// Code generated by private/model/cli/gen-api/main.go. DO NOT EDIT. package machinelearning_test import ( "bytes" "fmt" "time" "github.com/aws/aws-sdk-go/aws" "github.com/aws/aws-sdk-go/aws/session" "github.com/aws/aws-sdk-go/service/machinelearning" ) var _ time.Duration var _ bytes.Buffer func ExampleMachineLearning_AddTags() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.AddTagsInput{ ResourceId: aws.String("EntityId"), // Required ResourceType: aws.String("TaggableResourceType"), // Required Tags: []*machinelearning.Tag{ // Required { // Required Key: aws.String("TagKey"), Value: aws.String("TagValue"), }, // More values... }, } resp, err := svc.AddTags(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_CreateBatchPrediction() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.CreateBatchPredictionInput{ BatchPredictionDataSourceId: aws.String("EntityId"), // Required BatchPredictionId: aws.String("EntityId"), // Required MLModelId: aws.String("EntityId"), // Required OutputUri: aws.String("S3Url"), // Required BatchPredictionName: aws.String("EntityName"), } resp, err := svc.CreateBatchPrediction(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_CreateDataSourceFromRDS() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.CreateDataSourceFromRDSInput{ DataSourceId: aws.String("EntityId"), // Required RDSData: &machinelearning.RDSDataSpec{ // Required DatabaseCredentials: &machinelearning.RDSDatabaseCredentials{ // Required Password: aws.String("RDSDatabasePassword"), // Required Username: aws.String("RDSDatabaseUsername"), // Required }, DatabaseInformation: &machinelearning.RDSDatabase{ // Required DatabaseName: aws.String("RDSDatabaseName"), // Required InstanceIdentifier: aws.String("RDSInstanceIdentifier"), // Required }, ResourceRole: aws.String("EDPResourceRole"), // Required S3StagingLocation: aws.String("S3Url"), // Required SecurityGroupIds: []*string{ // Required aws.String("EDPSecurityGroupId"), // Required // More values... }, SelectSqlQuery: aws.String("RDSSelectSqlQuery"), // Required ServiceRole: aws.String("EDPServiceRole"), // Required SubnetId: aws.String("EDPSubnetId"), // Required DataRearrangement: aws.String("DataRearrangement"), DataSchema: aws.String("DataSchema"), DataSchemaUri: aws.String("S3Url"), }, RoleARN: aws.String("RoleARN"), // Required ComputeStatistics: aws.Bool(true), DataSourceName: aws.String("EntityName"), } resp, err := svc.CreateDataSourceFromRDS(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_CreateDataSourceFromRedshift() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.CreateDataSourceFromRedshiftInput{ DataSourceId: aws.String("EntityId"), // Required DataSpec: &machinelearning.RedshiftDataSpec{ // Required DatabaseCredentials: &machinelearning.RedshiftDatabaseCredentials{ // Required Password: aws.String("RedshiftDatabasePassword"), // Required Username: aws.String("RedshiftDatabaseUsername"), // Required }, DatabaseInformation: &machinelearning.RedshiftDatabase{ // Required ClusterIdentifier: aws.String("RedshiftClusterIdentifier"), // Required DatabaseName: aws.String("RedshiftDatabaseName"), // Required }, S3StagingLocation: aws.String("S3Url"), // Required SelectSqlQuery: aws.String("RedshiftSelectSqlQuery"), // Required DataRearrangement: aws.String("DataRearrangement"), DataSchema: aws.String("DataSchema"), DataSchemaUri: aws.String("S3Url"), }, RoleARN: aws.String("RoleARN"), // Required ComputeStatistics: aws.Bool(true), DataSourceName: aws.String("EntityName"), } resp, err := svc.CreateDataSourceFromRedshift(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_CreateDataSourceFromS3() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.CreateDataSourceFromS3Input{ DataSourceId: aws.String("EntityId"), // Required DataSpec: &machinelearning.S3DataSpec{ // Required DataLocationS3: aws.String("S3Url"), // Required DataRearrangement: aws.String("DataRearrangement"), DataSchema: aws.String("DataSchema"), DataSchemaLocationS3: aws.String("S3Url"), }, ComputeStatistics: aws.Bool(true), DataSourceName: aws.String("EntityName"), } resp, err := svc.CreateDataSourceFromS3(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_CreateEvaluation() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.CreateEvaluationInput{ EvaluationDataSourceId: aws.String("EntityId"), // Required EvaluationId: aws.String("EntityId"), // Required MLModelId: aws.String("EntityId"), // Required EvaluationName: aws.String("EntityName"), } resp, err := svc.CreateEvaluation(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_CreateMLModel() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.CreateMLModelInput{ MLModelId: aws.String("EntityId"), // Required MLModelType: aws.String("MLModelType"), // Required TrainingDataSourceId: aws.String("EntityId"), // Required MLModelName: aws.String("EntityName"), Parameters: map[string]*string{ "Key": aws.String("StringType"), // Required // More values... }, Recipe: aws.String("Recipe"), RecipeUri: aws.String("S3Url"), } resp, err := svc.CreateMLModel(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_CreateRealtimeEndpoint() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.CreateRealtimeEndpointInput{ MLModelId: aws.String("EntityId"), // Required } resp, err := svc.CreateRealtimeEndpoint(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DeleteBatchPrediction() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DeleteBatchPredictionInput{ BatchPredictionId: aws.String("EntityId"), // Required } resp, err := svc.DeleteBatchPrediction(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DeleteDataSource() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DeleteDataSourceInput{ DataSourceId: aws.String("EntityId"), // Required } resp, err := svc.DeleteDataSource(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DeleteEvaluation() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DeleteEvaluationInput{ EvaluationId: aws.String("EntityId"), // Required } resp, err := svc.DeleteEvaluation(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DeleteMLModel() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DeleteMLModelInput{ MLModelId: aws.String("EntityId"), // Required } resp, err := svc.DeleteMLModel(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DeleteRealtimeEndpoint() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DeleteRealtimeEndpointInput{ MLModelId: aws.String("EntityId"), // Required } resp, err := svc.DeleteRealtimeEndpoint(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DeleteTags() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DeleteTagsInput{ ResourceId: aws.String("EntityId"), // Required ResourceType: aws.String("TaggableResourceType"), // Required TagKeys: []*string{ // Required aws.String("TagKey"), // Required // More values... }, } resp, err := svc.DeleteTags(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DescribeBatchPredictions() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DescribeBatchPredictionsInput{ EQ: aws.String("ComparatorValue"), FilterVariable: aws.String("BatchPredictionFilterVariable"), GE: aws.String("ComparatorValue"), GT: aws.String("ComparatorValue"), LE: aws.String("ComparatorValue"), LT: aws.String("ComparatorValue"), Limit: aws.Int64(1), NE: aws.String("ComparatorValue"), NextToken: aws.String("StringType"), Prefix: aws.String("ComparatorValue"), SortOrder: aws.String("SortOrder"), } resp, err := svc.DescribeBatchPredictions(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DescribeDataSources() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DescribeDataSourcesInput{ EQ: aws.String("ComparatorValue"), FilterVariable: aws.String("DataSourceFilterVariable"), GE: aws.String("ComparatorValue"), GT: aws.String("ComparatorValue"), LE: aws.String("ComparatorValue"), LT: aws.String("ComparatorValue"), Limit: aws.Int64(1), NE: aws.String("ComparatorValue"), NextToken: aws.String("StringType"), Prefix: aws.String("ComparatorValue"), SortOrder: aws.String("SortOrder"), } resp, err := svc.DescribeDataSources(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DescribeEvaluations() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DescribeEvaluationsInput{ EQ: aws.String("ComparatorValue"), FilterVariable: aws.String("EvaluationFilterVariable"), GE: aws.String("ComparatorValue"), GT: aws.String("ComparatorValue"), LE: aws.String("ComparatorValue"), LT: aws.String("ComparatorValue"), Limit: aws.Int64(1), NE: aws.String("ComparatorValue"), NextToken: aws.String("StringType"), Prefix: aws.String("ComparatorValue"), SortOrder: aws.String("SortOrder"), } resp, err := svc.DescribeEvaluations(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DescribeMLModels() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DescribeMLModelsInput{ EQ: aws.String("ComparatorValue"), FilterVariable: aws.String("MLModelFilterVariable"), GE: aws.String("ComparatorValue"), GT: aws.String("ComparatorValue"), LE: aws.String("ComparatorValue"), LT: aws.String("ComparatorValue"), Limit: aws.Int64(1), NE: aws.String("ComparatorValue"), NextToken: aws.String("StringType"), Prefix: aws.String("ComparatorValue"), SortOrder: aws.String("SortOrder"), } resp, err := svc.DescribeMLModels(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_DescribeTags() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.DescribeTagsInput{ ResourceId: aws.String("EntityId"), // Required ResourceType: aws.String("TaggableResourceType"), // Required } resp, err := svc.DescribeTags(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_GetBatchPrediction() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.GetBatchPredictionInput{ BatchPredictionId: aws.String("EntityId"), // Required } resp, err := svc.GetBatchPrediction(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_GetDataSource() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.GetDataSourceInput{ DataSourceId: aws.String("EntityId"), // Required Verbose: aws.Bool(true), } resp, err := svc.GetDataSource(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_GetEvaluation() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.GetEvaluationInput{ EvaluationId: aws.String("EntityId"), // Required } resp, err := svc.GetEvaluation(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_GetMLModel() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.GetMLModelInput{ MLModelId: aws.String("EntityId"), // Required Verbose: aws.Bool(true), } resp, err := svc.GetMLModel(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_Predict() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.PredictInput{ MLModelId: aws.String("EntityId"), // Required PredictEndpoint: aws.String("VipURL"), // Required Record: map[string]*string{ // Required "Key": aws.String("VariableValue"), // Required // More values... }, } resp, err := svc.Predict(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_UpdateBatchPrediction() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.UpdateBatchPredictionInput{ BatchPredictionId: aws.String("EntityId"), // Required BatchPredictionName: aws.String("EntityName"), // Required } resp, err := svc.UpdateBatchPrediction(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_UpdateDataSource() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.UpdateDataSourceInput{ DataSourceId: aws.String("EntityId"), // Required DataSourceName: aws.String("EntityName"), // Required } resp, err := svc.UpdateDataSource(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_UpdateEvaluation() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.UpdateEvaluationInput{ EvaluationId: aws.String("EntityId"), // Required EvaluationName: aws.String("EntityName"), // Required } resp, err := svc.UpdateEvaluation(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) } func ExampleMachineLearning_UpdateMLModel() { sess := session.Must(session.NewSession()) svc := machinelearning.New(sess) params := &machinelearning.UpdateMLModelInput{ MLModelId: aws.String("EntityId"), // Required MLModelName: aws.String("EntityName"), ScoreThreshold: aws.Float64(1.0), } resp, err := svc.UpdateMLModel(params) if err != nil { // Print the error, cast err to awserr.Error to get the Code and // Message from an error. fmt.Println(err.Error()) return } // Pretty-print the response data. fmt.Println(resp) }