package mountlib import ( "io" "log" "os" "os/signal" "path/filepath" "runtime" "strings" "sync" "syscall" "time" sysdnotify "github.com/iguanesolutions/go-systemd/v5/notify" "github.com/pkg/errors" "github.com/rclone/rclone/cmd" "github.com/rclone/rclone/fs" "github.com/rclone/rclone/fs/config" "github.com/rclone/rclone/fs/config/flags" "github.com/rclone/rclone/fs/rc" "github.com/rclone/rclone/lib/atexit" "github.com/rclone/rclone/vfs" "github.com/rclone/rclone/vfs/vfsflags" "github.com/spf13/cobra" "github.com/spf13/pflag" ) // Options for creating the mount type Options struct { DebugFUSE bool AllowNonEmpty bool AllowRoot bool AllowOther bool DefaultPermissions bool WritebackCache bool Daemon bool MaxReadAhead fs.SizeSuffix ExtraOptions []string ExtraFlags []string AttrTimeout time.Duration // how long the kernel caches attribute for VolumeName string NoAppleDouble bool NoAppleXattr bool DaemonTimeout time.Duration // OSXFUSE only AsyncRead bool NetworkMode bool // Windows only } // DefaultOpt is the default values for creating the mount var DefaultOpt = Options{ MaxReadAhead: 128 * 1024, AttrTimeout: 1 * time.Second, // how long the kernel caches attribute for NoAppleDouble: true, // use noappledouble by default NoAppleXattr: false, // do not use noapplexattr by default AsyncRead: true, // do async reads by default } type ( // UnmountFn is called to unmount the file system UnmountFn func() error // MountFn is called to mount the file system MountFn func(VFS *vfs.VFS, mountpoint string, opt *Options) (<-chan error, func() error, error) ) // Global constants const ( MaxLeafSize = 1024 // don't pass file names longer than this ) func init() { // DaemonTimeout defaults to non zero for macOS if runtime.GOOS == "darwin" { DefaultOpt.DaemonTimeout = 15 * time.Minute } } // Options set by command line flags var ( Opt = DefaultOpt ) // AddFlags adds the non filing system specific flags to the command func AddFlags(flagSet *pflag.FlagSet) { rc.AddOption("mount", &Opt) flags.BoolVarP(flagSet, &Opt.DebugFUSE, "debug-fuse", "", Opt.DebugFUSE, "Debug the FUSE internals - needs -v.") flags.DurationVarP(flagSet, &Opt.AttrTimeout, "attr-timeout", "", Opt.AttrTimeout, "Time for which file/directory attributes are cached.") flags.StringArrayVarP(flagSet, &Opt.ExtraOptions, "option", "o", []string{}, "Option for libfuse/WinFsp. Repeat if required.") flags.StringArrayVarP(flagSet, &Opt.ExtraFlags, "fuse-flag", "", []string{}, "Flags or arguments to be passed direct to libfuse/WinFsp. Repeat if required.") // Non-Windows only flags.BoolVarP(flagSet, &Opt.Daemon, "daemon", "", Opt.Daemon, "Run mount as a daemon (background mode). Not supported on Windows.") flags.DurationVarP(flagSet, &Opt.DaemonTimeout, "daemon-timeout", "", Opt.DaemonTimeout, "Time limit for rclone to respond to kernel. Not supported on Windows.") flags.BoolVarP(flagSet, &Opt.DefaultPermissions, "default-permissions", "", Opt.DefaultPermissions, "Makes kernel enforce access control based on the file mode. Not supported on Windows.") flags.BoolVarP(flagSet, &Opt.AllowNonEmpty, "allow-non-empty", "", Opt.AllowNonEmpty, "Allow mounting over a non-empty directory. Not supported on Windows.") flags.BoolVarP(flagSet, &Opt.AllowRoot, "allow-root", "", Opt.AllowRoot, "Allow access to root user. Not supported on Windows.") flags.BoolVarP(flagSet, &Opt.AllowOther, "allow-other", "", Opt.AllowOther, "Allow access to other users. Not supported on Windows.") flags.BoolVarP(flagSet, &Opt.AsyncRead, "async-read", "", Opt.AsyncRead, "Use asynchronous reads. Not supported on Windows.") flags.FVarP(flagSet, &Opt.MaxReadAhead, "max-read-ahead", "", "The number of bytes that can be prefetched for sequential reads. Not supported on Windows.") flags.BoolVarP(flagSet, &Opt.WritebackCache, "write-back-cache", "", Opt.WritebackCache, "Makes kernel buffer writes before sending them to rclone. Without this, writethrough caching is used. Not supported on Windows.") // Windows and OSX flags.StringVarP(flagSet, &Opt.VolumeName, "volname", "", Opt.VolumeName, "Set the volume name. Supported on Windows and OSX only.") // OSX only flags.BoolVarP(flagSet, &Opt.NoAppleDouble, "noappledouble", "", Opt.NoAppleDouble, "Ignore Apple Double (._) and .DS_Store files. Supported on OSX only.") flags.BoolVarP(flagSet, &Opt.NoAppleXattr, "noapplexattr", "", Opt.NoAppleXattr, "Ignore all \"com.apple.*\" extended attributes. Supported on OSX only.") // Windows only flags.BoolVarP(flagSet, &Opt.NetworkMode, "network-mode", "", Opt.NetworkMode, "Mount as remote network drive, instead of fixed disk drive. Supported on Windows only") } // Check if folder is empty func checkMountEmpty(mountpoint string) error { fp, fpErr := os.Open(mountpoint) if fpErr != nil { return errors.Wrap(fpErr, "Can not open: "+mountpoint) } defer fs.CheckClose(fp, &fpErr) _, fpErr = fp.Readdirnames(1) // directory is not empty if fpErr != io.EOF { var e error var errorMsg = "Directory is not empty: " + mountpoint + " If you want to mount it anyway use: --allow-non-empty option" if fpErr == nil { e = errors.New(errorMsg) } else { e = errors.Wrap(fpErr, errorMsg) } return e } return nil } // Check the root doesn't overlap the mountpoint func checkMountpointOverlap(root, mountpoint string) error { abs := func(x string) string { if absX, err := filepath.EvalSymlinks(x); err == nil { x = absX } if absX, err := filepath.Abs(x); err == nil { x = absX } x = filepath.ToSlash(x) if !strings.HasSuffix(x, "/") { x += "/" } return x } rootAbs, mountpointAbs := abs(root), abs(mountpoint) if strings.HasPrefix(rootAbs, mountpointAbs) || strings.HasPrefix(mountpointAbs, rootAbs) { return errors.Errorf("mount point %q and directory to be mounted %q mustn't overlap", mountpoint, root) } return nil } // NewMountCommand makes a mount command with the given name and Mount function func NewMountCommand(commandName string, hidden bool, mount MountFn) *cobra.Command { var commandDefinition = &cobra.Command{ Use: commandName + " remote:path /path/to/mountpoint", Hidden: hidden, Short: `Mount the remote as file system on a mountpoint.`, Long: ` rclone ` + commandName + ` allows Linux, FreeBSD, macOS and Windows to mount any of Rclone's cloud storage systems as a file system with FUSE. First set up your remote using ` + "`rclone config`" + `. Check it works with ` + "`rclone ls`" + ` etc. On Linux and OSX, you can either run mount in foreground mode or background (daemon) mode. Mount runs in foreground mode by default, use the ` + "`--daemon`" + ` flag to specify background mode. You can only run mount in foreground mode on Windows. On Linux/macOS/FreeBSD start the mount like this, where ` + "`/path/to/local/mount`" + ` is an **empty** **existing** directory: rclone ` + commandName + ` remote:path/to/files /path/to/local/mount On Windows you can start a mount in different ways. See [below](#mounting-modes-on-windows) for details. The following examples will mount to an automatically assigned drive, to specific drive letter ` + "`X:`" + `, to path ` + "`C:\\path\\to\\nonexistent\\directory`" + ` (which must be **non-existent** subdirectory of an **existing** parent directory or drive, and is not supported when [mounting as a network drive](#mounting-modes-on-windows)), and the last example will mount as network share ` + "`\\cloud\remote`" + ` and map it to an automatically assigned drive: rclone ` + commandName + ` remote:path/to/files * rclone ` + commandName + ` remote:path/to/files X: rclone ` + commandName + ` remote:path/to/files C:\path\to\nonexistent\directory rclone ` + commandName + ` remote:path/to/files \\cloud\remote When the program ends while in foreground mode, either via Ctrl+C or receiving a SIGINT or SIGTERM signal, the mount should be automatically stopped. When running in background mode the user will have to stop the mount manually: # Linux fusermount -u /path/to/local/mount # OS X umount /path/to/local/mount The umount operation can fail, for example when the mountpoint is busy. When that happens, it is the user's responsibility to stop the mount manually. The size of the mounted file system will be set according to information retrieved from the remote, the same as returned by the [rclone about](https://rclone.org/commands/rclone_about/) command. Remotes with unlimited storage may report the used size only, then an additional 1PB of free space is assumed. If the remote does not [support](https://rclone.org/overview/#optional-features) the about feature at all, then 1PB is set as both the total and the free size. **Note**: As of ` + "`rclone` 1.52.2, `rclone mount`" + ` now requires Go version 1.13 or newer on some platforms depending on the underlying FUSE library in use. ### Installing on Windows To run rclone ` + commandName + ` on Windows, you will need to download and install [WinFsp](http://www.secfs.net/winfsp/). [WinFsp](https://github.com/billziss-gh/winfsp) is an open source Windows File System Proxy which makes it easy to write user space file systems for Windows. It provides a FUSE emulation layer which rclone uses combination with [cgofuse](https://github.com/billziss-gh/cgofuse). Both of these packages are by Bill Zissimopoulos who was very helpful during the implementation of rclone ` + commandName + ` for Windows. #### Mounting modes on windows Unlike other operating systems, Microsoft Windows provides a different filesystem type for network and fixed drives. It optimises access on the assumption fixed disk drives are fast and reliable, while network drives have relatively high latency and less reliability. Some settings can also be differentiated between the two types, for example that Windows Explorer should just display icons and not create preview thumbnails for image and video files on network drives. In most cases, rclone will mount the remote as a normal, fixed disk drive by default. However, you can also choose to mount it as a remote network drive, often described as a network share. If you mount an rclone remote using the default, fixed drive mode and experience unexpected program errors, freezes or other issues, consider mounting as a network drive instead. When mounting as a fixed disk drive you can either mount to an unused drive letter, or to a path - which must be **non-existent** subdirectory of an **existing** parent directory or drive. Using the special value ` + "`*`" + ` will tell rclone to automatically assign the next available drive letter, starting with Z: and moving backward. Examples: rclone ` + commandName + ` remote:path/to/files * rclone ` + commandName + ` remote:path/to/files X: rclone ` + commandName + ` remote:path/to/files C:\path\to\nonexistent\directory rclone ` + commandName + ` remote:path/to/files X: Option ` + "`--volname`" + ` can be used to set a custom volume name for the mounted file system. The default is to use the remote name and path. To mount as network drive, you can add option ` + "`--network-mode`" + ` to your ` + commandName + ` command. Mounting to a directory path is not supported in this mode, it is a limitation Windows imposes on junctions, so the remote must always be mounted to a drive letter. rclone ` + commandName + ` remote:path/to/files X: --network-mode A volume name specified with ` + "`--volname`" + ` will be used to create the network share path. A complete UNC path, such as ` + "`\\\\cloud\\remote`" + `, optionally with path ` + "`\\\\cloud\\remote\\madeup\\path`" + `, will be used as is. Any other string will be used as the share part, after a default prefix ` + "`\\\\server\\`" + `. If no volume name is specified then ` + "`\\\\server\\share`" + ` will be used. You must make sure the volume name is unique when you are mounting more than one drive, or else the mount command will fail. The share name will treated as the volume label for the mapped drive, shown in Windows Explorer etc, while the complete ` + "`\\\\server\\share`" + ` will be reported as the remote UNC path by ` + "`net use`" + ` etc, just like a normal network drive mapping. If you specify a full network share UNC path with ` + "`--volname`" + `, this will implicitely set the ` + "`--network-mode`" + ` option, so the following two examples have same result: rclone ` + commandName + ` remote:path/to/files X: --network-mode rclone ` + commandName + ` remote:path/to/files X: --volname \\server\share You may also specify the network share UNC path as the mountpoint itself. Then rclone will automatically assign a drive letter, same as with ` + "`*`" + ` and use that as mountpoint, and instead use the UNC path specified as the volume name, as if it were specified with the ` + "`--volname`" + ` option. This will also implicitely set the ` + "`--network-mode`" + ` option. This means the following two examples have same result: rclone ` + commandName + ` remote:path/to/files \\cloud\remote rclone ` + commandName + ` remote:path/to/files * --volname \\cloud\remote There is yet another way to enable network mode, and to set the share path, and that is to pass the "native" libfuse/WinFsp option directly: ` + "`--fuse-flag --VolumePrefix=\\server\\share`" + `. Note that the path must be with just a single backslash prefix in this case. *Note:* In previous versions of rclone this was the only supported method. [Read more about drive mapping](https://en.wikipedia.org/wiki/Drive_mapping) See also [Limitations](#limitations) section below. #### Windows filesystem permissions The FUSE emulation layer on Windows must convert between the POSIX-based permission model used in FUSE, and the permission model used in Windows, based on access-control lists (ACL). The mounted filesystem will normally get three entries in its access-control list (ACL), representing permissions for the POSIX permission scopes: Owner, group and others. By default, the owner and group will be taken from the current user, and the built-in group "Everyone" will be used to represent others. The user/group can be customized with FUSE options "UserName" and "GroupName", e.g. ` + "`-o UserName=user123 -o GroupName=\"Authenticated Users\"`" + `. The permissions on each entry will be set according to [options](#options) ` + "`--dir-perms`" + ` and ` + "`--file-perms`" + `, which takes a value in traditional [numeric notation](https://en.wikipedia.org/wiki/File-system_permissions#Numeric_notation), where the default corresponds to ` + "`--file-perms 0666 --dir-perms 0777`" + `. Note that the mapping of permissions is not always trivial, and the result you see in Windows Explorer may not be exactly like you expected. For example, when setting a value that includes write access, this will be mapped to individual permissions "write attributes", "write data" and "append data", but not "write extended attributes" (WinFsp does not support extended attributes, see [this](https://github.com/billziss-gh/winfsp/wiki/NTFS-Compatibility)). Windows will then show this as basic permission "Special" instead of "Write", because "Write" includes the "write extended attributes" permission. #### Windows caveats Note that drives created as Administrator are not visible by other accounts (including the account that was elevated as Administrator). So if you start a Windows drive from an Administrative Command Prompt and then try to access the same drive from Explorer (which does not run as Administrator), you will not be able to see the new drive. The easiest way around this is to start the drive from a normal command prompt. It is also possible to start a drive from the SYSTEM account (using [the WinFsp.Launcher infrastructure](https://github.com/billziss-gh/winfsp/wiki/WinFsp-Service-Architecture)) which creates drives accessible for everyone on the system or alternatively using [the nssm service manager](https://nssm.cc/usage). ### Limitations Without the use of ` + "`--vfs-cache-mode`" + ` this can only write files sequentially, it can only seek when reading. This means that many applications won't work with their files on an rclone mount without ` + "`--vfs-cache-mode writes`" + ` or ` + "`--vfs-cache-mode full`" + `. See the [File Caching](#file-caching) section for more info. The bucket based remotes (e.g. Swift, S3, Google Compute Storage, B2, Hubic) do not support the concept of empty directories, so empty directories will have a tendency to disappear once they fall out of the directory cache. Only supported on Linux, FreeBSD, OS X and Windows at the moment. ### rclone ` + commandName + ` vs rclone sync/copy File systems expect things to be 100% reliable, whereas cloud storage systems are a long way from 100% reliable. The rclone sync/copy commands cope with this with lots of retries. However rclone ` + commandName + ` can't use retries in the same way without making local copies of the uploads. Look at the [file caching](#file-caching) for solutions to make ` + commandName + ` more reliable. ### Attribute caching You can use the flag ` + "`--attr-timeout`" + ` to set the time the kernel caches the attributes (size, modification time, etc.) for directory entries. The default is "1s" which caches files just long enough to avoid too many callbacks to rclone from the kernel. In theory 0s should be the correct value for filesystems which can change outside the control of the kernel. However this causes quite a few problems such as [rclone using too much memory](https://github.com/rclone/rclone/issues/2157), [rclone not serving files to samba](https://forum.rclone.org/t/rclone-1-39-vs-1-40-mount-issue/5112) and [excessive time listing directories](https://github.com/rclone/rclone/issues/2095#issuecomment-371141147). The kernel can cache the info about a file for the time given by ` + "`--attr-timeout`" + `. You may see corruption if the remote file changes length during this window. It will show up as either a truncated file or a file with garbage on the end. With ` + "`--attr-timeout 1s`" + ` this is very unlikely but not impossible. The higher you set ` + "`--attr-timeout`" + ` the more likely it is. The default setting of "1s" is the lowest setting which mitigates the problems above. If you set it higher ('10s' or '1m' say) then the kernel will call back to rclone less often making it more efficient, however there is more chance of the corruption issue above. If files don't change on the remote outside of the control of rclone then there is no chance of corruption. This is the same as setting the attr_timeout option in mount.fuse. ### Filters Note that all the rclone filters can be used to select a subset of the files to be visible in the mount. ### systemd When running rclone ` + commandName + ` as a systemd service, it is possible to use Type=notify. In this case the service will enter the started state after the mountpoint has been successfully set up. Units having the rclone ` + commandName + ` service specified as a requirement will see all files and folders immediately in this mode. ### chunked reading ` + "`--vfs-read-chunk-size`" + ` will enable reading the source objects in parts. This can reduce the used download quota for some remotes by requesting only chunks from the remote that are actually read at the cost of an increased number of requests. When ` + "`--vfs-read-chunk-size-limit`" + ` is also specified and greater than ` + "`--vfs-read-chunk-size`" + `, the chunk size for each open file will get doubled for each chunk read, until the specified value is reached. A value of -1 will disable the limit and the chunk size will grow indefinitely. With ` + "`--vfs-read-chunk-size 100M`" + ` and ` + "`--vfs-read-chunk-size-limit 0`" + ` the following parts will be downloaded: 0-100M, 100M-200M, 200M-300M, 300M-400M and so on. When ` + "`--vfs-read-chunk-size-limit 500M`" + ` is specified, the result would be 0-100M, 100M-300M, 300M-700M, 700M-1200M, 1200M-1700M and so on. ` + vfs.Help, Run: func(command *cobra.Command, args []string) { cmd.CheckArgs(2, 2, command, args) opt := Opt // make a copy of the options if opt.Daemon { config.PassConfigKeyForDaemonization = true } mountpoint := args[1] fdst := cmd.NewFsDir(args) if fdst.Name() == "" || fdst.Name() == "local" { err := checkMountpointOverlap(fdst.Root(), mountpoint) if err != nil { log.Fatalf("Fatal error: %v", err) } } // Show stats if the user has specifically requested them if cmd.ShowStats() { defer cmd.StartStats()() } // Inform about ignored flags on Windows, // and if not on Windows and not --allow-non-empty flag is used // verify that mountpoint is empty. if runtime.GOOS == "windows" { if opt.AllowNonEmpty { fs.Logf(nil, "--allow-non-empty flag does nothing on Windows") } if opt.AllowRoot { fs.Logf(nil, "--allow-root flag does nothing on Windows") } if opt.AllowOther { fs.Logf(nil, "--allow-other flag does nothing on Windows") } } else if !opt.AllowNonEmpty { err := checkMountEmpty(mountpoint) if err != nil { log.Fatalf("Fatal error: %v", err) } } // Work out the volume name, removing special // characters from it if necessary if opt.VolumeName == "" { opt.VolumeName = fdst.Name() + ":" + fdst.Root() } opt.VolumeName = strings.Replace(opt.VolumeName, ":", " ", -1) opt.VolumeName = strings.Replace(opt.VolumeName, "/", " ", -1) opt.VolumeName = strings.TrimSpace(opt.VolumeName) if runtime.GOOS == "windows" && len(opt.VolumeName) > 32 { opt.VolumeName = opt.VolumeName[:32] } // Start background task if --background is specified if opt.Daemon { daemonized := startBackgroundMode() if daemonized { return } } VFS := vfs.New(fdst, &vfsflags.Opt) err := Mount(VFS, mountpoint, mount, &opt) if err != nil { log.Fatalf("Fatal error: %v", err) } }, } // Register the command cmd.Root.AddCommand(commandDefinition) // Add flags cmdFlags := commandDefinition.Flags() AddFlags(cmdFlags) vfsflags.AddFlags(cmdFlags) return commandDefinition } // ClipBlocks clips the blocks pointed to the OS max func ClipBlocks(b *uint64) { var max uint64 switch runtime.GOOS { case "windows": if runtime.GOARCH == "386" { max = (1 << 32) - 1 } else { max = (1 << 43) - 1 } case "darwin": // OSX FUSE only supports 32 bit number of blocks // https://github.com/osxfuse/osxfuse/issues/396 max = (1 << 32) - 1 default: // no clipping return } if *b > max { *b = max } } // Mount mounts the remote at mountpoint. // // If noModTime is set then it func Mount(VFS *vfs.VFS, mountpoint string, mount MountFn, opt *Options) error { if opt == nil { opt = &DefaultOpt } // Mount it errChan, unmount, err := mount(VFS, mountpoint, opt) if err != nil { return errors.Wrap(err, "failed to mount FUSE fs") } // Unmount on exit var finaliseOnce sync.Once finalise := func() { finaliseOnce.Do(func() { _ = sysdnotify.Stopping() _ = unmount() }) } fnHandle := atexit.Register(finalise) defer atexit.Unregister(fnHandle) // Notify systemd if err := sysdnotify.Ready(); err != nil { return errors.Wrap(err, "failed to notify systemd") } // Reload VFS cache on SIGHUP sigHup := make(chan os.Signal, 1) signal.Notify(sigHup, syscall.SIGHUP) waitloop: for { select { // umount triggered outside the app case err = <-errChan: break waitloop // user sent SIGHUP to clear the cache case <-sigHup: root, err := VFS.Root() if err != nil { fs.Errorf(VFS.Fs(), "Error reading root: %v", err) } else { root.ForgetAll() } } } finalise() if err != nil { return errors.Wrap(err, "failed to umount FUSE fs") } return nil }