mirror of
https://github.com/rclone/rclone.git
synced 2024-12-13 02:33:58 +01:00
495 lines
14 KiB
Go
495 lines
14 KiB
Go
|
// Copyright 2014 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
// Package triegen implements a code generator for a trie for associating
|
||
|
// unsigned integer values with UTF-8 encoded runes.
|
||
|
//
|
||
|
// Many of the go.text packages use tries for storing per-rune information. A
|
||
|
// trie is especially useful if many of the runes have the same value. If this
|
||
|
// is the case, many blocks can be expected to be shared allowing for
|
||
|
// information on many runes to be stored in little space.
|
||
|
//
|
||
|
// As most of the lookups are done directly on []byte slices, the tries use the
|
||
|
// UTF-8 bytes directly for the lookup. This saves a conversion from UTF-8 to
|
||
|
// runes and contributes a little bit to better performance. It also naturally
|
||
|
// provides a fast path for ASCII.
|
||
|
//
|
||
|
// Space is also an issue. There are many code points defined in Unicode and as
|
||
|
// a result tables can get quite large. So every byte counts. The triegen
|
||
|
// package automatically chooses the smallest integer values to represent the
|
||
|
// tables. Compacters allow further compression of the trie by allowing for
|
||
|
// alternative representations of individual trie blocks.
|
||
|
//
|
||
|
// triegen allows generating multiple tries as a single structure. This is
|
||
|
// useful when, for example, one wants to generate tries for several languages
|
||
|
// that have a lot of values in common. Some existing libraries for
|
||
|
// internationalization store all per-language data as a dynamically loadable
|
||
|
// chunk. The go.text packages are designed with the assumption that the user
|
||
|
// typically wants to compile in support for all supported languages, in line
|
||
|
// with the approach common to Go to create a single standalone binary. The
|
||
|
// multi-root trie approach can give significant storage savings in this
|
||
|
// scenario.
|
||
|
//
|
||
|
// triegen generates both tables and code. The code is optimized to use the
|
||
|
// automatically chosen data types. The following code is generated for a Trie
|
||
|
// or multiple Tries named "foo":
|
||
|
// - type fooTrie
|
||
|
// The trie type.
|
||
|
//
|
||
|
// - func newFooTrie(x int) *fooTrie
|
||
|
// Trie constructor, where x is the index of the trie passed to Gen.
|
||
|
//
|
||
|
// - func (t *fooTrie) lookup(s []byte) (v uintX, sz int)
|
||
|
// The lookup method, where uintX is automatically chosen.
|
||
|
//
|
||
|
// - func lookupString, lookupUnsafe and lookupStringUnsafe
|
||
|
// Variants of the above.
|
||
|
//
|
||
|
// - var fooValues and fooIndex and any tables generated by Compacters.
|
||
|
// The core trie data.
|
||
|
//
|
||
|
// - var fooTrieHandles
|
||
|
// Indexes of starter blocks in case of multiple trie roots.
|
||
|
//
|
||
|
// It is recommended that users test the generated trie by checking the returned
|
||
|
// value for every rune. Such exhaustive tests are possible as the the number of
|
||
|
// runes in Unicode is limited.
|
||
|
package triegen // import "golang.org/x/text/internal/triegen"
|
||
|
|
||
|
// TODO: Arguably, the internally optimized data types would not have to be
|
||
|
// exposed in the generated API. We could also investigate not generating the
|
||
|
// code, but using it through a package. We would have to investigate the impact
|
||
|
// on performance of making such change, though. For packages like unicode/norm,
|
||
|
// small changes like this could tank performance.
|
||
|
|
||
|
import (
|
||
|
"encoding/binary"
|
||
|
"fmt"
|
||
|
"hash/crc64"
|
||
|
"io"
|
||
|
"log"
|
||
|
"unicode/utf8"
|
||
|
)
|
||
|
|
||
|
// builder builds a set of tries for associating values with runes. The set of
|
||
|
// tries can share common index and value blocks.
|
||
|
type builder struct {
|
||
|
Name string
|
||
|
|
||
|
// ValueType is the type of the trie values looked up.
|
||
|
ValueType string
|
||
|
|
||
|
// ValueSize is the byte size of the ValueType.
|
||
|
ValueSize int
|
||
|
|
||
|
// IndexType is the type of trie index values used for all UTF-8 bytes of
|
||
|
// a rune except the last one.
|
||
|
IndexType string
|
||
|
|
||
|
// IndexSize is the byte size of the IndexType.
|
||
|
IndexSize int
|
||
|
|
||
|
// SourceType is used when generating the lookup functions. If the user
|
||
|
// requests StringSupport, all lookup functions will be generated for
|
||
|
// string input as well.
|
||
|
SourceType string
|
||
|
|
||
|
Trie []*Trie
|
||
|
|
||
|
IndexBlocks []*node
|
||
|
ValueBlocks [][]uint64
|
||
|
Compactions []compaction
|
||
|
Checksum uint64
|
||
|
|
||
|
ASCIIBlock string
|
||
|
StarterBlock string
|
||
|
|
||
|
indexBlockIdx map[uint64]int
|
||
|
valueBlockIdx map[uint64]nodeIndex
|
||
|
asciiBlockIdx map[uint64]int
|
||
|
|
||
|
// Stats are used to fill out the template.
|
||
|
Stats struct {
|
||
|
NValueEntries int
|
||
|
NValueBytes int
|
||
|
NIndexEntries int
|
||
|
NIndexBytes int
|
||
|
NHandleBytes int
|
||
|
}
|
||
|
|
||
|
err error
|
||
|
}
|
||
|
|
||
|
// A nodeIndex encodes the index of a node, which is defined by the compaction
|
||
|
// which stores it and an index within the compaction. For internal nodes, the
|
||
|
// compaction is always 0.
|
||
|
type nodeIndex struct {
|
||
|
compaction int
|
||
|
index int
|
||
|
}
|
||
|
|
||
|
// compaction keeps track of stats used for the compaction.
|
||
|
type compaction struct {
|
||
|
c Compacter
|
||
|
blocks []*node
|
||
|
maxHandle uint32
|
||
|
totalSize int
|
||
|
|
||
|
// Used by template-based generator and thus exported.
|
||
|
Cutoff uint32
|
||
|
Offset uint32
|
||
|
Handler string
|
||
|
}
|
||
|
|
||
|
func (b *builder) setError(err error) {
|
||
|
if b.err == nil {
|
||
|
b.err = err
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// An Option can be passed to Gen.
|
||
|
type Option func(b *builder) error
|
||
|
|
||
|
// Compact configures the trie generator to use the given Compacter.
|
||
|
func Compact(c Compacter) Option {
|
||
|
return func(b *builder) error {
|
||
|
b.Compactions = append(b.Compactions, compaction{
|
||
|
c: c,
|
||
|
Handler: c.Handler() + "(n, b)"})
|
||
|
return nil
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Gen writes Go code for a shared trie lookup structure to w for the given
|
||
|
// Tries. The generated trie type will be called nameTrie. newNameTrie(x) will
|
||
|
// return the *nameTrie for tries[x]. A value can be looked up by using one of
|
||
|
// the various lookup methods defined on nameTrie. It returns the table size of
|
||
|
// the generated trie.
|
||
|
func Gen(w io.Writer, name string, tries []*Trie, opts ...Option) (sz int, err error) {
|
||
|
// The index contains two dummy blocks, followed by the zero block. The zero
|
||
|
// block is at offset 0x80, so that the offset for the zero block for
|
||
|
// continuation bytes is 0.
|
||
|
b := &builder{
|
||
|
Name: name,
|
||
|
Trie: tries,
|
||
|
IndexBlocks: []*node{{}, {}, {}},
|
||
|
Compactions: []compaction{{
|
||
|
Handler: name + "Values[n<<6+uint32(b)]",
|
||
|
}},
|
||
|
// The 0 key in indexBlockIdx and valueBlockIdx is the hash of the zero
|
||
|
// block.
|
||
|
indexBlockIdx: map[uint64]int{0: 0},
|
||
|
valueBlockIdx: map[uint64]nodeIndex{0: {}},
|
||
|
asciiBlockIdx: map[uint64]int{},
|
||
|
}
|
||
|
b.Compactions[0].c = (*simpleCompacter)(b)
|
||
|
|
||
|
for _, f := range opts {
|
||
|
if err := f(b); err != nil {
|
||
|
return 0, err
|
||
|
}
|
||
|
}
|
||
|
b.build()
|
||
|
if b.err != nil {
|
||
|
return 0, b.err
|
||
|
}
|
||
|
if err = b.print(w); err != nil {
|
||
|
return 0, err
|
||
|
}
|
||
|
return b.Size(), nil
|
||
|
}
|
||
|
|
||
|
// A Trie represents a single root node of a trie. A builder may build several
|
||
|
// overlapping tries at once.
|
||
|
type Trie struct {
|
||
|
root *node
|
||
|
|
||
|
hiddenTrie
|
||
|
}
|
||
|
|
||
|
// hiddenTrie contains values we want to be visible to the template generator,
|
||
|
// but hidden from the API documentation.
|
||
|
type hiddenTrie struct {
|
||
|
Name string
|
||
|
Checksum uint64
|
||
|
ASCIIIndex int
|
||
|
StarterIndex int
|
||
|
}
|
||
|
|
||
|
// NewTrie returns a new trie root.
|
||
|
func NewTrie(name string) *Trie {
|
||
|
return &Trie{
|
||
|
&node{
|
||
|
children: make([]*node, blockSize),
|
||
|
values: make([]uint64, utf8.RuneSelf),
|
||
|
},
|
||
|
hiddenTrie{Name: name},
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Gen is a convenience wrapper around the Gen func passing t as the only trie
|
||
|
// and uses the name passed to NewTrie. It returns the size of the generated
|
||
|
// tables.
|
||
|
func (t *Trie) Gen(w io.Writer, opts ...Option) (sz int, err error) {
|
||
|
return Gen(w, t.Name, []*Trie{t}, opts...)
|
||
|
}
|
||
|
|
||
|
// node is a node of the intermediate trie structure.
|
||
|
type node struct {
|
||
|
// children holds this node's children. It is always of length 64.
|
||
|
// A child node may be nil.
|
||
|
children []*node
|
||
|
|
||
|
// values contains the values of this node. If it is non-nil, this node is
|
||
|
// either a root or leaf node:
|
||
|
// For root nodes, len(values) == 128 and it maps the bytes in [0x00, 0x7F].
|
||
|
// For leaf nodes, len(values) == 64 and it maps the bytes in [0x80, 0xBF].
|
||
|
values []uint64
|
||
|
|
||
|
index nodeIndex
|
||
|
}
|
||
|
|
||
|
// Insert associates value with the given rune. Insert will panic if a non-zero
|
||
|
// value is passed for an invalid rune.
|
||
|
func (t *Trie) Insert(r rune, value uint64) {
|
||
|
if value == 0 {
|
||
|
return
|
||
|
}
|
||
|
s := string(r)
|
||
|
if []rune(s)[0] != r && value != 0 {
|
||
|
// Note: The UCD tables will always assign what amounts to a zero value
|
||
|
// to a surrogate. Allowing a zero value for an illegal rune allows
|
||
|
// users to iterate over [0..MaxRune] without having to explicitly
|
||
|
// exclude surrogates, which would be tedious.
|
||
|
panic(fmt.Sprintf("triegen: non-zero value for invalid rune %U", r))
|
||
|
}
|
||
|
if len(s) == 1 {
|
||
|
// It is a root node value (ASCII).
|
||
|
t.root.values[s[0]] = value
|
||
|
return
|
||
|
}
|
||
|
|
||
|
n := t.root
|
||
|
for ; len(s) > 1; s = s[1:] {
|
||
|
if n.children == nil {
|
||
|
n.children = make([]*node, blockSize)
|
||
|
}
|
||
|
p := s[0] % blockSize
|
||
|
c := n.children[p]
|
||
|
if c == nil {
|
||
|
c = &node{}
|
||
|
n.children[p] = c
|
||
|
}
|
||
|
if len(s) > 2 && c.values != nil {
|
||
|
log.Fatalf("triegen: insert(%U): found internal node with values", r)
|
||
|
}
|
||
|
n = c
|
||
|
}
|
||
|
if n.values == nil {
|
||
|
n.values = make([]uint64, blockSize)
|
||
|
}
|
||
|
if n.children != nil {
|
||
|
log.Fatalf("triegen: insert(%U): found leaf node that also has child nodes", r)
|
||
|
}
|
||
|
n.values[s[0]-0x80] = value
|
||
|
}
|
||
|
|
||
|
// Size returns the number of bytes the generated trie will take to store. It
|
||
|
// needs to be exported as it is used in the templates.
|
||
|
func (b *builder) Size() int {
|
||
|
// Index blocks.
|
||
|
sz := len(b.IndexBlocks) * blockSize * b.IndexSize
|
||
|
|
||
|
// Skip the first compaction, which represents the normal value blocks, as
|
||
|
// its totalSize does not account for the ASCII blocks, which are managed
|
||
|
// separately.
|
||
|
sz += len(b.ValueBlocks) * blockSize * b.ValueSize
|
||
|
for _, c := range b.Compactions[1:] {
|
||
|
sz += c.totalSize
|
||
|
}
|
||
|
|
||
|
// TODO: this computation does not account for the fixed overhead of a using
|
||
|
// a compaction, either code or data. As for data, though, the typical
|
||
|
// overhead of data is in the order of bytes (2 bytes for cases). Further,
|
||
|
// the savings of using a compaction should anyway be substantial for it to
|
||
|
// be worth it.
|
||
|
|
||
|
// For multi-root tries, we also need to account for the handles.
|
||
|
if len(b.Trie) > 1 {
|
||
|
sz += 2 * b.IndexSize * len(b.Trie)
|
||
|
}
|
||
|
return sz
|
||
|
}
|
||
|
|
||
|
func (b *builder) build() {
|
||
|
// Compute the sizes of the values.
|
||
|
var vmax uint64
|
||
|
for _, t := range b.Trie {
|
||
|
vmax = maxValue(t.root, vmax)
|
||
|
}
|
||
|
b.ValueType, b.ValueSize = getIntType(vmax)
|
||
|
|
||
|
// Compute all block allocations.
|
||
|
// TODO: first compute the ASCII blocks for all tries and then the other
|
||
|
// nodes. ASCII blocks are more restricted in placement, as they require two
|
||
|
// blocks to be placed consecutively. Processing them first may improve
|
||
|
// sharing (at least one zero block can be expected to be saved.)
|
||
|
for _, t := range b.Trie {
|
||
|
b.Checksum += b.buildTrie(t)
|
||
|
}
|
||
|
|
||
|
// Compute the offsets for all the Compacters.
|
||
|
offset := uint32(0)
|
||
|
for i := range b.Compactions {
|
||
|
c := &b.Compactions[i]
|
||
|
c.Offset = offset
|
||
|
offset += c.maxHandle + 1
|
||
|
c.Cutoff = offset
|
||
|
}
|
||
|
|
||
|
// Compute the sizes of indexes.
|
||
|
// TODO: different byte positions could have different sizes. So far we have
|
||
|
// not found a case where this is beneficial.
|
||
|
imax := uint64(b.Compactions[len(b.Compactions)-1].Cutoff)
|
||
|
for _, ib := range b.IndexBlocks {
|
||
|
if x := uint64(ib.index.index); x > imax {
|
||
|
imax = x
|
||
|
}
|
||
|
}
|
||
|
b.IndexType, b.IndexSize = getIntType(imax)
|
||
|
}
|
||
|
|
||
|
func maxValue(n *node, max uint64) uint64 {
|
||
|
if n == nil {
|
||
|
return max
|
||
|
}
|
||
|
for _, c := range n.children {
|
||
|
max = maxValue(c, max)
|
||
|
}
|
||
|
for _, v := range n.values {
|
||
|
if max < v {
|
||
|
max = v
|
||
|
}
|
||
|
}
|
||
|
return max
|
||
|
}
|
||
|
|
||
|
func getIntType(v uint64) (string, int) {
|
||
|
switch {
|
||
|
case v < 1<<8:
|
||
|
return "uint8", 1
|
||
|
case v < 1<<16:
|
||
|
return "uint16", 2
|
||
|
case v < 1<<32:
|
||
|
return "uint32", 4
|
||
|
}
|
||
|
return "uint64", 8
|
||
|
}
|
||
|
|
||
|
const (
|
||
|
blockSize = 64
|
||
|
|
||
|
// Subtract two blocks to offset 0x80, the first continuation byte.
|
||
|
blockOffset = 2
|
||
|
|
||
|
// Subtract three blocks to offset 0xC0, the first non-ASCII starter.
|
||
|
rootBlockOffset = 3
|
||
|
)
|
||
|
|
||
|
var crcTable = crc64.MakeTable(crc64.ISO)
|
||
|
|
||
|
func (b *builder) buildTrie(t *Trie) uint64 {
|
||
|
n := t.root
|
||
|
|
||
|
// Get the ASCII offset. For the first trie, the ASCII block will be at
|
||
|
// position 0.
|
||
|
hasher := crc64.New(crcTable)
|
||
|
binary.Write(hasher, binary.BigEndian, n.values)
|
||
|
hash := hasher.Sum64()
|
||
|
|
||
|
v, ok := b.asciiBlockIdx[hash]
|
||
|
if !ok {
|
||
|
v = len(b.ValueBlocks)
|
||
|
b.asciiBlockIdx[hash] = v
|
||
|
|
||
|
b.ValueBlocks = append(b.ValueBlocks, n.values[:blockSize], n.values[blockSize:])
|
||
|
if v == 0 {
|
||
|
// Add the zero block at position 2 so that it will be assigned a
|
||
|
// zero reference in the lookup blocks.
|
||
|
// TODO: always do this? This would allow us to remove a check from
|
||
|
// the trie lookup, but at the expense of extra space. Analyze
|
||
|
// performance for unicode/norm.
|
||
|
b.ValueBlocks = append(b.ValueBlocks, make([]uint64, blockSize))
|
||
|
}
|
||
|
}
|
||
|
t.ASCIIIndex = v
|
||
|
|
||
|
// Compute remaining offsets.
|
||
|
t.Checksum = b.computeOffsets(n, true)
|
||
|
// We already subtracted the normal blockOffset from the index. Subtract the
|
||
|
// difference for starter bytes.
|
||
|
t.StarterIndex = n.index.index - (rootBlockOffset - blockOffset)
|
||
|
return t.Checksum
|
||
|
}
|
||
|
|
||
|
func (b *builder) computeOffsets(n *node, root bool) uint64 {
|
||
|
// For the first trie, the root lookup block will be at position 3, which is
|
||
|
// the offset for UTF-8 non-ASCII starter bytes.
|
||
|
first := len(b.IndexBlocks) == rootBlockOffset
|
||
|
if first {
|
||
|
b.IndexBlocks = append(b.IndexBlocks, n)
|
||
|
}
|
||
|
|
||
|
// We special-case the cases where all values recursively are 0. This allows
|
||
|
// for the use of a zero block to which all such values can be directed.
|
||
|
hash := uint64(0)
|
||
|
if n.children != nil || n.values != nil {
|
||
|
hasher := crc64.New(crcTable)
|
||
|
for _, c := range n.children {
|
||
|
var v uint64
|
||
|
if c != nil {
|
||
|
v = b.computeOffsets(c, false)
|
||
|
}
|
||
|
binary.Write(hasher, binary.BigEndian, v)
|
||
|
}
|
||
|
binary.Write(hasher, binary.BigEndian, n.values)
|
||
|
hash = hasher.Sum64()
|
||
|
}
|
||
|
|
||
|
if first {
|
||
|
b.indexBlockIdx[hash] = rootBlockOffset - blockOffset
|
||
|
}
|
||
|
|
||
|
// Compacters don't apply to internal nodes.
|
||
|
if n.children != nil {
|
||
|
v, ok := b.indexBlockIdx[hash]
|
||
|
if !ok {
|
||
|
v = len(b.IndexBlocks) - blockOffset
|
||
|
b.IndexBlocks = append(b.IndexBlocks, n)
|
||
|
b.indexBlockIdx[hash] = v
|
||
|
}
|
||
|
n.index = nodeIndex{0, v}
|
||
|
} else {
|
||
|
h, ok := b.valueBlockIdx[hash]
|
||
|
if !ok {
|
||
|
bestI, bestSize := 0, blockSize*b.ValueSize
|
||
|
for i, c := range b.Compactions[1:] {
|
||
|
if sz, ok := c.c.Size(n.values); ok && bestSize > sz {
|
||
|
bestI, bestSize = i+1, sz
|
||
|
}
|
||
|
}
|
||
|
c := &b.Compactions[bestI]
|
||
|
c.totalSize += bestSize
|
||
|
v := c.c.Store(n.values)
|
||
|
if c.maxHandle < v {
|
||
|
c.maxHandle = v
|
||
|
}
|
||
|
h = nodeIndex{bestI, int(v)}
|
||
|
b.valueBlockIdx[hash] = h
|
||
|
}
|
||
|
n.index = h
|
||
|
}
|
||
|
return hash
|
||
|
}
|