rclone/vendor/github.com/rfjakob/eme/eme.go

174 lines
4.7 KiB
Go
Raw Normal View History

// EME (ECB-Mix-ECB) is a length-preserving wide-block encryption mode. It was
// presented in the 2003 paper "A Parallelizable Enciphering Mode" by Halevi
// and Rogaway.
package eme
import (
"crypto/cipher"
"log"
)
type directionConst bool
const (
// Encrypt "inputData"
DirectionEncrypt = directionConst(true)
// Decrypt "inputData"
DirectionDecrypt = directionConst(false)
)
// multByTwo - GF multiplication as specified in the EME-32 draft
func multByTwo(out []byte, in []byte) {
if len(in) != 16 {
panic("len must be 16")
}
tmp := make([]byte, 16)
tmp[0] = 2 * in[0]
if in[15] >= 128 {
tmp[0] = tmp[0] ^ 135
}
for j := 1; j < 16; j++ {
tmp[j] = 2 * in[j]
if in[j-1] >= 128 {
tmp[j] += 1
}
}
copy(out, tmp)
}
func xorBlocks(out []byte, in1 []byte, in2 []byte) {
if len(in1) != len(in2) {
log.Panicf("len(in1)=%d is not equal to len(in2)=%d", len(in1), len(in2))
}
for i := range in1 {
out[i] = in1[i] ^ in2[i]
}
}
// aesTransform - encrypt or decrypt (according to "direction") using block
// cipher "bc" (typically AES)
func aesTransform(dst []byte, src []byte, direction directionConst, bc cipher.Block) {
if direction == DirectionEncrypt {
bc.Encrypt(dst, src)
return
} else if direction == DirectionDecrypt {
bc.Decrypt(dst, src)
return
}
}
// tabulateL - calculate L_i for messages up to a length of m cipher blocks
func tabulateL(bc cipher.Block, m int) [][]byte {
/* set L0 = 2*AESenc(K; 0) */
eZero := make([]byte, 16)
Li := make([]byte, 16)
bc.Encrypt(Li, eZero)
LTable := make([][]byte, m)
// Allocate pool once and slice into m pieces in the loop
pool := make([]byte, m*16)
for i := 0; i < m; i++ {
multByTwo(Li, Li)
LTable[i] = pool[i*16 : (i+1)*16]
copy(LTable[i], Li)
}
return LTable
}
// Transform - EME-encrypt or EME-decrypt, according to "direction"
// (defined in the constants DirectionEncrypt and DirectionDecrypt).
// The data in "inputData" is en- or decrypted with the block ciper "bc" under
// "tweak" (also known as IV).
//
// The tweak is used to randomize the encryption in the same way as an
// IV. A use of this encryption mode envisioned by the authors of the
// algorithm was to encrypt each sector of a disk, with the tweak
// being the sector number. If you encipher the same data with the
// same tweak you will get the same ciphertext.
//
// The result is returned in a freshly allocated slice of the same
// size as inputData.
//
// Limitations: This only works for ciphers with block size 16. The
// size of the tweak slice must also be 16. The inputData must also be
// a multiple of 16. If any of these pre-conditions are not met, the
// function will panic.
func Transform(bc cipher.Block, tweak []byte, inputData []byte, direction directionConst) []byte {
// In the paper, the tweak is just called "T". Call it the same here to
// make following the paper easy.
T := tweak
// In the paper, the plaintext data is called "P" and the ciphertext is
// called "C". Because encryption and decryption are virtually indentical,
// we share the code and always call the input data "P" and the output data
// "C", regardless of the direction.
P := inputData
if bc.BlockSize() != 16 {
log.Panicf("Using a block size other than 16 is not implemented")
}
if len(T) != 16 {
log.Panicf("Tweak must be 16 bytes long, is %d", len(T))
}
if len(P)%16 != 0 {
log.Panicf("Data P must be a multiple of 16 long, is %d", len(P))
}
m := len(P) / 16
if m == 0 || m > 16*8 {
log.Panicf("EME operates on 1 to %d block-cipher blocks, you passed %d", 16*8, m)
}
C := make([]byte, len(P))
LTable := tabulateL(bc, m)
PPj := make([]byte, 16)
for j := 0; j < m; j++ {
Pj := P[j*16 : (j+1)*16]
/* PPj = 2**(j-1)*L xor Pj */
xorBlocks(PPj, Pj, LTable[j])
/* PPPj = AESenc(K; PPj) */
aesTransform(C[j*16:(j+1)*16], PPj, direction, bc)
}
/* MP =(xorSum PPPj) xor T */
MP := make([]byte, 16)
xorBlocks(MP, C[0:16], T)
for j := 1; j < m; j++ {
xorBlocks(MP, MP, C[j*16:(j+1)*16])
}
/* MC = AESenc(K; MP) */
MC := make([]byte, 16)
aesTransform(MC, MP, direction, bc)
/* M = MP xor MC */
M := make([]byte, 16)
xorBlocks(M, MP, MC)
CCCj := make([]byte, 16)
for j := 1; j < m; j++ {
multByTwo(M, M)
/* CCCj = 2**(j-1)*M xor PPPj */
xorBlocks(CCCj, C[j*16:(j+1)*16], M)
copy(C[j*16:(j+1)*16], CCCj)
}
/* CCC1 = (xorSum CCCj) xor T xor MC */
CCC1 := make([]byte, 16)
xorBlocks(CCC1, MC, T)
for j := 1; j < m; j++ {
xorBlocks(CCC1, CCC1, C[j*16:(j+1)*16])
}
copy(C[0:16], CCC1)
for j := 0; j < m; j++ {
/* CCj = AES-enc(K; CCCj) */
aesTransform(C[j*16:(j+1)*16], C[j*16:(j+1)*16], direction, bc)
/* Cj = 2**(j-1)*L xor CCj */
xorBlocks(C[j*16:(j+1)*16], C[j*16:(j+1)*16], LTable[j])
}
return C
}