mirror of
https://github.com/rclone/rclone.git
synced 2024-12-27 17:38:58 +01:00
297 lines
5.6 KiB
Go
297 lines
5.6 KiB
Go
|
// Copyright 2012 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package bn256
|
||
|
|
||
|
// For details of the algorithms used, see "Multiplication and Squaring on
|
||
|
// Pairing-Friendly Fields, Devegili et al.
|
||
|
// http://eprint.iacr.org/2006/471.pdf.
|
||
|
|
||
|
import (
|
||
|
"math/big"
|
||
|
)
|
||
|
|
||
|
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
|
||
|
// and ξ=i+3.
|
||
|
type gfP6 struct {
|
||
|
x, y, z *gfP2 // value is xτ² + yτ + z
|
||
|
}
|
||
|
|
||
|
func newGFp6(pool *bnPool) *gfP6 {
|
||
|
return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)}
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) String() string {
|
||
|
return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")"
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Put(pool *bnPool) {
|
||
|
e.x.Put(pool)
|
||
|
e.y.Put(pool)
|
||
|
e.z.Put(pool)
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Set(a *gfP6) *gfP6 {
|
||
|
e.x.Set(a.x)
|
||
|
e.y.Set(a.y)
|
||
|
e.z.Set(a.z)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) SetZero() *gfP6 {
|
||
|
e.x.SetZero()
|
||
|
e.y.SetZero()
|
||
|
e.z.SetZero()
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) SetOne() *gfP6 {
|
||
|
e.x.SetZero()
|
||
|
e.y.SetZero()
|
||
|
e.z.SetOne()
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Minimal() {
|
||
|
e.x.Minimal()
|
||
|
e.y.Minimal()
|
||
|
e.z.Minimal()
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) IsZero() bool {
|
||
|
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) IsOne() bool {
|
||
|
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Negative(a *gfP6) *gfP6 {
|
||
|
e.x.Negative(a.x)
|
||
|
e.y.Negative(a.y)
|
||
|
e.z.Negative(a.z)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 {
|
||
|
e.x.Conjugate(a.x)
|
||
|
e.y.Conjugate(a.y)
|
||
|
e.z.Conjugate(a.z)
|
||
|
|
||
|
e.x.Mul(e.x, xiTo2PMinus2Over3, pool)
|
||
|
e.y.Mul(e.y, xiToPMinus1Over3, pool)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
|
||
|
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
|
||
|
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
|
||
|
e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3)
|
||
|
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
|
||
|
e.y.MulScalar(a.y, xiToPSquaredMinus1Over3)
|
||
|
e.z.Set(a.z)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
|
||
|
e.x.Add(a.x, b.x)
|
||
|
e.y.Add(a.y, b.y)
|
||
|
e.z.Add(a.z, b.z)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
|
||
|
e.x.Sub(a.x, b.x)
|
||
|
e.y.Sub(a.y, b.y)
|
||
|
e.z.Sub(a.z, b.z)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Double(a *gfP6) *gfP6 {
|
||
|
e.x.Double(a.x)
|
||
|
e.y.Double(a.y)
|
||
|
e.z.Double(a.z)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 {
|
||
|
// "Multiplication and Squaring on Pairing-Friendly Fields"
|
||
|
// Section 4, Karatsuba method.
|
||
|
// http://eprint.iacr.org/2006/471.pdf
|
||
|
|
||
|
v0 := newGFp2(pool)
|
||
|
v0.Mul(a.z, b.z, pool)
|
||
|
v1 := newGFp2(pool)
|
||
|
v1.Mul(a.y, b.y, pool)
|
||
|
v2 := newGFp2(pool)
|
||
|
v2.Mul(a.x, b.x, pool)
|
||
|
|
||
|
t0 := newGFp2(pool)
|
||
|
t0.Add(a.x, a.y)
|
||
|
t1 := newGFp2(pool)
|
||
|
t1.Add(b.x, b.y)
|
||
|
tz := newGFp2(pool)
|
||
|
tz.Mul(t0, t1, pool)
|
||
|
|
||
|
tz.Sub(tz, v1)
|
||
|
tz.Sub(tz, v2)
|
||
|
tz.MulXi(tz, pool)
|
||
|
tz.Add(tz, v0)
|
||
|
|
||
|
t0.Add(a.y, a.z)
|
||
|
t1.Add(b.y, b.z)
|
||
|
ty := newGFp2(pool)
|
||
|
ty.Mul(t0, t1, pool)
|
||
|
ty.Sub(ty, v0)
|
||
|
ty.Sub(ty, v1)
|
||
|
t0.MulXi(v2, pool)
|
||
|
ty.Add(ty, t0)
|
||
|
|
||
|
t0.Add(a.x, a.z)
|
||
|
t1.Add(b.x, b.z)
|
||
|
tx := newGFp2(pool)
|
||
|
tx.Mul(t0, t1, pool)
|
||
|
tx.Sub(tx, v0)
|
||
|
tx.Add(tx, v1)
|
||
|
tx.Sub(tx, v2)
|
||
|
|
||
|
e.x.Set(tx)
|
||
|
e.y.Set(ty)
|
||
|
e.z.Set(tz)
|
||
|
|
||
|
t0.Put(pool)
|
||
|
t1.Put(pool)
|
||
|
tx.Put(pool)
|
||
|
ty.Put(pool)
|
||
|
tz.Put(pool)
|
||
|
v0.Put(pool)
|
||
|
v1.Put(pool)
|
||
|
v2.Put(pool)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 {
|
||
|
e.x.Mul(a.x, b, pool)
|
||
|
e.y.Mul(a.y, b, pool)
|
||
|
e.z.Mul(a.z, b, pool)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 {
|
||
|
e.x.MulScalar(a.x, b)
|
||
|
e.y.MulScalar(a.y, b)
|
||
|
e.z.MulScalar(a.z, b)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
|
||
|
func (e *gfP6) MulTau(a *gfP6, pool *bnPool) {
|
||
|
tz := newGFp2(pool)
|
||
|
tz.MulXi(a.x, pool)
|
||
|
ty := newGFp2(pool)
|
||
|
ty.Set(a.y)
|
||
|
e.y.Set(a.z)
|
||
|
e.x.Set(ty)
|
||
|
e.z.Set(tz)
|
||
|
tz.Put(pool)
|
||
|
ty.Put(pool)
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 {
|
||
|
v0 := newGFp2(pool).Square(a.z, pool)
|
||
|
v1 := newGFp2(pool).Square(a.y, pool)
|
||
|
v2 := newGFp2(pool).Square(a.x, pool)
|
||
|
|
||
|
c0 := newGFp2(pool).Add(a.x, a.y)
|
||
|
c0.Square(c0, pool)
|
||
|
c0.Sub(c0, v1)
|
||
|
c0.Sub(c0, v2)
|
||
|
c0.MulXi(c0, pool)
|
||
|
c0.Add(c0, v0)
|
||
|
|
||
|
c1 := newGFp2(pool).Add(a.y, a.z)
|
||
|
c1.Square(c1, pool)
|
||
|
c1.Sub(c1, v0)
|
||
|
c1.Sub(c1, v1)
|
||
|
xiV2 := newGFp2(pool).MulXi(v2, pool)
|
||
|
c1.Add(c1, xiV2)
|
||
|
|
||
|
c2 := newGFp2(pool).Add(a.x, a.z)
|
||
|
c2.Square(c2, pool)
|
||
|
c2.Sub(c2, v0)
|
||
|
c2.Add(c2, v1)
|
||
|
c2.Sub(c2, v2)
|
||
|
|
||
|
e.x.Set(c2)
|
||
|
e.y.Set(c1)
|
||
|
e.z.Set(c0)
|
||
|
|
||
|
v0.Put(pool)
|
||
|
v1.Put(pool)
|
||
|
v2.Put(pool)
|
||
|
c0.Put(pool)
|
||
|
c1.Put(pool)
|
||
|
c2.Put(pool)
|
||
|
xiV2.Put(pool)
|
||
|
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 {
|
||
|
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
|
||
|
// ftp://136.206.11.249/pub/crypto/pairings.pdf
|
||
|
|
||
|
// Here we can give a short explanation of how it works: let j be a cubic root of
|
||
|
// unity in GF(p²) so that 1+j+j²=0.
|
||
|
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
|
||
|
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
|
||
|
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
|
||
|
//
|
||
|
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
|
||
|
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
|
||
|
//
|
||
|
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
|
||
|
t1 := newGFp2(pool)
|
||
|
|
||
|
A := newGFp2(pool)
|
||
|
A.Square(a.z, pool)
|
||
|
t1.Mul(a.x, a.y, pool)
|
||
|
t1.MulXi(t1, pool)
|
||
|
A.Sub(A, t1)
|
||
|
|
||
|
B := newGFp2(pool)
|
||
|
B.Square(a.x, pool)
|
||
|
B.MulXi(B, pool)
|
||
|
t1.Mul(a.y, a.z, pool)
|
||
|
B.Sub(B, t1)
|
||
|
|
||
|
C := newGFp2(pool)
|
||
|
C.Square(a.y, pool)
|
||
|
t1.Mul(a.x, a.z, pool)
|
||
|
C.Sub(C, t1)
|
||
|
|
||
|
F := newGFp2(pool)
|
||
|
F.Mul(C, a.y, pool)
|
||
|
F.MulXi(F, pool)
|
||
|
t1.Mul(A, a.z, pool)
|
||
|
F.Add(F, t1)
|
||
|
t1.Mul(B, a.x, pool)
|
||
|
t1.MulXi(t1, pool)
|
||
|
F.Add(F, t1)
|
||
|
|
||
|
F.Invert(F, pool)
|
||
|
|
||
|
e.x.Mul(C, F, pool)
|
||
|
e.y.Mul(B, F, pool)
|
||
|
e.z.Mul(A, F, pool)
|
||
|
|
||
|
t1.Put(pool)
|
||
|
A.Put(pool)
|
||
|
B.Put(pool)
|
||
|
C.Put(pool)
|
||
|
F.Put(pool)
|
||
|
|
||
|
return e
|
||
|
}
|