// Package asyncreader provides an asynchronous reader which reads // independently of write package asyncreader import ( "context" "errors" "io" "sync" "time" "github.com/rclone/rclone/fs" "github.com/rclone/rclone/lib/pool" "github.com/rclone/rclone/lib/readers" ) const ( // BufferSize is the default size of the async buffer BufferSize = 1024 * 1024 softStartInitial = 4 * 1024 bufferCacheSize = 64 // max number of buffers to keep in cache bufferCacheFlushTime = 5 * time.Second // flush the cached buffers after this long ) // ErrorStreamAbandoned is returned when the input is closed before the end of the stream var ErrorStreamAbandoned = errors.New("stream abandoned") // AsyncReader will do async read-ahead from the input reader // and make the data available as an io.Reader. // This should be fully transparent, except that once an error // has been returned from the Reader, it will not recover. type AsyncReader struct { in io.ReadCloser // Input reader ready chan *buffer // Buffers ready to be handed to the reader token chan struct{} // Tokens which allow a buffer to be taken exit chan struct{} // Closes when finished buffers int // Number of buffers err error // If an error has occurred it is here cur *buffer // Current buffer being served exited chan struct{} // Channel is closed been the async reader shuts down size int // size of buffer to use closed bool // whether we have closed the underlying stream mu sync.Mutex // lock for Read/WriteTo/Abandon/Close ci *fs.ConfigInfo // for reading config } // New returns a reader that will asynchronously read from // the supplied Reader into a number of buffers each of size BufferSize // It will start reading from the input at once, maybe even before this // function has returned. // The input can be read from the returned reader. // When done use Close to release the buffers and close the supplied input. func New(ctx context.Context, rd io.ReadCloser, buffers int) (*AsyncReader, error) { if buffers <= 0 { return nil, errors.New("number of buffers too small") } if rd == nil { return nil, errors.New("nil reader supplied") } a := &AsyncReader{ ci: fs.GetConfig(ctx), } a.init(rd, buffers) return a, nil } func (a *AsyncReader) init(rd io.ReadCloser, buffers int) { a.in = rd a.ready = make(chan *buffer, buffers) a.token = make(chan struct{}, buffers) a.exit = make(chan struct{}, 0) a.exited = make(chan struct{}, 0) a.buffers = buffers a.cur = nil a.size = softStartInitial // Create tokens for i := 0; i < buffers; i++ { a.token <- struct{}{} } // Start async reader go func() { // Ensure that when we exit this is signalled. defer close(a.exited) defer close(a.ready) for { select { case <-a.token: b := a.getBuffer() if a.size < BufferSize { b.buf = b.buf[:a.size] a.size <<= 1 } err := b.read(a.in) a.ready <- b if err != nil { return } case <-a.exit: return } } }() } // bufferPool is a global pool of buffers var bufferPool *pool.Pool var bufferPoolOnce sync.Once // return the buffer to the pool (clearing it) func (a *AsyncReader) putBuffer(b *buffer) { bufferPool.Put(b.buf) b.buf = nil } // get a buffer from the pool func (a *AsyncReader) getBuffer() *buffer { bufferPoolOnce.Do(func() { // Initialise the buffer pool when used bufferPool = pool.New(bufferCacheFlushTime, BufferSize, bufferCacheSize, a.ci.UseMmap) }) return &buffer{ buf: bufferPool.Get(), } } // Read will return the next available data. func (a *AsyncReader) fill() (err error) { if a.cur.isEmpty() { if a.cur != nil { a.putBuffer(a.cur) a.token <- struct{}{} a.cur = nil } b, ok := <-a.ready if !ok { // Return an error to show fill failed if a.err == nil { return ErrorStreamAbandoned } return a.err } a.cur = b } return nil } // Read will return the next available data. func (a *AsyncReader) Read(p []byte) (n int, err error) { a.mu.Lock() defer a.mu.Unlock() // Swap buffer and maybe return error err = a.fill() if err != nil { return 0, err } // Copy what we can n = copy(p, a.cur.buffer()) a.cur.increment(n) // If at end of buffer, return any error, if present if a.cur.isEmpty() { a.err = a.cur.err return n, a.err } return n, nil } // WriteTo writes data to w until there's no more data to write or when an error occurs. // The return value n is the number of bytes written. // Any error encountered during the write is also returned. func (a *AsyncReader) WriteTo(w io.Writer) (n int64, err error) { a.mu.Lock() defer a.mu.Unlock() n = 0 for { err = a.fill() if err == io.EOF { return n, nil } if err != nil { return n, err } n2, err := w.Write(a.cur.buffer()) a.cur.increment(n2) n += int64(n2) if err != nil { return n, err } if a.cur.err == io.EOF { a.err = a.cur.err return n, err } if a.cur.err != nil { a.err = a.cur.err return n, a.cur.err } } } // SkipBytes will try to seek 'skip' bytes relative to the current position. // On success it returns true. If 'skip' is outside the current buffer data or // an error occurs, Abandon is called and false is returned. func (a *AsyncReader) SkipBytes(skip int) (ok bool) { a.mu.Lock() defer func() { a.mu.Unlock() if !ok { a.Abandon() } }() if a.err != nil { return false } if skip < 0 { // seek backwards if skip is inside current buffer if a.cur != nil && a.cur.offset+skip >= 0 { a.cur.offset += skip return true } return false } // early return if skip is past the maximum buffer capacity if skip >= (len(a.ready)+1)*BufferSize { return false } refillTokens := 0 for { if a.cur.isEmpty() { if a.cur != nil { a.putBuffer(a.cur) refillTokens++ a.cur = nil } select { case b, ok := <-a.ready: if !ok { return false } a.cur = b default: return false } } n := len(a.cur.buffer()) if n > skip { n = skip } a.cur.increment(n) skip -= n if skip == 0 { for ; refillTokens > 0; refillTokens-- { a.token <- struct{}{} } // If at end of buffer, store any error, if present if a.cur.isEmpty() && a.cur.err != nil { a.err = a.cur.err } return true } if a.cur.err != nil { a.err = a.cur.err return false } } } // StopBuffering will ensure that the underlying async reader is shut // down so no more is read from the input. // // This does not free the memory so Abandon() or Close() need to be // called on the input. // // This does not wait for Read/WriteTo to complete so can be called // concurrently to those. func (a *AsyncReader) StopBuffering() { select { case <-a.exit: // Do nothing if reader routine already exited return default: } // Close and wait for go routine close(a.exit) <-a.exited } // Abandon will ensure that the underlying async reader is shut down // and memory is returned. It does everything but close the input. // // It will NOT close the input supplied on New. func (a *AsyncReader) Abandon() { a.StopBuffering() // take the lock to wait for Read/WriteTo to complete a.mu.Lock() defer a.mu.Unlock() // Return any outstanding buffers to the Pool if a.cur != nil { a.putBuffer(a.cur) a.cur = nil } for b := range a.ready { a.putBuffer(b) } } // Close will ensure that the underlying async reader is shut down. // It will also close the input supplied on New. func (a *AsyncReader) Close() (err error) { a.Abandon() if a.closed { return nil } a.closed = true return a.in.Close() } // Internal buffer // If an error is present, it must be returned // once all buffer content has been served. type buffer struct { buf []byte err error offset int } // isEmpty returns true is offset is at end of // buffer, or func (b *buffer) isEmpty() bool { if b == nil { return true } if len(b.buf)-b.offset <= 0 { return true } return false } // read into start of the buffer from the supplied reader, // resets the offset and updates the size of the buffer. // Any error encountered during the read is returned. func (b *buffer) read(rd io.Reader) error { var n int n, b.err = readers.ReadFill(rd, b.buf) b.buf = b.buf[0:n] b.offset = 0 return b.err } // Return the buffer at current offset func (b *buffer) buffer() []byte { return b.buf[b.offset:] } // increment the offset func (b *buffer) increment(n int) { b.offset += n }