAVFB+CMR10","x":104.193,"y":609.5287999999999,"line":4,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"1.4. Minimum spanning trees 19","dir":"ltr","width":"167.04","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","593.41"],"fontName":"LNAVFB+CMR10","x":104.193,"y":593.4096999999999,"line":5,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"2. Polytopes, polyhedra, Farkas lemma, and linear program ming 23","line":6,"x":84.9512,"y":558.6514999999999,"width":"416.16","height":"11.96","fontName":["KXBFBK+CMBX12"],"dir":["ltr"],"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"2.1. Convex sets 23","dir":"ltr","width":"105.19","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","534.74"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":534.7385999999999,"line":7,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"2.2. Polytopes and polyhedra 25","dir":"ltr","width":"167.44","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","518.62"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":518.6194999999999,"line":8,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"2.3. Farkas lemma 30","dir":"ltr","width":"117.74","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","502.50"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":502.5003999999999,"line":9,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"2.4. Linear programming 33","dir":"ltr","width":"146.53","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","486.38"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":486.3812999999999,"line":10,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"3. Matchings and covers in bipartite graphs 39","dir":"ltr","width":"290.40","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","451.62"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":451.6234999999999,"line":11,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"3.1. Matchings, covers, and Gallais theorem 39","dir":"ltr","width":"239.63","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","427.72"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":427.71919999999994,"line":12,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"3.2. M -augmenting paths 40","line":13,"x":104.19320000000005,"y":411.60009999999994,"width":"142.29","height":"10.91","fontName":["LNAVFB+CMR10","LSUYZV+CMMI10"],"dir":["ltr"],"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"3.3. K ̋onigs theorems 41","dir":"ltr","width":"131.28","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","395.47"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":395.4719999999999,"line":14,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"3.4. Cardinality bipartite matching algorithm 45","dir":"ltr","width":"244.86","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","379.35"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":379.3528999999999,"line":15,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"3.5. Weighted bipartite matching 47","dir":"ltr","width":"185.71","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","363.23"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":363.2337999999999,"line":16,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"3.6. The matching polytope 50","dir":"ltr","width":"160.23","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","347.11"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":347.1146999999999,"line":17,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"4. Mengers theorem, flows, and circulations 54","dir":"ltr","width":"293.70","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","312.36"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":312.3568999999999,"line":18,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"4.1. Mengers theorem 54","dir":"ltr","width":"133.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","288.45"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":288.4525999999999,"line":19,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"4.2. Flows in networks 58","dir":"ltr","width":"134.77","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","272.33"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":272.3334999999999,"line":20,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"4.3. Finding a maximum flow 60","dir":"ltr","width":"168.26","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","256.21"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":256.2143999999999,"line":21,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"4.4. Speeding up the maximum flow algorithm 65","dir":"ltr","width":"249.35","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","240.10"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":240.0952999999999,"line":22,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"4.5. Circulations 68","dir":"ltr","width":"106.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","223.98"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":223.9761999999999,"line":23,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"4.6. Minimum-cost flows 70","dir":"ltr","width":"144.29","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","207.86"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":207.8570999999999,"line":24,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"5. Nonbipartite matching 78","dir":"ltr","width":"182.27","height":"11.96","transform":["11.96","0.00","0.00","11.96","84.95","173.09"],"fontName":"KXBFBK+CMBX12","x":84.95140000000005,"y":173.0902999999999,"line":25,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"5.1. Tuttes 1-factor theorem and the Tutte-Berge formula 7 8","line":26,"x":104.19320000000005,"y":149.1859999999999,"width":"306.01","height":"10.91","fontName":["LNAVFB+CMR10"],"dir":["ltr"],"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"5.2. Cardinality matching algorithm 81","dir":"ltr","width":"199.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","133.07"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":133.0672999999999,"line":27,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"5.3. Weighted matching algorithm 85","dir":"ltr","width":"190.56","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","116.95"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":116.9481999999999,"line":28,"types":["TOC"]}
{"page":1,"change":"ContentChange","str":"5.4. The matching polytope 91","dir":"ltr","width":"160.23","height":"10.91","transform":["10.91","0.00","0.00","10.91","104.19","100.83"],"fontName":"LNAVFB+CMR10","x":104.19320000000005,"y":100.8290999999999,"line":29,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"5.5. The Cunningham-Marsh formula 94","dir":"ltr","width":"206.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","701.16"],"fontName":"LNAVFB+CMR10","x":132.543,"y":701.158,"line":0,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6. Problems, algorithms, and running time 97","dir":"ltr","width":"284.88","height":"11.96","transform":["11.96","0.00","0.00","11.96","113.30","667.09"],"fontName":"KXBFBK+CMBX12","x":113.30120000000001,"y":667.0928,"line":1,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6.1. Introduction 97","dir":"ltr","width":"108.43","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","643.64"],"fontName":"LNAVFB+CMR10","x":132.543,"y":643.6389,"line":2,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6.2. Words 98","dir":"ltr","width":"79.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","627.63"],"fontName":"LNAVFB+CMR10","x":132.543,"y":627.628,"line":3,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6.3. Problems 100","dir":"ltr","width":"98.64","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","611.62"],"fontName":"LNAVFB+CMR10","x":132.543,"y":611.6171,"line":4,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6.4. Algorithms and running time 100","dir":"ltr","width":"193.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","595.61"],"fontName":"LNAVFB+CMR10","x":132.543,"y":595.6148000000001,"line":5,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6.5. The class NP 101","dir":"ltr","width":"117.77","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","579.60"],"fontName":"LNAVFB+CMR10","x":132.543,"y":579.6039000000001,"line":6,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6.6. The class co-NP 102","dir":"ltr","width":"131.71","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","563.59"],"fontName":"LNAVFB+CMR10","x":132.543,"y":563.5930000000001,"line":7,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6.7. NP-completeness 103","dir":"ltr","width":"135.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","547.58"],"fontName":"LNAVFB+CMR10","x":132.543,"y":547.5821000000001,"line":8,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6.8. NP-completeness of the satisfiability problem 103","dir":"ltr","width":"270.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","531.58"],"fontName":"LNAVFB+CMR10","x":132.543,"y":531.5801000000001,"line":9,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6.9. NP-completeness of some other problems 106","dir":"ltr","width":"250.37","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","515.57"],"fontName":"LNAVFB+CMR10","x":132.543,"y":515.5692000000001,"line":10,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"6.10. Turing machines 108","dir":"ltr","width":"138.49","height":"10.91","transform":["10.91","0.00","0.00","10.91","127.09","499.56"],"fontName":"LNAVFB+CMR10","x":127.08909000000001,"y":499.55830000000014,"line":11,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"7. Cliques, stable sets, and colourings 111","dir":"ltr","width":"260.98","height":"11.96","transform":["11.96","0.00","0.00","11.96","113.30","465.49"],"fontName":"KXBFBK+CMBX12","x":113.30119000000002,"y":465.49310000000014,"line":12,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"7.1. Introduction 111","dir":"ltr","width":"113.89","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","442.04"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":442.03920000000016,"line":13,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"7.2. Edge-colourings of bipartite graphs 115","dir":"ltr","width":"222.10","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","426.04"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":426.03720000000015,"line":14,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"7.3. Partially ordered sets 121","dir":"ltr","width":"156.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","410.03"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":410.02630000000016,"line":15,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"7.4. Perfect graphs 125","dir":"ltr","width":"122.91","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","394.02"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":394.01540000000017,"line":16,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"7.5. Chordal graphs 128","dir":"ltr","width":"127.61","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","378.00"],"fontName":"LNAVFB+CMR10","x":132.54299000000003,"y":378.0045000000002,"line":17,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"8. Integer linear programming and totally unimodular matri ces 132","line":18,"x":113.30119000000003,"y":343.9397000000002,"width":"412.86","height":"11.96","fontName":["KXBFBK+CMBX12"],"dir":["ltr"],"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"8.1. Integer linear programming 132","dir":"ltr","width":"185.19","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","320.49"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":320.4858000000002,"line":19,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"8.2. Totally unimodular matrices 134","dir":"ltr","width":"190.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","304.48"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":304.4838000000002,"line":20,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"8.3. Totally unimodular matrices from bipartite graphs 139","dir":"ltr","width":"296.25","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","288.47"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":288.4725000000002,"line":21,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"8.4. Totally unimodular matrices from directed graphs 143","dir":"ltr","width":"293.22","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","272.46"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":272.4612000000002,"line":22,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"9. Multicommodity flows and disjoint paths 148","dir":"ltr","width":"297.13","height":"11.96","transform":["11.96","0.00","0.00","11.96","113.30","238.40"],"fontName":"KXBFBK+CMBX12","x":113.30139000000004,"y":238.3964000000002,"line":23,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"9.1. Introduction 148","dir":"ltr","width":"113.89","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","214.94"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":214.9425000000002,"line":24,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"9.2. Two commodities 153","dir":"ltr","width":"138.47","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","198.93"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":198.9312000000002,"line":25,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"9.3. Disjoint paths in acyclic directed graphs 157","dir":"ltr","width":"246.67","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","182.93"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":182.92920000000018,"line":26,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"9.4. Vertex-disjoint paths in planar graphs 159","dir":"ltr","width":"235.94","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","166.92"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":166.9183000000002,"line":27,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"9.5. Edge-disjoint paths in planar graphs 165","dir":"ltr","width":"228.49","height":"10.91","transform":["10.91","0.00","0.00","10.91","132.54","150.91"],"fontName":"LNAVFB+CMR10","x":132.54319000000004,"y":150.9074000000002,"line":28,"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"9.6. A column generation technique for multicommodity flows 168","line":29,"x":132.54319000000004,"y":134.8965000000002,"width":"313.53","height":"10.91","fontName":["LNAVFB+CMR10"],"dir":["ltr"],"types":["TOC"]}
{"page":2,"change":"ContentChange","str":"10. Matroids 173","dir":"ltr","width":"115.13","height":"11.96","transform":["11.96","0.00","0.00","11.96","106.57","100.83"],"fontName":"KXBFBK+CMBX12","x":106.57019000000003,"y":100.8313000000002,"line":30,"types":["TOC"]}
{"page":3,"change":"ContentChange","str":"10.1. Matroids and the greedy algorithm 173","dir":"ltr","width":"227.04","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","701.16"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":701.158,"line":0,"types":["TOC"]}
{"page":3,"change":"ContentChange","str":"10.2. Equivalent axioms for matroids 176","dir":"ltr","width":"209.34","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","685.12"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":685.1197,"line":1,"types":["TOC"]}
{"page":3,"change":"ContentChange","str":"10.3. Examples of matroids 180","dir":"ltr","width":"163.56","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","669.08"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":669.0813999999999,"line":2,"types":["TOC"]}
{"page":3,"change":"ContentChange","str":"10.4. Two technical lemmas 183","dir":"ltr","width":"165.74","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","653.03"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":653.0344999999999,"line":3,"types":["TOC"]}
{"page":3,"change":"ContentChange","str":"10.5. Matroid intersection 184","dir":"ltr","width":"156.71","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","637.00"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":636.9961999999998,"line":4,"types":["TOC"]}
{"page":3,"change":"ContentChange","str":"10.6. Weighted matroid intersection 190","dir":"ltr","width":"203.98","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","620.96"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":620.9578999999998,"line":5,"types":["TOC"]}
{"page":3,"change":"ContentChange","str":"10.7. Matroids and polyhedra 194","dir":"ltr","width":"174.58","height":"10.91","transform":["10.91","0.00","0.00","10.91","98.74","604.92"],"fontName":"LNAVFB+CMR10","x":98.7391,"y":604.9195999999997,"line":6,"types":["TOC"]}
{"page":3,"change":"ContentChange","str":"References 199","dir":"ltr","width":"101.76","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","569.86"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":569.8554999999997,"line":7,"types":["TOC"]}
{"page":3,"change":"ContentChange","str":"Name index 210","dir":"ltr","width":"109.62","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","539.78"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":539.7773999999997,"line":8,"types":["TOC"]}
{"page":3,"change":"ContentChange","str":"Subject index 212","dir":"ltr","width":"119.83","height":"11.96","transform":["11.96","0.00","0.00","11.96","101.27","509.70"],"fontName":"KXBFBK+CMBX12","x":101.26800999999999,"y":509.6992999999997,"line":9,"types":["TOC"]}