// Code generated by private/model/cli/gen-api/main.go. DO NOT EDIT. package machinelearning import ( "fmt" "time" "github.com/aws/aws-sdk-go/aws" "github.com/aws/aws-sdk-go/aws/awsutil" "github.com/aws/aws-sdk-go/aws/request" ) const opAddTags = "AddTags" // AddTagsRequest generates a "aws/request.Request" representing the // client's request for the AddTags operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See AddTags for more information on using the AddTags // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the AddTagsRequest method. // req, resp := client.AddTagsRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) AddTagsRequest(input *AddTagsInput) (req *request.Request, output *AddTagsOutput) { op := &request.Operation{ Name: opAddTags, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &AddTagsInput{} } output = &AddTagsOutput{} req = c.newRequest(op, input, output) return } // AddTags API operation for Amazon Machine Learning. // // Adds one or more tags to an object, up to a limit of 10. Each tag consists // of a key and an optional value. If you add a tag using a key that is already // associated with the ML object, AddTags updates the tag's value. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation AddTags for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInvalidTagException "InvalidTagException" // // * ErrCodeTagLimitExceededException "TagLimitExceededException" // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) AddTags(input *AddTagsInput) (*AddTagsOutput, error) { req, out := c.AddTagsRequest(input) return out, req.Send() } // AddTagsWithContext is the same as AddTags with the addition of // the ability to pass a context and additional request options. // // See AddTags for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) AddTagsWithContext(ctx aws.Context, input *AddTagsInput, opts ...request.Option) (*AddTagsOutput, error) { req, out := c.AddTagsRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opCreateBatchPrediction = "CreateBatchPrediction" // CreateBatchPredictionRequest generates a "aws/request.Request" representing the // client's request for the CreateBatchPrediction operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See CreateBatchPrediction for more information on using the CreateBatchPrediction // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the CreateBatchPredictionRequest method. // req, resp := client.CreateBatchPredictionRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) CreateBatchPredictionRequest(input *CreateBatchPredictionInput) (req *request.Request, output *CreateBatchPredictionOutput) { op := &request.Operation{ Name: opCreateBatchPrediction, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &CreateBatchPredictionInput{} } output = &CreateBatchPredictionOutput{} req = c.newRequest(op, input, output) return } // CreateBatchPrediction API operation for Amazon Machine Learning. // // Generates predictions for a group of observations. The observations to process // exist in one or more data files referenced by a DataSource. This operation // creates a new BatchPrediction, and uses an MLModel and the data files referenced // by the DataSource as information sources. // // CreateBatchPrediction is an asynchronous operation. In response to CreateBatchPrediction, // Amazon Machine Learning (Amazon ML) immediately returns and sets the BatchPrediction // status to PENDING. After the BatchPrediction completes, Amazon ML sets the // status to COMPLETED. // // You can poll for status updates by using the GetBatchPrediction operation // and checking the Status parameter of the result. After the COMPLETED status // appears, the results are available in the location specified by the OutputUri // parameter. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation CreateBatchPrediction for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // // * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException" // A second request to use or change an object was not allowed. This can result // from retrying a request using a parameter that was not present in the original // request. // func (c *MachineLearning) CreateBatchPrediction(input *CreateBatchPredictionInput) (*CreateBatchPredictionOutput, error) { req, out := c.CreateBatchPredictionRequest(input) return out, req.Send() } // CreateBatchPredictionWithContext is the same as CreateBatchPrediction with the addition of // the ability to pass a context and additional request options. // // See CreateBatchPrediction for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) CreateBatchPredictionWithContext(ctx aws.Context, input *CreateBatchPredictionInput, opts ...request.Option) (*CreateBatchPredictionOutput, error) { req, out := c.CreateBatchPredictionRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opCreateDataSourceFromRDS = "CreateDataSourceFromRDS" // CreateDataSourceFromRDSRequest generates a "aws/request.Request" representing the // client's request for the CreateDataSourceFromRDS operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See CreateDataSourceFromRDS for more information on using the CreateDataSourceFromRDS // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the CreateDataSourceFromRDSRequest method. // req, resp := client.CreateDataSourceFromRDSRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) CreateDataSourceFromRDSRequest(input *CreateDataSourceFromRDSInput) (req *request.Request, output *CreateDataSourceFromRDSOutput) { op := &request.Operation{ Name: opCreateDataSourceFromRDS, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &CreateDataSourceFromRDSInput{} } output = &CreateDataSourceFromRDSOutput{} req = c.newRequest(op, input, output) return } // CreateDataSourceFromRDS API operation for Amazon Machine Learning. // // Creates a DataSource object from an Amazon Relational Database Service (http://aws.amazon.com/rds/) // (Amazon RDS). A DataSource references data that can be used to perform CreateMLModel, // CreateEvaluation, or CreateBatchPrediction operations. // // CreateDataSourceFromRDS is an asynchronous operation. In response to CreateDataSourceFromRDS, // Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource // status to PENDING. After the DataSource is created and ready for use, Amazon // ML sets the Status parameter to COMPLETED. DataSource in the COMPLETED or // PENDING state can be used only to perform >CreateMLModel>, CreateEvaluation, // or CreateBatchPrediction operations. // // If Amazon ML cannot accept the input source, it sets the Status parameter // to FAILED and includes an error message in the Message attribute of the GetDataSource // operation response. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation CreateDataSourceFromRDS for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // // * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException" // A second request to use or change an object was not allowed. This can result // from retrying a request using a parameter that was not present in the original // request. // func (c *MachineLearning) CreateDataSourceFromRDS(input *CreateDataSourceFromRDSInput) (*CreateDataSourceFromRDSOutput, error) { req, out := c.CreateDataSourceFromRDSRequest(input) return out, req.Send() } // CreateDataSourceFromRDSWithContext is the same as CreateDataSourceFromRDS with the addition of // the ability to pass a context and additional request options. // // See CreateDataSourceFromRDS for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) CreateDataSourceFromRDSWithContext(ctx aws.Context, input *CreateDataSourceFromRDSInput, opts ...request.Option) (*CreateDataSourceFromRDSOutput, error) { req, out := c.CreateDataSourceFromRDSRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opCreateDataSourceFromRedshift = "CreateDataSourceFromRedshift" // CreateDataSourceFromRedshiftRequest generates a "aws/request.Request" representing the // client's request for the CreateDataSourceFromRedshift operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See CreateDataSourceFromRedshift for more information on using the CreateDataSourceFromRedshift // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the CreateDataSourceFromRedshiftRequest method. // req, resp := client.CreateDataSourceFromRedshiftRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) CreateDataSourceFromRedshiftRequest(input *CreateDataSourceFromRedshiftInput) (req *request.Request, output *CreateDataSourceFromRedshiftOutput) { op := &request.Operation{ Name: opCreateDataSourceFromRedshift, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &CreateDataSourceFromRedshiftInput{} } output = &CreateDataSourceFromRedshiftOutput{} req = c.newRequest(op, input, output) return } // CreateDataSourceFromRedshift API operation for Amazon Machine Learning. // // Creates a DataSource from a database hosted on an Amazon Redshift cluster. // A DataSource references data that can be used to perform either CreateMLModel, // CreateEvaluation, or CreateBatchPrediction operations. // // CreateDataSourceFromRedshift is an asynchronous operation. In response to // CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately // returns and sets the DataSource status to PENDING. After the DataSource is // created and ready for use, Amazon ML sets the Status parameter to COMPLETED. // DataSource in COMPLETED or PENDING states can be used to perform only CreateMLModel, // CreateEvaluation, or CreateBatchPrediction operations. // // If Amazon ML can't accept the input source, it sets the Status parameter // to FAILED and includes an error message in the Message attribute of the GetDataSource // operation response. // // The observations should be contained in the database hosted on an Amazon // Redshift cluster and should be specified by a SelectSqlQuery query. Amazon // ML executes an Unload command in Amazon Redshift to transfer the result set // of the SelectSqlQuery query to S3StagingLocation. // // After the DataSource has been created, it's ready for use in evaluations // and batch predictions. If you plan to use the DataSource to train an MLModel, // the DataSource also requires a recipe. A recipe describes how each input // variable will be used in training an MLModel. Will the variable be included // or excluded from training? Will the variable be manipulated; for example, // will it be combined with another variable or will it be split apart into // word combinations? The recipe provides answers to these questions. // // You can't change an existing datasource, but you can copy and modify the // settings from an existing Amazon Redshift datasource to create a new datasource. // To do so, call GetDataSource for an existing datasource and copy the values // to a CreateDataSource call. Change the settings that you want to change and // make sure that all required fields have the appropriate values. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation CreateDataSourceFromRedshift for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // // * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException" // A second request to use or change an object was not allowed. This can result // from retrying a request using a parameter that was not present in the original // request. // func (c *MachineLearning) CreateDataSourceFromRedshift(input *CreateDataSourceFromRedshiftInput) (*CreateDataSourceFromRedshiftOutput, error) { req, out := c.CreateDataSourceFromRedshiftRequest(input) return out, req.Send() } // CreateDataSourceFromRedshiftWithContext is the same as CreateDataSourceFromRedshift with the addition of // the ability to pass a context and additional request options. // // See CreateDataSourceFromRedshift for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) CreateDataSourceFromRedshiftWithContext(ctx aws.Context, input *CreateDataSourceFromRedshiftInput, opts ...request.Option) (*CreateDataSourceFromRedshiftOutput, error) { req, out := c.CreateDataSourceFromRedshiftRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opCreateDataSourceFromS3 = "CreateDataSourceFromS3" // CreateDataSourceFromS3Request generates a "aws/request.Request" representing the // client's request for the CreateDataSourceFromS3 operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See CreateDataSourceFromS3 for more information on using the CreateDataSourceFromS3 // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the CreateDataSourceFromS3Request method. // req, resp := client.CreateDataSourceFromS3Request(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) CreateDataSourceFromS3Request(input *CreateDataSourceFromS3Input) (req *request.Request, output *CreateDataSourceFromS3Output) { op := &request.Operation{ Name: opCreateDataSourceFromS3, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &CreateDataSourceFromS3Input{} } output = &CreateDataSourceFromS3Output{} req = c.newRequest(op, input, output) return } // CreateDataSourceFromS3 API operation for Amazon Machine Learning. // // Creates a DataSource object. A DataSource references data that can be used // to perform CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations. // // CreateDataSourceFromS3 is an asynchronous operation. In response to CreateDataSourceFromS3, // Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource // status to PENDING. After the DataSource has been created and is ready for // use, Amazon ML sets the Status parameter to COMPLETED. DataSource in the // COMPLETED or PENDING state can be used to perform only CreateMLModel, CreateEvaluation // or CreateBatchPrediction operations. // // If Amazon ML can't accept the input source, it sets the Status parameter // to FAILED and includes an error message in the Message attribute of the GetDataSource // operation response. // // The observation data used in a DataSource should be ready to use; that is, // it should have a consistent structure, and missing data values should be // kept to a minimum. The observation data must reside in one or more .csv files // in an Amazon Simple Storage Service (Amazon S3) location, along with a schema // that describes the data items by name and type. The same schema must be used // for all of the data files referenced by the DataSource. // // After the DataSource has been created, it's ready to use in evaluations and // batch predictions. If you plan to use the DataSource to train an MLModel, // the DataSource also needs a recipe. A recipe describes how each input variable // will be used in training an MLModel. Will the variable be included or excluded // from training? Will the variable be manipulated; for example, will it be // combined with another variable or will it be split apart into word combinations? // The recipe provides answers to these questions. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation CreateDataSourceFromS3 for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // // * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException" // A second request to use or change an object was not allowed. This can result // from retrying a request using a parameter that was not present in the original // request. // func (c *MachineLearning) CreateDataSourceFromS3(input *CreateDataSourceFromS3Input) (*CreateDataSourceFromS3Output, error) { req, out := c.CreateDataSourceFromS3Request(input) return out, req.Send() } // CreateDataSourceFromS3WithContext is the same as CreateDataSourceFromS3 with the addition of // the ability to pass a context and additional request options. // // See CreateDataSourceFromS3 for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) CreateDataSourceFromS3WithContext(ctx aws.Context, input *CreateDataSourceFromS3Input, opts ...request.Option) (*CreateDataSourceFromS3Output, error) { req, out := c.CreateDataSourceFromS3Request(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opCreateEvaluation = "CreateEvaluation" // CreateEvaluationRequest generates a "aws/request.Request" representing the // client's request for the CreateEvaluation operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See CreateEvaluation for more information on using the CreateEvaluation // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the CreateEvaluationRequest method. // req, resp := client.CreateEvaluationRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) CreateEvaluationRequest(input *CreateEvaluationInput) (req *request.Request, output *CreateEvaluationOutput) { op := &request.Operation{ Name: opCreateEvaluation, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &CreateEvaluationInput{} } output = &CreateEvaluationOutput{} req = c.newRequest(op, input, output) return } // CreateEvaluation API operation for Amazon Machine Learning. // // Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set // of observations associated to a DataSource. Like a DataSource for an MLModel, // the DataSource for an Evaluation contains values for the Target Variable. // The Evaluation compares the predicted result for each observation to the // actual outcome and provides a summary so that you know how effective the // MLModel functions on the test data. Evaluation generates a relevant performance // metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on // the corresponding MLModelType: BINARY, REGRESSION or MULTICLASS. // // CreateEvaluation is an asynchronous operation. In response to CreateEvaluation, // Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation // status to PENDING. After the Evaluation is created and ready for use, Amazon // ML sets the status to COMPLETED. // // You can use the GetEvaluation operation to check progress of the evaluation // during the creation operation. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation CreateEvaluation for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // // * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException" // A second request to use or change an object was not allowed. This can result // from retrying a request using a parameter that was not present in the original // request. // func (c *MachineLearning) CreateEvaluation(input *CreateEvaluationInput) (*CreateEvaluationOutput, error) { req, out := c.CreateEvaluationRequest(input) return out, req.Send() } // CreateEvaluationWithContext is the same as CreateEvaluation with the addition of // the ability to pass a context and additional request options. // // See CreateEvaluation for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) CreateEvaluationWithContext(ctx aws.Context, input *CreateEvaluationInput, opts ...request.Option) (*CreateEvaluationOutput, error) { req, out := c.CreateEvaluationRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opCreateMLModel = "CreateMLModel" // CreateMLModelRequest generates a "aws/request.Request" representing the // client's request for the CreateMLModel operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See CreateMLModel for more information on using the CreateMLModel // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the CreateMLModelRequest method. // req, resp := client.CreateMLModelRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) CreateMLModelRequest(input *CreateMLModelInput) (req *request.Request, output *CreateMLModelOutput) { op := &request.Operation{ Name: opCreateMLModel, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &CreateMLModelInput{} } output = &CreateMLModelOutput{} req = c.newRequest(op, input, output) return } // CreateMLModel API operation for Amazon Machine Learning. // // Creates a new MLModel using the DataSource and the recipe as information // sources. // // An MLModel is nearly immutable. Users can update only the MLModelName and // the ScoreThreshold in an MLModel without creating a new MLModel. // // CreateMLModel is an asynchronous operation. In response to CreateMLModel, // Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel // status to PENDING. After the MLModel has been created and ready is for use, // Amazon ML sets the status to COMPLETED. // // You can use the GetMLModel operation to check the progress of the MLModel // during the creation operation. // // CreateMLModel requires a DataSource with computed statistics, which can be // created by setting ComputeStatistics to true in CreateDataSourceFromRDS, // CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation CreateMLModel for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // // * ErrCodeIdempotentParameterMismatchException "IdempotentParameterMismatchException" // A second request to use or change an object was not allowed. This can result // from retrying a request using a parameter that was not present in the original // request. // func (c *MachineLearning) CreateMLModel(input *CreateMLModelInput) (*CreateMLModelOutput, error) { req, out := c.CreateMLModelRequest(input) return out, req.Send() } // CreateMLModelWithContext is the same as CreateMLModel with the addition of // the ability to pass a context and additional request options. // // See CreateMLModel for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) CreateMLModelWithContext(ctx aws.Context, input *CreateMLModelInput, opts ...request.Option) (*CreateMLModelOutput, error) { req, out := c.CreateMLModelRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opCreateRealtimeEndpoint = "CreateRealtimeEndpoint" // CreateRealtimeEndpointRequest generates a "aws/request.Request" representing the // client's request for the CreateRealtimeEndpoint operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See CreateRealtimeEndpoint for more information on using the CreateRealtimeEndpoint // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the CreateRealtimeEndpointRequest method. // req, resp := client.CreateRealtimeEndpointRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) CreateRealtimeEndpointRequest(input *CreateRealtimeEndpointInput) (req *request.Request, output *CreateRealtimeEndpointOutput) { op := &request.Operation{ Name: opCreateRealtimeEndpoint, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &CreateRealtimeEndpointInput{} } output = &CreateRealtimeEndpointOutput{} req = c.newRequest(op, input, output) return } // CreateRealtimeEndpoint API operation for Amazon Machine Learning. // // Creates a real-time endpoint for the MLModel. The endpoint contains the URI // of the MLModel; that is, the location to send real-time prediction requests // for the specified MLModel. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation CreateRealtimeEndpoint for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) CreateRealtimeEndpoint(input *CreateRealtimeEndpointInput) (*CreateRealtimeEndpointOutput, error) { req, out := c.CreateRealtimeEndpointRequest(input) return out, req.Send() } // CreateRealtimeEndpointWithContext is the same as CreateRealtimeEndpoint with the addition of // the ability to pass a context and additional request options. // // See CreateRealtimeEndpoint for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) CreateRealtimeEndpointWithContext(ctx aws.Context, input *CreateRealtimeEndpointInput, opts ...request.Option) (*CreateRealtimeEndpointOutput, error) { req, out := c.CreateRealtimeEndpointRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opDeleteBatchPrediction = "DeleteBatchPrediction" // DeleteBatchPredictionRequest generates a "aws/request.Request" representing the // client's request for the DeleteBatchPrediction operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DeleteBatchPrediction for more information on using the DeleteBatchPrediction // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DeleteBatchPredictionRequest method. // req, resp := client.DeleteBatchPredictionRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DeleteBatchPredictionRequest(input *DeleteBatchPredictionInput) (req *request.Request, output *DeleteBatchPredictionOutput) { op := &request.Operation{ Name: opDeleteBatchPrediction, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &DeleteBatchPredictionInput{} } output = &DeleteBatchPredictionOutput{} req = c.newRequest(op, input, output) return } // DeleteBatchPrediction API operation for Amazon Machine Learning. // // Assigns the DELETED status to a BatchPrediction, rendering it unusable. // // After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction // operation to verify that the status of the BatchPrediction changed to DELETED. // // Caution: The result of the DeleteBatchPrediction operation is irreversible. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DeleteBatchPrediction for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DeleteBatchPrediction(input *DeleteBatchPredictionInput) (*DeleteBatchPredictionOutput, error) { req, out := c.DeleteBatchPredictionRequest(input) return out, req.Send() } // DeleteBatchPredictionWithContext is the same as DeleteBatchPrediction with the addition of // the ability to pass a context and additional request options. // // See DeleteBatchPrediction for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DeleteBatchPredictionWithContext(ctx aws.Context, input *DeleteBatchPredictionInput, opts ...request.Option) (*DeleteBatchPredictionOutput, error) { req, out := c.DeleteBatchPredictionRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opDeleteDataSource = "DeleteDataSource" // DeleteDataSourceRequest generates a "aws/request.Request" representing the // client's request for the DeleteDataSource operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DeleteDataSource for more information on using the DeleteDataSource // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DeleteDataSourceRequest method. // req, resp := client.DeleteDataSourceRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DeleteDataSourceRequest(input *DeleteDataSourceInput) (req *request.Request, output *DeleteDataSourceOutput) { op := &request.Operation{ Name: opDeleteDataSource, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &DeleteDataSourceInput{} } output = &DeleteDataSourceOutput{} req = c.newRequest(op, input, output) return } // DeleteDataSource API operation for Amazon Machine Learning. // // Assigns the DELETED status to a DataSource, rendering it unusable. // // After using the DeleteDataSource operation, you can use the GetDataSource // operation to verify that the status of the DataSource changed to DELETED. // // Caution: The results of the DeleteDataSource operation are irreversible. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DeleteDataSource for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DeleteDataSource(input *DeleteDataSourceInput) (*DeleteDataSourceOutput, error) { req, out := c.DeleteDataSourceRequest(input) return out, req.Send() } // DeleteDataSourceWithContext is the same as DeleteDataSource with the addition of // the ability to pass a context and additional request options. // // See DeleteDataSource for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DeleteDataSourceWithContext(ctx aws.Context, input *DeleteDataSourceInput, opts ...request.Option) (*DeleteDataSourceOutput, error) { req, out := c.DeleteDataSourceRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opDeleteEvaluation = "DeleteEvaluation" // DeleteEvaluationRequest generates a "aws/request.Request" representing the // client's request for the DeleteEvaluation operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DeleteEvaluation for more information on using the DeleteEvaluation // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DeleteEvaluationRequest method. // req, resp := client.DeleteEvaluationRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DeleteEvaluationRequest(input *DeleteEvaluationInput) (req *request.Request, output *DeleteEvaluationOutput) { op := &request.Operation{ Name: opDeleteEvaluation, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &DeleteEvaluationInput{} } output = &DeleteEvaluationOutput{} req = c.newRequest(op, input, output) return } // DeleteEvaluation API operation for Amazon Machine Learning. // // Assigns the DELETED status to an Evaluation, rendering it unusable. // // After invoking the DeleteEvaluation operation, you can use the GetEvaluation // operation to verify that the status of the Evaluation changed to DELETED. // // CautionThe results of the DeleteEvaluation operation are irreversible. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DeleteEvaluation for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DeleteEvaluation(input *DeleteEvaluationInput) (*DeleteEvaluationOutput, error) { req, out := c.DeleteEvaluationRequest(input) return out, req.Send() } // DeleteEvaluationWithContext is the same as DeleteEvaluation with the addition of // the ability to pass a context and additional request options. // // See DeleteEvaluation for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DeleteEvaluationWithContext(ctx aws.Context, input *DeleteEvaluationInput, opts ...request.Option) (*DeleteEvaluationOutput, error) { req, out := c.DeleteEvaluationRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opDeleteMLModel = "DeleteMLModel" // DeleteMLModelRequest generates a "aws/request.Request" representing the // client's request for the DeleteMLModel operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DeleteMLModel for more information on using the DeleteMLModel // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DeleteMLModelRequest method. // req, resp := client.DeleteMLModelRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DeleteMLModelRequest(input *DeleteMLModelInput) (req *request.Request, output *DeleteMLModelOutput) { op := &request.Operation{ Name: opDeleteMLModel, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &DeleteMLModelInput{} } output = &DeleteMLModelOutput{} req = c.newRequest(op, input, output) return } // DeleteMLModel API operation for Amazon Machine Learning. // // Assigns the DELETED status to an MLModel, rendering it unusable. // // After using the DeleteMLModel operation, you can use the GetMLModel operation // to verify that the status of the MLModel changed to DELETED. // // Caution: The result of the DeleteMLModel operation is irreversible. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DeleteMLModel for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DeleteMLModel(input *DeleteMLModelInput) (*DeleteMLModelOutput, error) { req, out := c.DeleteMLModelRequest(input) return out, req.Send() } // DeleteMLModelWithContext is the same as DeleteMLModel with the addition of // the ability to pass a context and additional request options. // // See DeleteMLModel for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DeleteMLModelWithContext(ctx aws.Context, input *DeleteMLModelInput, opts ...request.Option) (*DeleteMLModelOutput, error) { req, out := c.DeleteMLModelRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opDeleteRealtimeEndpoint = "DeleteRealtimeEndpoint" // DeleteRealtimeEndpointRequest generates a "aws/request.Request" representing the // client's request for the DeleteRealtimeEndpoint operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DeleteRealtimeEndpoint for more information on using the DeleteRealtimeEndpoint // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DeleteRealtimeEndpointRequest method. // req, resp := client.DeleteRealtimeEndpointRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DeleteRealtimeEndpointRequest(input *DeleteRealtimeEndpointInput) (req *request.Request, output *DeleteRealtimeEndpointOutput) { op := &request.Operation{ Name: opDeleteRealtimeEndpoint, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &DeleteRealtimeEndpointInput{} } output = &DeleteRealtimeEndpointOutput{} req = c.newRequest(op, input, output) return } // DeleteRealtimeEndpoint API operation for Amazon Machine Learning. // // Deletes a real time endpoint of an MLModel. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DeleteRealtimeEndpoint for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DeleteRealtimeEndpoint(input *DeleteRealtimeEndpointInput) (*DeleteRealtimeEndpointOutput, error) { req, out := c.DeleteRealtimeEndpointRequest(input) return out, req.Send() } // DeleteRealtimeEndpointWithContext is the same as DeleteRealtimeEndpoint with the addition of // the ability to pass a context and additional request options. // // See DeleteRealtimeEndpoint for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DeleteRealtimeEndpointWithContext(ctx aws.Context, input *DeleteRealtimeEndpointInput, opts ...request.Option) (*DeleteRealtimeEndpointOutput, error) { req, out := c.DeleteRealtimeEndpointRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opDeleteTags = "DeleteTags" // DeleteTagsRequest generates a "aws/request.Request" representing the // client's request for the DeleteTags operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DeleteTags for more information on using the DeleteTags // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DeleteTagsRequest method. // req, resp := client.DeleteTagsRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DeleteTagsRequest(input *DeleteTagsInput) (req *request.Request, output *DeleteTagsOutput) { op := &request.Operation{ Name: opDeleteTags, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &DeleteTagsInput{} } output = &DeleteTagsOutput{} req = c.newRequest(op, input, output) return } // DeleteTags API operation for Amazon Machine Learning. // // Deletes the specified tags associated with an ML object. After this operation // is complete, you can't recover deleted tags. // // If you specify a tag that doesn't exist, Amazon ML ignores it. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DeleteTags for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInvalidTagException "InvalidTagException" // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DeleteTags(input *DeleteTagsInput) (*DeleteTagsOutput, error) { req, out := c.DeleteTagsRequest(input) return out, req.Send() } // DeleteTagsWithContext is the same as DeleteTags with the addition of // the ability to pass a context and additional request options. // // See DeleteTags for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DeleteTagsWithContext(ctx aws.Context, input *DeleteTagsInput, opts ...request.Option) (*DeleteTagsOutput, error) { req, out := c.DeleteTagsRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opDescribeBatchPredictions = "DescribeBatchPredictions" // DescribeBatchPredictionsRequest generates a "aws/request.Request" representing the // client's request for the DescribeBatchPredictions operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DescribeBatchPredictions for more information on using the DescribeBatchPredictions // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DescribeBatchPredictionsRequest method. // req, resp := client.DescribeBatchPredictionsRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DescribeBatchPredictionsRequest(input *DescribeBatchPredictionsInput) (req *request.Request, output *DescribeBatchPredictionsOutput) { op := &request.Operation{ Name: opDescribeBatchPredictions, HTTPMethod: "POST", HTTPPath: "/", Paginator: &request.Paginator{ InputTokens: []string{"NextToken"}, OutputTokens: []string{"NextToken"}, LimitToken: "Limit", TruncationToken: "", }, } if input == nil { input = &DescribeBatchPredictionsInput{} } output = &DescribeBatchPredictionsOutput{} req = c.newRequest(op, input, output) return } // DescribeBatchPredictions API operation for Amazon Machine Learning. // // Returns a list of BatchPrediction operations that match the search criteria // in the request. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DescribeBatchPredictions for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DescribeBatchPredictions(input *DescribeBatchPredictionsInput) (*DescribeBatchPredictionsOutput, error) { req, out := c.DescribeBatchPredictionsRequest(input) return out, req.Send() } // DescribeBatchPredictionsWithContext is the same as DescribeBatchPredictions with the addition of // the ability to pass a context and additional request options. // // See DescribeBatchPredictions for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DescribeBatchPredictionsWithContext(ctx aws.Context, input *DescribeBatchPredictionsInput, opts ...request.Option) (*DescribeBatchPredictionsOutput, error) { req, out := c.DescribeBatchPredictionsRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } // DescribeBatchPredictionsPages iterates over the pages of a DescribeBatchPredictions operation, // calling the "fn" function with the response data for each page. To stop // iterating, return false from the fn function. // // See DescribeBatchPredictions method for more information on how to use this operation. // // Note: This operation can generate multiple requests to a service. // // // Example iterating over at most 3 pages of a DescribeBatchPredictions operation. // pageNum := 0 // err := client.DescribeBatchPredictionsPages(params, // func(page *DescribeBatchPredictionsOutput, lastPage bool) bool { // pageNum++ // fmt.Println(page) // return pageNum <= 3 // }) // func (c *MachineLearning) DescribeBatchPredictionsPages(input *DescribeBatchPredictionsInput, fn func(*DescribeBatchPredictionsOutput, bool) bool) error { return c.DescribeBatchPredictionsPagesWithContext(aws.BackgroundContext(), input, fn) } // DescribeBatchPredictionsPagesWithContext same as DescribeBatchPredictionsPages except // it takes a Context and allows setting request options on the pages. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DescribeBatchPredictionsPagesWithContext(ctx aws.Context, input *DescribeBatchPredictionsInput, fn func(*DescribeBatchPredictionsOutput, bool) bool, opts ...request.Option) error { p := request.Pagination{ NewRequest: func() (*request.Request, error) { var inCpy *DescribeBatchPredictionsInput if input != nil { tmp := *input inCpy = &tmp } req, _ := c.DescribeBatchPredictionsRequest(inCpy) req.SetContext(ctx) req.ApplyOptions(opts...) return req, nil }, } cont := true for p.Next() && cont { cont = fn(p.Page().(*DescribeBatchPredictionsOutput), !p.HasNextPage()) } return p.Err() } const opDescribeDataSources = "DescribeDataSources" // DescribeDataSourcesRequest generates a "aws/request.Request" representing the // client's request for the DescribeDataSources operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DescribeDataSources for more information on using the DescribeDataSources // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DescribeDataSourcesRequest method. // req, resp := client.DescribeDataSourcesRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DescribeDataSourcesRequest(input *DescribeDataSourcesInput) (req *request.Request, output *DescribeDataSourcesOutput) { op := &request.Operation{ Name: opDescribeDataSources, HTTPMethod: "POST", HTTPPath: "/", Paginator: &request.Paginator{ InputTokens: []string{"NextToken"}, OutputTokens: []string{"NextToken"}, LimitToken: "Limit", TruncationToken: "", }, } if input == nil { input = &DescribeDataSourcesInput{} } output = &DescribeDataSourcesOutput{} req = c.newRequest(op, input, output) return } // DescribeDataSources API operation for Amazon Machine Learning. // // Returns a list of DataSource that match the search criteria in the request. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DescribeDataSources for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DescribeDataSources(input *DescribeDataSourcesInput) (*DescribeDataSourcesOutput, error) { req, out := c.DescribeDataSourcesRequest(input) return out, req.Send() } // DescribeDataSourcesWithContext is the same as DescribeDataSources with the addition of // the ability to pass a context and additional request options. // // See DescribeDataSources for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DescribeDataSourcesWithContext(ctx aws.Context, input *DescribeDataSourcesInput, opts ...request.Option) (*DescribeDataSourcesOutput, error) { req, out := c.DescribeDataSourcesRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } // DescribeDataSourcesPages iterates over the pages of a DescribeDataSources operation, // calling the "fn" function with the response data for each page. To stop // iterating, return false from the fn function. // // See DescribeDataSources method for more information on how to use this operation. // // Note: This operation can generate multiple requests to a service. // // // Example iterating over at most 3 pages of a DescribeDataSources operation. // pageNum := 0 // err := client.DescribeDataSourcesPages(params, // func(page *DescribeDataSourcesOutput, lastPage bool) bool { // pageNum++ // fmt.Println(page) // return pageNum <= 3 // }) // func (c *MachineLearning) DescribeDataSourcesPages(input *DescribeDataSourcesInput, fn func(*DescribeDataSourcesOutput, bool) bool) error { return c.DescribeDataSourcesPagesWithContext(aws.BackgroundContext(), input, fn) } // DescribeDataSourcesPagesWithContext same as DescribeDataSourcesPages except // it takes a Context and allows setting request options on the pages. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DescribeDataSourcesPagesWithContext(ctx aws.Context, input *DescribeDataSourcesInput, fn func(*DescribeDataSourcesOutput, bool) bool, opts ...request.Option) error { p := request.Pagination{ NewRequest: func() (*request.Request, error) { var inCpy *DescribeDataSourcesInput if input != nil { tmp := *input inCpy = &tmp } req, _ := c.DescribeDataSourcesRequest(inCpy) req.SetContext(ctx) req.ApplyOptions(opts...) return req, nil }, } cont := true for p.Next() && cont { cont = fn(p.Page().(*DescribeDataSourcesOutput), !p.HasNextPage()) } return p.Err() } const opDescribeEvaluations = "DescribeEvaluations" // DescribeEvaluationsRequest generates a "aws/request.Request" representing the // client's request for the DescribeEvaluations operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DescribeEvaluations for more information on using the DescribeEvaluations // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DescribeEvaluationsRequest method. // req, resp := client.DescribeEvaluationsRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DescribeEvaluationsRequest(input *DescribeEvaluationsInput) (req *request.Request, output *DescribeEvaluationsOutput) { op := &request.Operation{ Name: opDescribeEvaluations, HTTPMethod: "POST", HTTPPath: "/", Paginator: &request.Paginator{ InputTokens: []string{"NextToken"}, OutputTokens: []string{"NextToken"}, LimitToken: "Limit", TruncationToken: "", }, } if input == nil { input = &DescribeEvaluationsInput{} } output = &DescribeEvaluationsOutput{} req = c.newRequest(op, input, output) return } // DescribeEvaluations API operation for Amazon Machine Learning. // // Returns a list of DescribeEvaluations that match the search criteria in the // request. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DescribeEvaluations for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DescribeEvaluations(input *DescribeEvaluationsInput) (*DescribeEvaluationsOutput, error) { req, out := c.DescribeEvaluationsRequest(input) return out, req.Send() } // DescribeEvaluationsWithContext is the same as DescribeEvaluations with the addition of // the ability to pass a context and additional request options. // // See DescribeEvaluations for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DescribeEvaluationsWithContext(ctx aws.Context, input *DescribeEvaluationsInput, opts ...request.Option) (*DescribeEvaluationsOutput, error) { req, out := c.DescribeEvaluationsRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } // DescribeEvaluationsPages iterates over the pages of a DescribeEvaluations operation, // calling the "fn" function with the response data for each page. To stop // iterating, return false from the fn function. // // See DescribeEvaluations method for more information on how to use this operation. // // Note: This operation can generate multiple requests to a service. // // // Example iterating over at most 3 pages of a DescribeEvaluations operation. // pageNum := 0 // err := client.DescribeEvaluationsPages(params, // func(page *DescribeEvaluationsOutput, lastPage bool) bool { // pageNum++ // fmt.Println(page) // return pageNum <= 3 // }) // func (c *MachineLearning) DescribeEvaluationsPages(input *DescribeEvaluationsInput, fn func(*DescribeEvaluationsOutput, bool) bool) error { return c.DescribeEvaluationsPagesWithContext(aws.BackgroundContext(), input, fn) } // DescribeEvaluationsPagesWithContext same as DescribeEvaluationsPages except // it takes a Context and allows setting request options on the pages. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DescribeEvaluationsPagesWithContext(ctx aws.Context, input *DescribeEvaluationsInput, fn func(*DescribeEvaluationsOutput, bool) bool, opts ...request.Option) error { p := request.Pagination{ NewRequest: func() (*request.Request, error) { var inCpy *DescribeEvaluationsInput if input != nil { tmp := *input inCpy = &tmp } req, _ := c.DescribeEvaluationsRequest(inCpy) req.SetContext(ctx) req.ApplyOptions(opts...) return req, nil }, } cont := true for p.Next() && cont { cont = fn(p.Page().(*DescribeEvaluationsOutput), !p.HasNextPage()) } return p.Err() } const opDescribeMLModels = "DescribeMLModels" // DescribeMLModelsRequest generates a "aws/request.Request" representing the // client's request for the DescribeMLModels operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DescribeMLModels for more information on using the DescribeMLModels // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DescribeMLModelsRequest method. // req, resp := client.DescribeMLModelsRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DescribeMLModelsRequest(input *DescribeMLModelsInput) (req *request.Request, output *DescribeMLModelsOutput) { op := &request.Operation{ Name: opDescribeMLModels, HTTPMethod: "POST", HTTPPath: "/", Paginator: &request.Paginator{ InputTokens: []string{"NextToken"}, OutputTokens: []string{"NextToken"}, LimitToken: "Limit", TruncationToken: "", }, } if input == nil { input = &DescribeMLModelsInput{} } output = &DescribeMLModelsOutput{} req = c.newRequest(op, input, output) return } // DescribeMLModels API operation for Amazon Machine Learning. // // Returns a list of MLModel that match the search criteria in the request. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DescribeMLModels for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DescribeMLModels(input *DescribeMLModelsInput) (*DescribeMLModelsOutput, error) { req, out := c.DescribeMLModelsRequest(input) return out, req.Send() } // DescribeMLModelsWithContext is the same as DescribeMLModels with the addition of // the ability to pass a context and additional request options. // // See DescribeMLModels for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DescribeMLModelsWithContext(ctx aws.Context, input *DescribeMLModelsInput, opts ...request.Option) (*DescribeMLModelsOutput, error) { req, out := c.DescribeMLModelsRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } // DescribeMLModelsPages iterates over the pages of a DescribeMLModels operation, // calling the "fn" function with the response data for each page. To stop // iterating, return false from the fn function. // // See DescribeMLModels method for more information on how to use this operation. // // Note: This operation can generate multiple requests to a service. // // // Example iterating over at most 3 pages of a DescribeMLModels operation. // pageNum := 0 // err := client.DescribeMLModelsPages(params, // func(page *DescribeMLModelsOutput, lastPage bool) bool { // pageNum++ // fmt.Println(page) // return pageNum <= 3 // }) // func (c *MachineLearning) DescribeMLModelsPages(input *DescribeMLModelsInput, fn func(*DescribeMLModelsOutput, bool) bool) error { return c.DescribeMLModelsPagesWithContext(aws.BackgroundContext(), input, fn) } // DescribeMLModelsPagesWithContext same as DescribeMLModelsPages except // it takes a Context and allows setting request options on the pages. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DescribeMLModelsPagesWithContext(ctx aws.Context, input *DescribeMLModelsInput, fn func(*DescribeMLModelsOutput, bool) bool, opts ...request.Option) error { p := request.Pagination{ NewRequest: func() (*request.Request, error) { var inCpy *DescribeMLModelsInput if input != nil { tmp := *input inCpy = &tmp } req, _ := c.DescribeMLModelsRequest(inCpy) req.SetContext(ctx) req.ApplyOptions(opts...) return req, nil }, } cont := true for p.Next() && cont { cont = fn(p.Page().(*DescribeMLModelsOutput), !p.HasNextPage()) } return p.Err() } const opDescribeTags = "DescribeTags" // DescribeTagsRequest generates a "aws/request.Request" representing the // client's request for the DescribeTags operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See DescribeTags for more information on using the DescribeTags // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the DescribeTagsRequest method. // req, resp := client.DescribeTagsRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) DescribeTagsRequest(input *DescribeTagsInput) (req *request.Request, output *DescribeTagsOutput) { op := &request.Operation{ Name: opDescribeTags, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &DescribeTagsInput{} } output = &DescribeTagsOutput{} req = c.newRequest(op, input, output) return } // DescribeTags API operation for Amazon Machine Learning. // // Describes one or more of the tags for your Amazon ML object. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation DescribeTags for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) DescribeTags(input *DescribeTagsInput) (*DescribeTagsOutput, error) { req, out := c.DescribeTagsRequest(input) return out, req.Send() } // DescribeTagsWithContext is the same as DescribeTags with the addition of // the ability to pass a context and additional request options. // // See DescribeTags for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) DescribeTagsWithContext(ctx aws.Context, input *DescribeTagsInput, opts ...request.Option) (*DescribeTagsOutput, error) { req, out := c.DescribeTagsRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opGetBatchPrediction = "GetBatchPrediction" // GetBatchPredictionRequest generates a "aws/request.Request" representing the // client's request for the GetBatchPrediction operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See GetBatchPrediction for more information on using the GetBatchPrediction // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the GetBatchPredictionRequest method. // req, resp := client.GetBatchPredictionRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) GetBatchPredictionRequest(input *GetBatchPredictionInput) (req *request.Request, output *GetBatchPredictionOutput) { op := &request.Operation{ Name: opGetBatchPrediction, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &GetBatchPredictionInput{} } output = &GetBatchPredictionOutput{} req = c.newRequest(op, input, output) return } // GetBatchPrediction API operation for Amazon Machine Learning. // // Returns a BatchPrediction that includes detailed metadata, status, and data // file information for a Batch Prediction request. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation GetBatchPrediction for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) GetBatchPrediction(input *GetBatchPredictionInput) (*GetBatchPredictionOutput, error) { req, out := c.GetBatchPredictionRequest(input) return out, req.Send() } // GetBatchPredictionWithContext is the same as GetBatchPrediction with the addition of // the ability to pass a context and additional request options. // // See GetBatchPrediction for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) GetBatchPredictionWithContext(ctx aws.Context, input *GetBatchPredictionInput, opts ...request.Option) (*GetBatchPredictionOutput, error) { req, out := c.GetBatchPredictionRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opGetDataSource = "GetDataSource" // GetDataSourceRequest generates a "aws/request.Request" representing the // client's request for the GetDataSource operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See GetDataSource for more information on using the GetDataSource // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the GetDataSourceRequest method. // req, resp := client.GetDataSourceRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) GetDataSourceRequest(input *GetDataSourceInput) (req *request.Request, output *GetDataSourceOutput) { op := &request.Operation{ Name: opGetDataSource, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &GetDataSourceInput{} } output = &GetDataSourceOutput{} req = c.newRequest(op, input, output) return } // GetDataSource API operation for Amazon Machine Learning. // // Returns a DataSource that includes metadata and data file information, as // well as the current status of the DataSource. // // GetDataSource provides results in normal or verbose format. The verbose format // adds the schema description and the list of files pointed to by the DataSource // to the normal format. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation GetDataSource for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) GetDataSource(input *GetDataSourceInput) (*GetDataSourceOutput, error) { req, out := c.GetDataSourceRequest(input) return out, req.Send() } // GetDataSourceWithContext is the same as GetDataSource with the addition of // the ability to pass a context and additional request options. // // See GetDataSource for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) GetDataSourceWithContext(ctx aws.Context, input *GetDataSourceInput, opts ...request.Option) (*GetDataSourceOutput, error) { req, out := c.GetDataSourceRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opGetEvaluation = "GetEvaluation" // GetEvaluationRequest generates a "aws/request.Request" representing the // client's request for the GetEvaluation operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See GetEvaluation for more information on using the GetEvaluation // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the GetEvaluationRequest method. // req, resp := client.GetEvaluationRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) GetEvaluationRequest(input *GetEvaluationInput) (req *request.Request, output *GetEvaluationOutput) { op := &request.Operation{ Name: opGetEvaluation, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &GetEvaluationInput{} } output = &GetEvaluationOutput{} req = c.newRequest(op, input, output) return } // GetEvaluation API operation for Amazon Machine Learning. // // Returns an Evaluation that includes metadata as well as the current status // of the Evaluation. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation GetEvaluation for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) GetEvaluation(input *GetEvaluationInput) (*GetEvaluationOutput, error) { req, out := c.GetEvaluationRequest(input) return out, req.Send() } // GetEvaluationWithContext is the same as GetEvaluation with the addition of // the ability to pass a context and additional request options. // // See GetEvaluation for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) GetEvaluationWithContext(ctx aws.Context, input *GetEvaluationInput, opts ...request.Option) (*GetEvaluationOutput, error) { req, out := c.GetEvaluationRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opGetMLModel = "GetMLModel" // GetMLModelRequest generates a "aws/request.Request" representing the // client's request for the GetMLModel operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See GetMLModel for more information on using the GetMLModel // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the GetMLModelRequest method. // req, resp := client.GetMLModelRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) GetMLModelRequest(input *GetMLModelInput) (req *request.Request, output *GetMLModelOutput) { op := &request.Operation{ Name: opGetMLModel, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &GetMLModelInput{} } output = &GetMLModelOutput{} req = c.newRequest(op, input, output) return } // GetMLModel API operation for Amazon Machine Learning. // // Returns an MLModel that includes detailed metadata, data source information, // and the current status of the MLModel. // // GetMLModel provides results in normal or verbose format. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation GetMLModel for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) GetMLModel(input *GetMLModelInput) (*GetMLModelOutput, error) { req, out := c.GetMLModelRequest(input) return out, req.Send() } // GetMLModelWithContext is the same as GetMLModel with the addition of // the ability to pass a context and additional request options. // // See GetMLModel for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) GetMLModelWithContext(ctx aws.Context, input *GetMLModelInput, opts ...request.Option) (*GetMLModelOutput, error) { req, out := c.GetMLModelRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opPredict = "Predict" // PredictRequest generates a "aws/request.Request" representing the // client's request for the Predict operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See Predict for more information on using the Predict // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the PredictRequest method. // req, resp := client.PredictRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) PredictRequest(input *PredictInput) (req *request.Request, output *PredictOutput) { op := &request.Operation{ Name: opPredict, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &PredictInput{} } output = &PredictOutput{} req = c.newRequest(op, input, output) return } // Predict API operation for Amazon Machine Learning. // // Generates a prediction for the observation using the specified ML Model. // // NoteNot all response parameters will be populated. Whether a response parameter // is populated depends on the type of model requested. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation Predict for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeLimitExceededException "LimitExceededException" // The subscriber exceeded the maximum number of operations. This exception // can occur when listing objects such as DataSource. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // // * ErrCodePredictorNotMountedException "PredictorNotMountedException" // The exception is thrown when a predict request is made to an unmounted MLModel. // func (c *MachineLearning) Predict(input *PredictInput) (*PredictOutput, error) { req, out := c.PredictRequest(input) return out, req.Send() } // PredictWithContext is the same as Predict with the addition of // the ability to pass a context and additional request options. // // See Predict for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) PredictWithContext(ctx aws.Context, input *PredictInput, opts ...request.Option) (*PredictOutput, error) { req, out := c.PredictRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opUpdateBatchPrediction = "UpdateBatchPrediction" // UpdateBatchPredictionRequest generates a "aws/request.Request" representing the // client's request for the UpdateBatchPrediction operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See UpdateBatchPrediction for more information on using the UpdateBatchPrediction // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the UpdateBatchPredictionRequest method. // req, resp := client.UpdateBatchPredictionRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) UpdateBatchPredictionRequest(input *UpdateBatchPredictionInput) (req *request.Request, output *UpdateBatchPredictionOutput) { op := &request.Operation{ Name: opUpdateBatchPrediction, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &UpdateBatchPredictionInput{} } output = &UpdateBatchPredictionOutput{} req = c.newRequest(op, input, output) return } // UpdateBatchPrediction API operation for Amazon Machine Learning. // // Updates the BatchPredictionName of a BatchPrediction. // // You can use the GetBatchPrediction operation to view the contents of the // updated data element. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation UpdateBatchPrediction for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) UpdateBatchPrediction(input *UpdateBatchPredictionInput) (*UpdateBatchPredictionOutput, error) { req, out := c.UpdateBatchPredictionRequest(input) return out, req.Send() } // UpdateBatchPredictionWithContext is the same as UpdateBatchPrediction with the addition of // the ability to pass a context and additional request options. // // See UpdateBatchPrediction for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) UpdateBatchPredictionWithContext(ctx aws.Context, input *UpdateBatchPredictionInput, opts ...request.Option) (*UpdateBatchPredictionOutput, error) { req, out := c.UpdateBatchPredictionRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opUpdateDataSource = "UpdateDataSource" // UpdateDataSourceRequest generates a "aws/request.Request" representing the // client's request for the UpdateDataSource operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See UpdateDataSource for more information on using the UpdateDataSource // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the UpdateDataSourceRequest method. // req, resp := client.UpdateDataSourceRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) UpdateDataSourceRequest(input *UpdateDataSourceInput) (req *request.Request, output *UpdateDataSourceOutput) { op := &request.Operation{ Name: opUpdateDataSource, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &UpdateDataSourceInput{} } output = &UpdateDataSourceOutput{} req = c.newRequest(op, input, output) return } // UpdateDataSource API operation for Amazon Machine Learning. // // Updates the DataSourceName of a DataSource. // // You can use the GetDataSource operation to view the contents of the updated // data element. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation UpdateDataSource for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) UpdateDataSource(input *UpdateDataSourceInput) (*UpdateDataSourceOutput, error) { req, out := c.UpdateDataSourceRequest(input) return out, req.Send() } // UpdateDataSourceWithContext is the same as UpdateDataSource with the addition of // the ability to pass a context and additional request options. // // See UpdateDataSource for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) UpdateDataSourceWithContext(ctx aws.Context, input *UpdateDataSourceInput, opts ...request.Option) (*UpdateDataSourceOutput, error) { req, out := c.UpdateDataSourceRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opUpdateEvaluation = "UpdateEvaluation" // UpdateEvaluationRequest generates a "aws/request.Request" representing the // client's request for the UpdateEvaluation operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See UpdateEvaluation for more information on using the UpdateEvaluation // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the UpdateEvaluationRequest method. // req, resp := client.UpdateEvaluationRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) UpdateEvaluationRequest(input *UpdateEvaluationInput) (req *request.Request, output *UpdateEvaluationOutput) { op := &request.Operation{ Name: opUpdateEvaluation, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &UpdateEvaluationInput{} } output = &UpdateEvaluationOutput{} req = c.newRequest(op, input, output) return } // UpdateEvaluation API operation for Amazon Machine Learning. // // Updates the EvaluationName of an Evaluation. // // You can use the GetEvaluation operation to view the contents of the updated // data element. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation UpdateEvaluation for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) UpdateEvaluation(input *UpdateEvaluationInput) (*UpdateEvaluationOutput, error) { req, out := c.UpdateEvaluationRequest(input) return out, req.Send() } // UpdateEvaluationWithContext is the same as UpdateEvaluation with the addition of // the ability to pass a context and additional request options. // // See UpdateEvaluation for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) UpdateEvaluationWithContext(ctx aws.Context, input *UpdateEvaluationInput, opts ...request.Option) (*UpdateEvaluationOutput, error) { req, out := c.UpdateEvaluationRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } const opUpdateMLModel = "UpdateMLModel" // UpdateMLModelRequest generates a "aws/request.Request" representing the // client's request for the UpdateMLModel operation. The "output" return // value will be populated with the request's response once the request completes // successfuly. // // Use "Send" method on the returned Request to send the API call to the service. // the "output" return value is not valid until after Send returns without error. // // See UpdateMLModel for more information on using the UpdateMLModel // API call, and error handling. // // This method is useful when you want to inject custom logic or configuration // into the SDK's request lifecycle. Such as custom headers, or retry logic. // // // // Example sending a request using the UpdateMLModelRequest method. // req, resp := client.UpdateMLModelRequest(params) // // err := req.Send() // if err == nil { // resp is now filled // fmt.Println(resp) // } func (c *MachineLearning) UpdateMLModelRequest(input *UpdateMLModelInput) (req *request.Request, output *UpdateMLModelOutput) { op := &request.Operation{ Name: opUpdateMLModel, HTTPMethod: "POST", HTTPPath: "/", } if input == nil { input = &UpdateMLModelInput{} } output = &UpdateMLModelOutput{} req = c.newRequest(op, input, output) return } // UpdateMLModel API operation for Amazon Machine Learning. // // Updates the MLModelName and the ScoreThreshold of an MLModel. // // You can use the GetMLModel operation to view the contents of the updated // data element. // // Returns awserr.Error for service API and SDK errors. Use runtime type assertions // with awserr.Error's Code and Message methods to get detailed information about // the error. // // See the AWS API reference guide for Amazon Machine Learning's // API operation UpdateMLModel for usage and error information. // // Returned Error Codes: // * ErrCodeInvalidInputException "InvalidInputException" // An error on the client occurred. Typically, the cause is an invalid input // value. // // * ErrCodeResourceNotFoundException "ResourceNotFoundException" // A specified resource cannot be located. // // * ErrCodeInternalServerException "InternalServerException" // An error on the server occurred when trying to process a request. // func (c *MachineLearning) UpdateMLModel(input *UpdateMLModelInput) (*UpdateMLModelOutput, error) { req, out := c.UpdateMLModelRequest(input) return out, req.Send() } // UpdateMLModelWithContext is the same as UpdateMLModel with the addition of // the ability to pass a context and additional request options. // // See UpdateMLModel for details on how to use this API operation. // // The context must be non-nil and will be used for request cancellation. If // the context is nil a panic will occur. In the future the SDK may create // sub-contexts for http.Requests. See https://golang.org/pkg/context/ // for more information on using Contexts. func (c *MachineLearning) UpdateMLModelWithContext(ctx aws.Context, input *UpdateMLModelInput, opts ...request.Option) (*UpdateMLModelOutput, error) { req, out := c.UpdateMLModelRequest(input) req.SetContext(ctx) req.ApplyOptions(opts...) return out, req.Send() } type AddTagsInput struct { _ struct{} `type:"structure"` // The ID of the ML object to tag. For example, exampleModelId. // // ResourceId is a required field ResourceId *string `min:"1" type:"string" required:"true"` // The type of the ML object to tag. // // ResourceType is a required field ResourceType *string `type:"string" required:"true" enum:"TaggableResourceType"` // The key-value pairs to use to create tags. If you specify a key without specifying // a value, Amazon ML creates a tag with the specified key and a value of null. // // Tags is a required field Tags []*Tag `type:"list" required:"true"` } // String returns the string representation func (s AddTagsInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s AddTagsInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *AddTagsInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "AddTagsInput"} if s.ResourceId == nil { invalidParams.Add(request.NewErrParamRequired("ResourceId")) } if s.ResourceId != nil && len(*s.ResourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("ResourceId", 1)) } if s.ResourceType == nil { invalidParams.Add(request.NewErrParamRequired("ResourceType")) } if s.Tags == nil { invalidParams.Add(request.NewErrParamRequired("Tags")) } if s.Tags != nil { for i, v := range s.Tags { if v == nil { continue } if err := v.Validate(); err != nil { invalidParams.AddNested(fmt.Sprintf("%s[%v]", "Tags", i), err.(request.ErrInvalidParams)) } } } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetResourceId sets the ResourceId field's value. func (s *AddTagsInput) SetResourceId(v string) *AddTagsInput { s.ResourceId = &v return s } // SetResourceType sets the ResourceType field's value. func (s *AddTagsInput) SetResourceType(v string) *AddTagsInput { s.ResourceType = &v return s } // SetTags sets the Tags field's value. func (s *AddTagsInput) SetTags(v []*Tag) *AddTagsInput { s.Tags = v return s } // Amazon ML returns the following elements. type AddTagsOutput struct { _ struct{} `type:"structure"` // The ID of the ML object that was tagged. ResourceId *string `min:"1" type:"string"` // The type of the ML object that was tagged. ResourceType *string `type:"string" enum:"TaggableResourceType"` } // String returns the string representation func (s AddTagsOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s AddTagsOutput) GoString() string { return s.String() } // SetResourceId sets the ResourceId field's value. func (s *AddTagsOutput) SetResourceId(v string) *AddTagsOutput { s.ResourceId = &v return s } // SetResourceType sets the ResourceType field's value. func (s *AddTagsOutput) SetResourceType(v string) *AddTagsOutput { s.ResourceType = &v return s } // Represents the output of a GetBatchPrediction operation. // // The content consists of the detailed metadata, the status, and the data file // information of a Batch Prediction. type BatchPrediction struct { _ struct{} `type:"structure"` // The ID of the DataSource that points to the group of observations to predict. BatchPredictionDataSourceId *string `min:"1" type:"string"` // The ID assigned to the BatchPrediction at creation. This value should be // identical to the value of the BatchPredictionID in the request. BatchPredictionId *string `min:"1" type:"string"` // Long integer type that is a 64-bit signed number. ComputeTime *int64 `type:"long"` // The time that the BatchPrediction was created. The time is expressed in epoch // time. CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The AWS user account that invoked the BatchPrediction. The account type can // be either an AWS root account or an AWS Identity and Access Management (IAM) // user account. CreatedByIamUser *string `type:"string"` // A timestamp represented in epoch time. FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The location of the data file or directory in Amazon Simple Storage Service // (Amazon S3). InputDataLocationS3 *string `type:"string"` // Long integer type that is a 64-bit signed number. InvalidRecordCount *int64 `type:"long"` // The time of the most recent edit to the BatchPrediction. The time is expressed // in epoch time. LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The ID of the MLModel that generated predictions for the BatchPrediction // request. MLModelId *string `min:"1" type:"string"` // A description of the most recent details about processing the batch prediction // request. Message *string `type:"string"` // A user-supplied name or description of the BatchPrediction. Name *string `type:"string"` // The location of an Amazon S3 bucket or directory to receive the operation // results. The following substrings are not allowed in the s3 key portion of // the outputURI field: ':', '//', '/./', '/../'. OutputUri *string `type:"string"` // A timestamp represented in epoch time. StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The status of the BatchPrediction. This element can have one of the following // values: // // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to // generate predictions for a batch of observations. // * INPROGRESS - The process is underway. // * FAILED - The request to perform a batch prediction did not run to completion. // It is not usable. // * COMPLETED - The batch prediction process completed successfully. // * DELETED - The BatchPrediction is marked as deleted. It is not usable. Status *string `type:"string" enum:"EntityStatus"` // Long integer type that is a 64-bit signed number. TotalRecordCount *int64 `type:"long"` } // String returns the string representation func (s BatchPrediction) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s BatchPrediction) GoString() string { return s.String() } // SetBatchPredictionDataSourceId sets the BatchPredictionDataSourceId field's value. func (s *BatchPrediction) SetBatchPredictionDataSourceId(v string) *BatchPrediction { s.BatchPredictionDataSourceId = &v return s } // SetBatchPredictionId sets the BatchPredictionId field's value. func (s *BatchPrediction) SetBatchPredictionId(v string) *BatchPrediction { s.BatchPredictionId = &v return s } // SetComputeTime sets the ComputeTime field's value. func (s *BatchPrediction) SetComputeTime(v int64) *BatchPrediction { s.ComputeTime = &v return s } // SetCreatedAt sets the CreatedAt field's value. func (s *BatchPrediction) SetCreatedAt(v time.Time) *BatchPrediction { s.CreatedAt = &v return s } // SetCreatedByIamUser sets the CreatedByIamUser field's value. func (s *BatchPrediction) SetCreatedByIamUser(v string) *BatchPrediction { s.CreatedByIamUser = &v return s } // SetFinishedAt sets the FinishedAt field's value. func (s *BatchPrediction) SetFinishedAt(v time.Time) *BatchPrediction { s.FinishedAt = &v return s } // SetInputDataLocationS3 sets the InputDataLocationS3 field's value. func (s *BatchPrediction) SetInputDataLocationS3(v string) *BatchPrediction { s.InputDataLocationS3 = &v return s } // SetInvalidRecordCount sets the InvalidRecordCount field's value. func (s *BatchPrediction) SetInvalidRecordCount(v int64) *BatchPrediction { s.InvalidRecordCount = &v return s } // SetLastUpdatedAt sets the LastUpdatedAt field's value. func (s *BatchPrediction) SetLastUpdatedAt(v time.Time) *BatchPrediction { s.LastUpdatedAt = &v return s } // SetMLModelId sets the MLModelId field's value. func (s *BatchPrediction) SetMLModelId(v string) *BatchPrediction { s.MLModelId = &v return s } // SetMessage sets the Message field's value. func (s *BatchPrediction) SetMessage(v string) *BatchPrediction { s.Message = &v return s } // SetName sets the Name field's value. func (s *BatchPrediction) SetName(v string) *BatchPrediction { s.Name = &v return s } // SetOutputUri sets the OutputUri field's value. func (s *BatchPrediction) SetOutputUri(v string) *BatchPrediction { s.OutputUri = &v return s } // SetStartedAt sets the StartedAt field's value. func (s *BatchPrediction) SetStartedAt(v time.Time) *BatchPrediction { s.StartedAt = &v return s } // SetStatus sets the Status field's value. func (s *BatchPrediction) SetStatus(v string) *BatchPrediction { s.Status = &v return s } // SetTotalRecordCount sets the TotalRecordCount field's value. func (s *BatchPrediction) SetTotalRecordCount(v int64) *BatchPrediction { s.TotalRecordCount = &v return s } type CreateBatchPredictionInput struct { _ struct{} `type:"structure"` // The ID of the DataSource that points to the group of observations to predict. // // BatchPredictionDataSourceId is a required field BatchPredictionDataSourceId *string `min:"1" type:"string" required:"true"` // A user-supplied ID that uniquely identifies the BatchPrediction. // // BatchPredictionId is a required field BatchPredictionId *string `min:"1" type:"string" required:"true"` // A user-supplied name or description of the BatchPrediction. BatchPredictionName // can only use the UTF-8 character set. BatchPredictionName *string `type:"string"` // The ID of the MLModel that will generate predictions for the group of observations. // // MLModelId is a required field MLModelId *string `min:"1" type:"string" required:"true"` // The location of an Amazon Simple Storage Service (Amazon S3) bucket or directory // to store the batch prediction results. The following substrings are not allowed // in the s3 key portion of the outputURI field: ':', '//', '/./', '/../'. // // Amazon ML needs permissions to store and retrieve the logs on your behalf. // For information about how to set permissions, see the Amazon Machine Learning // Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg). // // OutputUri is a required field OutputUri *string `type:"string" required:"true"` } // String returns the string representation func (s CreateBatchPredictionInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateBatchPredictionInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *CreateBatchPredictionInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "CreateBatchPredictionInput"} if s.BatchPredictionDataSourceId == nil { invalidParams.Add(request.NewErrParamRequired("BatchPredictionDataSourceId")) } if s.BatchPredictionDataSourceId != nil && len(*s.BatchPredictionDataSourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("BatchPredictionDataSourceId", 1)) } if s.BatchPredictionId == nil { invalidParams.Add(request.NewErrParamRequired("BatchPredictionId")) } if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 { invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1)) } if s.MLModelId == nil { invalidParams.Add(request.NewErrParamRequired("MLModelId")) } if s.MLModelId != nil && len(*s.MLModelId) < 1 { invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1)) } if s.OutputUri == nil { invalidParams.Add(request.NewErrParamRequired("OutputUri")) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetBatchPredictionDataSourceId sets the BatchPredictionDataSourceId field's value. func (s *CreateBatchPredictionInput) SetBatchPredictionDataSourceId(v string) *CreateBatchPredictionInput { s.BatchPredictionDataSourceId = &v return s } // SetBatchPredictionId sets the BatchPredictionId field's value. func (s *CreateBatchPredictionInput) SetBatchPredictionId(v string) *CreateBatchPredictionInput { s.BatchPredictionId = &v return s } // SetBatchPredictionName sets the BatchPredictionName field's value. func (s *CreateBatchPredictionInput) SetBatchPredictionName(v string) *CreateBatchPredictionInput { s.BatchPredictionName = &v return s } // SetMLModelId sets the MLModelId field's value. func (s *CreateBatchPredictionInput) SetMLModelId(v string) *CreateBatchPredictionInput { s.MLModelId = &v return s } // SetOutputUri sets the OutputUri field's value. func (s *CreateBatchPredictionInput) SetOutputUri(v string) *CreateBatchPredictionInput { s.OutputUri = &v return s } // Represents the output of a CreateBatchPrediction operation, and is an acknowledgement // that Amazon ML received the request. // // The CreateBatchPrediction operation is asynchronous. You can poll for status // updates by using the >GetBatchPrediction operation and checking the Status // parameter of the result. type CreateBatchPredictionOutput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the BatchPrediction. This value // is identical to the value of the BatchPredictionId in the request. BatchPredictionId *string `min:"1" type:"string"` } // String returns the string representation func (s CreateBatchPredictionOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateBatchPredictionOutput) GoString() string { return s.String() } // SetBatchPredictionId sets the BatchPredictionId field's value. func (s *CreateBatchPredictionOutput) SetBatchPredictionId(v string) *CreateBatchPredictionOutput { s.BatchPredictionId = &v return s } type CreateDataSourceFromRDSInput struct { _ struct{} `type:"structure"` // The compute statistics for a DataSource. The statistics are generated from // the observation data referenced by a DataSource. Amazon ML uses the statistics // internally during MLModel training. This parameter must be set to true if // the DataSource needs to be used for MLModel training. ComputeStatistics *bool `type:"boolean"` // A user-supplied ID that uniquely identifies the DataSource. Typically, an // Amazon Resource Number (ARN) becomes the ID for a DataSource. // // DataSourceId is a required field DataSourceId *string `min:"1" type:"string" required:"true"` // A user-supplied name or description of the DataSource. DataSourceName *string `type:"string"` // The data specification of an Amazon RDS DataSource: // // RDSData is a required field RDSData *RDSDataSpec `type:"structure" required:"true"` // The role that Amazon ML assumes on behalf of the user to create and activate // a data pipeline in the user's account and copy data using the SelectSqlQuery // query from Amazon RDS to Amazon S3. // // RoleARN is a required field RoleARN *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s CreateDataSourceFromRDSInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateDataSourceFromRDSInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *CreateDataSourceFromRDSInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "CreateDataSourceFromRDSInput"} if s.DataSourceId == nil { invalidParams.Add(request.NewErrParamRequired("DataSourceId")) } if s.DataSourceId != nil && len(*s.DataSourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1)) } if s.RDSData == nil { invalidParams.Add(request.NewErrParamRequired("RDSData")) } if s.RoleARN == nil { invalidParams.Add(request.NewErrParamRequired("RoleARN")) } if s.RoleARN != nil && len(*s.RoleARN) < 1 { invalidParams.Add(request.NewErrParamMinLen("RoleARN", 1)) } if s.RDSData != nil { if err := s.RDSData.Validate(); err != nil { invalidParams.AddNested("RDSData", err.(request.ErrInvalidParams)) } } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetComputeStatistics sets the ComputeStatistics field's value. func (s *CreateDataSourceFromRDSInput) SetComputeStatistics(v bool) *CreateDataSourceFromRDSInput { s.ComputeStatistics = &v return s } // SetDataSourceId sets the DataSourceId field's value. func (s *CreateDataSourceFromRDSInput) SetDataSourceId(v string) *CreateDataSourceFromRDSInput { s.DataSourceId = &v return s } // SetDataSourceName sets the DataSourceName field's value. func (s *CreateDataSourceFromRDSInput) SetDataSourceName(v string) *CreateDataSourceFromRDSInput { s.DataSourceName = &v return s } // SetRDSData sets the RDSData field's value. func (s *CreateDataSourceFromRDSInput) SetRDSData(v *RDSDataSpec) *CreateDataSourceFromRDSInput { s.RDSData = v return s } // SetRoleARN sets the RoleARN field's value. func (s *CreateDataSourceFromRDSInput) SetRoleARN(v string) *CreateDataSourceFromRDSInput { s.RoleARN = &v return s } // Represents the output of a CreateDataSourceFromRDS operation, and is an acknowledgement // that Amazon ML received the request. // // The CreateDataSourceFromRDS> operation is asynchronous. You can poll for // updates by using the GetBatchPrediction operation and checking the Status // parameter. You can inspect the Message when Status shows up as FAILED. You // can also check the progress of the copy operation by going to the DataPipeline // console and looking up the pipeline using the pipelineId from the describe // call. type CreateDataSourceFromRDSOutput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the datasource. This value should // be identical to the value of the DataSourceID in the request. DataSourceId *string `min:"1" type:"string"` } // String returns the string representation func (s CreateDataSourceFromRDSOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateDataSourceFromRDSOutput) GoString() string { return s.String() } // SetDataSourceId sets the DataSourceId field's value. func (s *CreateDataSourceFromRDSOutput) SetDataSourceId(v string) *CreateDataSourceFromRDSOutput { s.DataSourceId = &v return s } type CreateDataSourceFromRedshiftInput struct { _ struct{} `type:"structure"` // The compute statistics for a DataSource. The statistics are generated from // the observation data referenced by a DataSource. Amazon ML uses the statistics // internally during MLModel training. This parameter must be set to true if // the DataSource needs to be used for MLModel training. ComputeStatistics *bool `type:"boolean"` // A user-supplied ID that uniquely identifies the DataSource. // // DataSourceId is a required field DataSourceId *string `min:"1" type:"string" required:"true"` // A user-supplied name or description of the DataSource. DataSourceName *string `type:"string"` // The data specification of an Amazon Redshift DataSource: // // * DatabaseInformation - DatabaseName - The name of the Amazon Redshift // database. // ClusterIdentifier - The unique ID for the Amazon Redshift cluster. // // * DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials // that are used to connect to the Amazon Redshift database. // // * SelectSqlQuery - The query that is used to retrieve the observation // data for the Datasource. // // * S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location // for staging Amazon Redshift data. The data retrieved from Amazon Redshift // using the SelectSqlQuery query is stored in this location. // // * DataSchemaUri - The Amazon S3 location of the DataSchema. // // * DataSchema - A JSON string representing the schema. This is not required // if DataSchemaUri is specified. // // * DataRearrangement - A JSON string that represents the splitting and // rearrangement requirements for the DataSource. // // Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}" // // DataSpec is a required field DataSpec *RedshiftDataSpec `type:"structure" required:"true"` // A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the // role on behalf of the user to create the following: // // A security group to allow Amazon ML to execute the SelectSqlQuery query on // an Amazon Redshift cluster // // An Amazon S3 bucket policy to grant Amazon ML read/write permissions on the // S3StagingLocation // // RoleARN is a required field RoleARN *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s CreateDataSourceFromRedshiftInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateDataSourceFromRedshiftInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *CreateDataSourceFromRedshiftInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "CreateDataSourceFromRedshiftInput"} if s.DataSourceId == nil { invalidParams.Add(request.NewErrParamRequired("DataSourceId")) } if s.DataSourceId != nil && len(*s.DataSourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1)) } if s.DataSpec == nil { invalidParams.Add(request.NewErrParamRequired("DataSpec")) } if s.RoleARN == nil { invalidParams.Add(request.NewErrParamRequired("RoleARN")) } if s.RoleARN != nil && len(*s.RoleARN) < 1 { invalidParams.Add(request.NewErrParamMinLen("RoleARN", 1)) } if s.DataSpec != nil { if err := s.DataSpec.Validate(); err != nil { invalidParams.AddNested("DataSpec", err.(request.ErrInvalidParams)) } } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetComputeStatistics sets the ComputeStatistics field's value. func (s *CreateDataSourceFromRedshiftInput) SetComputeStatistics(v bool) *CreateDataSourceFromRedshiftInput { s.ComputeStatistics = &v return s } // SetDataSourceId sets the DataSourceId field's value. func (s *CreateDataSourceFromRedshiftInput) SetDataSourceId(v string) *CreateDataSourceFromRedshiftInput { s.DataSourceId = &v return s } // SetDataSourceName sets the DataSourceName field's value. func (s *CreateDataSourceFromRedshiftInput) SetDataSourceName(v string) *CreateDataSourceFromRedshiftInput { s.DataSourceName = &v return s } // SetDataSpec sets the DataSpec field's value. func (s *CreateDataSourceFromRedshiftInput) SetDataSpec(v *RedshiftDataSpec) *CreateDataSourceFromRedshiftInput { s.DataSpec = v return s } // SetRoleARN sets the RoleARN field's value. func (s *CreateDataSourceFromRedshiftInput) SetRoleARN(v string) *CreateDataSourceFromRedshiftInput { s.RoleARN = &v return s } // Represents the output of a CreateDataSourceFromRedshift operation, and is // an acknowledgement that Amazon ML received the request. // // The CreateDataSourceFromRedshift operation is asynchronous. You can poll // for updates by using the GetBatchPrediction operation and checking the Status // parameter. type CreateDataSourceFromRedshiftOutput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the datasource. This value should // be identical to the value of the DataSourceID in the request. DataSourceId *string `min:"1" type:"string"` } // String returns the string representation func (s CreateDataSourceFromRedshiftOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateDataSourceFromRedshiftOutput) GoString() string { return s.String() } // SetDataSourceId sets the DataSourceId field's value. func (s *CreateDataSourceFromRedshiftOutput) SetDataSourceId(v string) *CreateDataSourceFromRedshiftOutput { s.DataSourceId = &v return s } type CreateDataSourceFromS3Input struct { _ struct{} `type:"structure"` // The compute statistics for a DataSource. The statistics are generated from // the observation data referenced by a DataSource. Amazon ML uses the statistics // internally during MLModel training. This parameter must be set to true if // the DataSource needs to be used for MLModel training. ComputeStatistics *bool `type:"boolean"` // A user-supplied identifier that uniquely identifies the DataSource. // // DataSourceId is a required field DataSourceId *string `min:"1" type:"string" required:"true"` // A user-supplied name or description of the DataSource. DataSourceName *string `type:"string"` // The data specification of a DataSource: // // * DataLocationS3 - The Amazon S3 location of the observation data. // // * DataSchemaLocationS3 - The Amazon S3 location of the DataSchema. // // * DataSchema - A JSON string representing the schema. This is not required // if DataSchemaUri is specified. // // * DataRearrangement - A JSON string that represents the splitting and // rearrangement requirements for the Datasource. // // Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}" // // DataSpec is a required field DataSpec *S3DataSpec `type:"structure" required:"true"` } // String returns the string representation func (s CreateDataSourceFromS3Input) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateDataSourceFromS3Input) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *CreateDataSourceFromS3Input) Validate() error { invalidParams := request.ErrInvalidParams{Context: "CreateDataSourceFromS3Input"} if s.DataSourceId == nil { invalidParams.Add(request.NewErrParamRequired("DataSourceId")) } if s.DataSourceId != nil && len(*s.DataSourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1)) } if s.DataSpec == nil { invalidParams.Add(request.NewErrParamRequired("DataSpec")) } if s.DataSpec != nil { if err := s.DataSpec.Validate(); err != nil { invalidParams.AddNested("DataSpec", err.(request.ErrInvalidParams)) } } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetComputeStatistics sets the ComputeStatistics field's value. func (s *CreateDataSourceFromS3Input) SetComputeStatistics(v bool) *CreateDataSourceFromS3Input { s.ComputeStatistics = &v return s } // SetDataSourceId sets the DataSourceId field's value. func (s *CreateDataSourceFromS3Input) SetDataSourceId(v string) *CreateDataSourceFromS3Input { s.DataSourceId = &v return s } // SetDataSourceName sets the DataSourceName field's value. func (s *CreateDataSourceFromS3Input) SetDataSourceName(v string) *CreateDataSourceFromS3Input { s.DataSourceName = &v return s } // SetDataSpec sets the DataSpec field's value. func (s *CreateDataSourceFromS3Input) SetDataSpec(v *S3DataSpec) *CreateDataSourceFromS3Input { s.DataSpec = v return s } // Represents the output of a CreateDataSourceFromS3 operation, and is an acknowledgement // that Amazon ML received the request. // // The CreateDataSourceFromS3 operation is asynchronous. You can poll for updates // by using the GetBatchPrediction operation and checking the Status parameter. type CreateDataSourceFromS3Output struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the DataSource. This value should // be identical to the value of the DataSourceID in the request. DataSourceId *string `min:"1" type:"string"` } // String returns the string representation func (s CreateDataSourceFromS3Output) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateDataSourceFromS3Output) GoString() string { return s.String() } // SetDataSourceId sets the DataSourceId field's value. func (s *CreateDataSourceFromS3Output) SetDataSourceId(v string) *CreateDataSourceFromS3Output { s.DataSourceId = &v return s } type CreateEvaluationInput struct { _ struct{} `type:"structure"` // The ID of the DataSource for the evaluation. The schema of the DataSource // must match the schema used to create the MLModel. // // EvaluationDataSourceId is a required field EvaluationDataSourceId *string `min:"1" type:"string" required:"true"` // A user-supplied ID that uniquely identifies the Evaluation. // // EvaluationId is a required field EvaluationId *string `min:"1" type:"string" required:"true"` // A user-supplied name or description of the Evaluation. EvaluationName *string `type:"string"` // The ID of the MLModel to evaluate. // // The schema used in creating the MLModel must match the schema of the DataSource // used in the Evaluation. // // MLModelId is a required field MLModelId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s CreateEvaluationInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateEvaluationInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *CreateEvaluationInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "CreateEvaluationInput"} if s.EvaluationDataSourceId == nil { invalidParams.Add(request.NewErrParamRequired("EvaluationDataSourceId")) } if s.EvaluationDataSourceId != nil && len(*s.EvaluationDataSourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("EvaluationDataSourceId", 1)) } if s.EvaluationId == nil { invalidParams.Add(request.NewErrParamRequired("EvaluationId")) } if s.EvaluationId != nil && len(*s.EvaluationId) < 1 { invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1)) } if s.MLModelId == nil { invalidParams.Add(request.NewErrParamRequired("MLModelId")) } if s.MLModelId != nil && len(*s.MLModelId) < 1 { invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetEvaluationDataSourceId sets the EvaluationDataSourceId field's value. func (s *CreateEvaluationInput) SetEvaluationDataSourceId(v string) *CreateEvaluationInput { s.EvaluationDataSourceId = &v return s } // SetEvaluationId sets the EvaluationId field's value. func (s *CreateEvaluationInput) SetEvaluationId(v string) *CreateEvaluationInput { s.EvaluationId = &v return s } // SetEvaluationName sets the EvaluationName field's value. func (s *CreateEvaluationInput) SetEvaluationName(v string) *CreateEvaluationInput { s.EvaluationName = &v return s } // SetMLModelId sets the MLModelId field's value. func (s *CreateEvaluationInput) SetMLModelId(v string) *CreateEvaluationInput { s.MLModelId = &v return s } // Represents the output of a CreateEvaluation operation, and is an acknowledgement // that Amazon ML received the request. // // CreateEvaluation operation is asynchronous. You can poll for status updates // by using the GetEvcaluation operation and checking the Status parameter. type CreateEvaluationOutput struct { _ struct{} `type:"structure"` // The user-supplied ID that uniquely identifies the Evaluation. This value // should be identical to the value of the EvaluationId in the request. EvaluationId *string `min:"1" type:"string"` } // String returns the string representation func (s CreateEvaluationOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateEvaluationOutput) GoString() string { return s.String() } // SetEvaluationId sets the EvaluationId field's value. func (s *CreateEvaluationOutput) SetEvaluationId(v string) *CreateEvaluationOutput { s.EvaluationId = &v return s } type CreateMLModelInput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the MLModel. // // MLModelId is a required field MLModelId *string `min:"1" type:"string" required:"true"` // A user-supplied name or description of the MLModel. MLModelName *string `type:"string"` // The category of supervised learning that this MLModel will address. Choose // from the following types: // // * Choose REGRESSION if the MLModel will be used to predict a numeric value. // // * Choose BINARY if the MLModel result has two possible values. // * Choose MULTICLASS if the MLModel result has a limited number of values. // // For more information, see the Amazon Machine Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg). // // MLModelType is a required field MLModelType *string `type:"string" required:"true" enum:"MLModelType"` // A list of the training parameters in the MLModel. The list is implemented // as a map of key-value pairs. // // The following is the current set of training parameters: // // * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending // on the input data, the size of the model might affect its performance. // // The value is an integer that ranges from 100000 to 2147483648. The default // value is 33554432. // // * sgd.maxPasses - The number of times that the training process traverses // the observations to build the MLModel. The value is an integer that ranges // from 1 to 10000. The default value is 10. // // * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling // the data improves a model's ability to find the optimal solution for a // variety of data types. The valid values are auto and none. The default // value is none. We strongly recommend that you shuffle your data. // // * sgd.l1RegularizationAmount - The coefficient regularization L1 norm. // It controls overfitting the data by penalizing large coefficients. This // tends to drive coefficients to zero, resulting in a sparse feature set. // If you use this parameter, start by specifying a small value, such as // 1.0E-08. // // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to // not use L1 normalization. This parameter can't be used when L2 is specified. // Use this parameter sparingly. // // * sgd.l2RegularizationAmount - The coefficient regularization L2 norm. // It controls overfitting the data by penalizing large coefficients. This // tends to drive coefficients to small, nonzero values. If you use this // parameter, start by specifying a small value, such as 1.0E-08. // // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to // not use L2 normalization. This parameter can't be used when L1 is specified. // Use this parameter sparingly. Parameters map[string]*string `type:"map"` // The data recipe for creating the MLModel. You must specify either the recipe // or its URI. If you don't specify a recipe or its URI, Amazon ML creates a // default. Recipe *string `type:"string"` // The Amazon Simple Storage Service (Amazon S3) location and file name that // contains the MLModel recipe. You must specify either the recipe or its URI. // If you don't specify a recipe or its URI, Amazon ML creates a default. RecipeUri *string `type:"string"` // The DataSource that points to the training data. // // TrainingDataSourceId is a required field TrainingDataSourceId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s CreateMLModelInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateMLModelInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *CreateMLModelInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "CreateMLModelInput"} if s.MLModelId == nil { invalidParams.Add(request.NewErrParamRequired("MLModelId")) } if s.MLModelId != nil && len(*s.MLModelId) < 1 { invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1)) } if s.MLModelType == nil { invalidParams.Add(request.NewErrParamRequired("MLModelType")) } if s.TrainingDataSourceId == nil { invalidParams.Add(request.NewErrParamRequired("TrainingDataSourceId")) } if s.TrainingDataSourceId != nil && len(*s.TrainingDataSourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("TrainingDataSourceId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetMLModelId sets the MLModelId field's value. func (s *CreateMLModelInput) SetMLModelId(v string) *CreateMLModelInput { s.MLModelId = &v return s } // SetMLModelName sets the MLModelName field's value. func (s *CreateMLModelInput) SetMLModelName(v string) *CreateMLModelInput { s.MLModelName = &v return s } // SetMLModelType sets the MLModelType field's value. func (s *CreateMLModelInput) SetMLModelType(v string) *CreateMLModelInput { s.MLModelType = &v return s } // SetParameters sets the Parameters field's value. func (s *CreateMLModelInput) SetParameters(v map[string]*string) *CreateMLModelInput { s.Parameters = v return s } // SetRecipe sets the Recipe field's value. func (s *CreateMLModelInput) SetRecipe(v string) *CreateMLModelInput { s.Recipe = &v return s } // SetRecipeUri sets the RecipeUri field's value. func (s *CreateMLModelInput) SetRecipeUri(v string) *CreateMLModelInput { s.RecipeUri = &v return s } // SetTrainingDataSourceId sets the TrainingDataSourceId field's value. func (s *CreateMLModelInput) SetTrainingDataSourceId(v string) *CreateMLModelInput { s.TrainingDataSourceId = &v return s } // Represents the output of a CreateMLModel operation, and is an acknowledgement // that Amazon ML received the request. // // The CreateMLModel operation is asynchronous. You can poll for status updates // by using the GetMLModel operation and checking the Status parameter. type CreateMLModelOutput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the MLModel. This value should // be identical to the value of the MLModelId in the request. MLModelId *string `min:"1" type:"string"` } // String returns the string representation func (s CreateMLModelOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateMLModelOutput) GoString() string { return s.String() } // SetMLModelId sets the MLModelId field's value. func (s *CreateMLModelOutput) SetMLModelId(v string) *CreateMLModelOutput { s.MLModelId = &v return s } type CreateRealtimeEndpointInput struct { _ struct{} `type:"structure"` // The ID assigned to the MLModel during creation. // // MLModelId is a required field MLModelId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s CreateRealtimeEndpointInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateRealtimeEndpointInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *CreateRealtimeEndpointInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "CreateRealtimeEndpointInput"} if s.MLModelId == nil { invalidParams.Add(request.NewErrParamRequired("MLModelId")) } if s.MLModelId != nil && len(*s.MLModelId) < 1 { invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetMLModelId sets the MLModelId field's value. func (s *CreateRealtimeEndpointInput) SetMLModelId(v string) *CreateRealtimeEndpointInput { s.MLModelId = &v return s } // Represents the output of an CreateRealtimeEndpoint operation. // // The result contains the MLModelId and the endpoint information for the MLModel. // // The endpoint information includes the URI of the MLModel; that is, the location // to send online prediction requests for the specified MLModel. type CreateRealtimeEndpointOutput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the MLModel. This value should // be identical to the value of the MLModelId in the request. MLModelId *string `min:"1" type:"string"` // The endpoint information of the MLModel RealtimeEndpointInfo *RealtimeEndpointInfo `type:"structure"` } // String returns the string representation func (s CreateRealtimeEndpointOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s CreateRealtimeEndpointOutput) GoString() string { return s.String() } // SetMLModelId sets the MLModelId field's value. func (s *CreateRealtimeEndpointOutput) SetMLModelId(v string) *CreateRealtimeEndpointOutput { s.MLModelId = &v return s } // SetRealtimeEndpointInfo sets the RealtimeEndpointInfo field's value. func (s *CreateRealtimeEndpointOutput) SetRealtimeEndpointInfo(v *RealtimeEndpointInfo) *CreateRealtimeEndpointOutput { s.RealtimeEndpointInfo = v return s } // Represents the output of the GetDataSource operation. // // The content consists of the detailed metadata and data file information and // the current status of the DataSource. type DataSource struct { _ struct{} `type:"structure"` // The parameter is true if statistics need to be generated from the observation // data. ComputeStatistics *bool `type:"boolean"` // Long integer type that is a 64-bit signed number. ComputeTime *int64 `type:"long"` // The time that the DataSource was created. The time is expressed in epoch // time. CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The AWS user account from which the DataSource was created. The account type // can be either an AWS root account or an AWS Identity and Access Management // (IAM) user account. CreatedByIamUser *string `type:"string"` // The location and name of the data in Amazon Simple Storage Service (Amazon // S3) that is used by a DataSource. DataLocationS3 *string `type:"string"` // A JSON string that represents the splitting and rearrangement requirement // used when this DataSource was created. DataRearrangement *string `type:"string"` // The total number of observations contained in the data files that the DataSource // references. DataSizeInBytes *int64 `type:"long"` // The ID that is assigned to the DataSource during creation. DataSourceId *string `min:"1" type:"string"` // A timestamp represented in epoch time. FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The time of the most recent edit to the BatchPrediction. The time is expressed // in epoch time. LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // A description of the most recent details about creating the DataSource. Message *string `type:"string"` // A user-supplied name or description of the DataSource. Name *string `type:"string"` // The number of data files referenced by the DataSource. NumberOfFiles *int64 `type:"long"` // The datasource details that are specific to Amazon RDS. RDSMetadata *RDSMetadata `type:"structure"` // Describes the DataSource details specific to Amazon Redshift. RedshiftMetadata *RedshiftMetadata `type:"structure"` // The Amazon Resource Name (ARN) of an AWS IAM Role (http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts), // such as the following: arn:aws:iam::account:role/rolename. RoleARN *string `min:"1" type:"string"` // A timestamp represented in epoch time. StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The current status of the DataSource. This element can have one of the following // values: // // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to // create a DataSource. // * INPROGRESS - The creation process is underway. // * FAILED - The request to create a DataSource did not run to completion. // It is not usable. // * COMPLETED - The creation process completed successfully. // * DELETED - The DataSource is marked as deleted. It is not usable. Status *string `type:"string" enum:"EntityStatus"` } // String returns the string representation func (s DataSource) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DataSource) GoString() string { return s.String() } // SetComputeStatistics sets the ComputeStatistics field's value. func (s *DataSource) SetComputeStatistics(v bool) *DataSource { s.ComputeStatistics = &v return s } // SetComputeTime sets the ComputeTime field's value. func (s *DataSource) SetComputeTime(v int64) *DataSource { s.ComputeTime = &v return s } // SetCreatedAt sets the CreatedAt field's value. func (s *DataSource) SetCreatedAt(v time.Time) *DataSource { s.CreatedAt = &v return s } // SetCreatedByIamUser sets the CreatedByIamUser field's value. func (s *DataSource) SetCreatedByIamUser(v string) *DataSource { s.CreatedByIamUser = &v return s } // SetDataLocationS3 sets the DataLocationS3 field's value. func (s *DataSource) SetDataLocationS3(v string) *DataSource { s.DataLocationS3 = &v return s } // SetDataRearrangement sets the DataRearrangement field's value. func (s *DataSource) SetDataRearrangement(v string) *DataSource { s.DataRearrangement = &v return s } // SetDataSizeInBytes sets the DataSizeInBytes field's value. func (s *DataSource) SetDataSizeInBytes(v int64) *DataSource { s.DataSizeInBytes = &v return s } // SetDataSourceId sets the DataSourceId field's value. func (s *DataSource) SetDataSourceId(v string) *DataSource { s.DataSourceId = &v return s } // SetFinishedAt sets the FinishedAt field's value. func (s *DataSource) SetFinishedAt(v time.Time) *DataSource { s.FinishedAt = &v return s } // SetLastUpdatedAt sets the LastUpdatedAt field's value. func (s *DataSource) SetLastUpdatedAt(v time.Time) *DataSource { s.LastUpdatedAt = &v return s } // SetMessage sets the Message field's value. func (s *DataSource) SetMessage(v string) *DataSource { s.Message = &v return s } // SetName sets the Name field's value. func (s *DataSource) SetName(v string) *DataSource { s.Name = &v return s } // SetNumberOfFiles sets the NumberOfFiles field's value. func (s *DataSource) SetNumberOfFiles(v int64) *DataSource { s.NumberOfFiles = &v return s } // SetRDSMetadata sets the RDSMetadata field's value. func (s *DataSource) SetRDSMetadata(v *RDSMetadata) *DataSource { s.RDSMetadata = v return s } // SetRedshiftMetadata sets the RedshiftMetadata field's value. func (s *DataSource) SetRedshiftMetadata(v *RedshiftMetadata) *DataSource { s.RedshiftMetadata = v return s } // SetRoleARN sets the RoleARN field's value. func (s *DataSource) SetRoleARN(v string) *DataSource { s.RoleARN = &v return s } // SetStartedAt sets the StartedAt field's value. func (s *DataSource) SetStartedAt(v time.Time) *DataSource { s.StartedAt = &v return s } // SetStatus sets the Status field's value. func (s *DataSource) SetStatus(v string) *DataSource { s.Status = &v return s } type DeleteBatchPredictionInput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the BatchPrediction. // // BatchPredictionId is a required field BatchPredictionId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s DeleteBatchPredictionInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteBatchPredictionInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DeleteBatchPredictionInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DeleteBatchPredictionInput"} if s.BatchPredictionId == nil { invalidParams.Add(request.NewErrParamRequired("BatchPredictionId")) } if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 { invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetBatchPredictionId sets the BatchPredictionId field's value. func (s *DeleteBatchPredictionInput) SetBatchPredictionId(v string) *DeleteBatchPredictionInput { s.BatchPredictionId = &v return s } // Represents the output of a DeleteBatchPrediction operation. // // You can use the GetBatchPrediction operation and check the value of the Status // parameter to see whether a BatchPrediction is marked as DELETED. type DeleteBatchPredictionOutput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the BatchPrediction. This value // should be identical to the value of the BatchPredictionID in the request. BatchPredictionId *string `min:"1" type:"string"` } // String returns the string representation func (s DeleteBatchPredictionOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteBatchPredictionOutput) GoString() string { return s.String() } // SetBatchPredictionId sets the BatchPredictionId field's value. func (s *DeleteBatchPredictionOutput) SetBatchPredictionId(v string) *DeleteBatchPredictionOutput { s.BatchPredictionId = &v return s } type DeleteDataSourceInput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the DataSource. // // DataSourceId is a required field DataSourceId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s DeleteDataSourceInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteDataSourceInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DeleteDataSourceInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DeleteDataSourceInput"} if s.DataSourceId == nil { invalidParams.Add(request.NewErrParamRequired("DataSourceId")) } if s.DataSourceId != nil && len(*s.DataSourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetDataSourceId sets the DataSourceId field's value. func (s *DeleteDataSourceInput) SetDataSourceId(v string) *DeleteDataSourceInput { s.DataSourceId = &v return s } // Represents the output of a DeleteDataSource operation. type DeleteDataSourceOutput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the DataSource. This value should // be identical to the value of the DataSourceID in the request. DataSourceId *string `min:"1" type:"string"` } // String returns the string representation func (s DeleteDataSourceOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteDataSourceOutput) GoString() string { return s.String() } // SetDataSourceId sets the DataSourceId field's value. func (s *DeleteDataSourceOutput) SetDataSourceId(v string) *DeleteDataSourceOutput { s.DataSourceId = &v return s } type DeleteEvaluationInput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the Evaluation to delete. // // EvaluationId is a required field EvaluationId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s DeleteEvaluationInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteEvaluationInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DeleteEvaluationInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DeleteEvaluationInput"} if s.EvaluationId == nil { invalidParams.Add(request.NewErrParamRequired("EvaluationId")) } if s.EvaluationId != nil && len(*s.EvaluationId) < 1 { invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetEvaluationId sets the EvaluationId field's value. func (s *DeleteEvaluationInput) SetEvaluationId(v string) *DeleteEvaluationInput { s.EvaluationId = &v return s } // Represents the output of a DeleteEvaluation operation. The output indicates // that Amazon Machine Learning (Amazon ML) received the request. // // You can use the GetEvaluation operation and check the value of the Status // parameter to see whether an Evaluation is marked as DELETED. type DeleteEvaluationOutput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the Evaluation. This value should // be identical to the value of the EvaluationId in the request. EvaluationId *string `min:"1" type:"string"` } // String returns the string representation func (s DeleteEvaluationOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteEvaluationOutput) GoString() string { return s.String() } // SetEvaluationId sets the EvaluationId field's value. func (s *DeleteEvaluationOutput) SetEvaluationId(v string) *DeleteEvaluationOutput { s.EvaluationId = &v return s } type DeleteMLModelInput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the MLModel. // // MLModelId is a required field MLModelId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s DeleteMLModelInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteMLModelInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DeleteMLModelInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DeleteMLModelInput"} if s.MLModelId == nil { invalidParams.Add(request.NewErrParamRequired("MLModelId")) } if s.MLModelId != nil && len(*s.MLModelId) < 1 { invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetMLModelId sets the MLModelId field's value. func (s *DeleteMLModelInput) SetMLModelId(v string) *DeleteMLModelInput { s.MLModelId = &v return s } // Represents the output of a DeleteMLModel operation. // // You can use the GetMLModel operation and check the value of the Status parameter // to see whether an MLModel is marked as DELETED. type DeleteMLModelOutput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the MLModel. This value should // be identical to the value of the MLModelID in the request. MLModelId *string `min:"1" type:"string"` } // String returns the string representation func (s DeleteMLModelOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteMLModelOutput) GoString() string { return s.String() } // SetMLModelId sets the MLModelId field's value. func (s *DeleteMLModelOutput) SetMLModelId(v string) *DeleteMLModelOutput { s.MLModelId = &v return s } type DeleteRealtimeEndpointInput struct { _ struct{} `type:"structure"` // The ID assigned to the MLModel during creation. // // MLModelId is a required field MLModelId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s DeleteRealtimeEndpointInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteRealtimeEndpointInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DeleteRealtimeEndpointInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DeleteRealtimeEndpointInput"} if s.MLModelId == nil { invalidParams.Add(request.NewErrParamRequired("MLModelId")) } if s.MLModelId != nil && len(*s.MLModelId) < 1 { invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetMLModelId sets the MLModelId field's value. func (s *DeleteRealtimeEndpointInput) SetMLModelId(v string) *DeleteRealtimeEndpointInput { s.MLModelId = &v return s } // Represents the output of an DeleteRealtimeEndpoint operation. // // The result contains the MLModelId and the endpoint information for the MLModel. type DeleteRealtimeEndpointOutput struct { _ struct{} `type:"structure"` // A user-supplied ID that uniquely identifies the MLModel. This value should // be identical to the value of the MLModelId in the request. MLModelId *string `min:"1" type:"string"` // The endpoint information of the MLModel RealtimeEndpointInfo *RealtimeEndpointInfo `type:"structure"` } // String returns the string representation func (s DeleteRealtimeEndpointOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteRealtimeEndpointOutput) GoString() string { return s.String() } // SetMLModelId sets the MLModelId field's value. func (s *DeleteRealtimeEndpointOutput) SetMLModelId(v string) *DeleteRealtimeEndpointOutput { s.MLModelId = &v return s } // SetRealtimeEndpointInfo sets the RealtimeEndpointInfo field's value. func (s *DeleteRealtimeEndpointOutput) SetRealtimeEndpointInfo(v *RealtimeEndpointInfo) *DeleteRealtimeEndpointOutput { s.RealtimeEndpointInfo = v return s } type DeleteTagsInput struct { _ struct{} `type:"structure"` // The ID of the tagged ML object. For example, exampleModelId. // // ResourceId is a required field ResourceId *string `min:"1" type:"string" required:"true"` // The type of the tagged ML object. // // ResourceType is a required field ResourceType *string `type:"string" required:"true" enum:"TaggableResourceType"` // One or more tags to delete. // // TagKeys is a required field TagKeys []*string `type:"list" required:"true"` } // String returns the string representation func (s DeleteTagsInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteTagsInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DeleteTagsInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DeleteTagsInput"} if s.ResourceId == nil { invalidParams.Add(request.NewErrParamRequired("ResourceId")) } if s.ResourceId != nil && len(*s.ResourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("ResourceId", 1)) } if s.ResourceType == nil { invalidParams.Add(request.NewErrParamRequired("ResourceType")) } if s.TagKeys == nil { invalidParams.Add(request.NewErrParamRequired("TagKeys")) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetResourceId sets the ResourceId field's value. func (s *DeleteTagsInput) SetResourceId(v string) *DeleteTagsInput { s.ResourceId = &v return s } // SetResourceType sets the ResourceType field's value. func (s *DeleteTagsInput) SetResourceType(v string) *DeleteTagsInput { s.ResourceType = &v return s } // SetTagKeys sets the TagKeys field's value. func (s *DeleteTagsInput) SetTagKeys(v []*string) *DeleteTagsInput { s.TagKeys = v return s } // Amazon ML returns the following elements. type DeleteTagsOutput struct { _ struct{} `type:"structure"` // The ID of the ML object from which tags were deleted. ResourceId *string `min:"1" type:"string"` // The type of the ML object from which tags were deleted. ResourceType *string `type:"string" enum:"TaggableResourceType"` } // String returns the string representation func (s DeleteTagsOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DeleteTagsOutput) GoString() string { return s.String() } // SetResourceId sets the ResourceId field's value. func (s *DeleteTagsOutput) SetResourceId(v string) *DeleteTagsOutput { s.ResourceId = &v return s } // SetResourceType sets the ResourceType field's value. func (s *DeleteTagsOutput) SetResourceType(v string) *DeleteTagsOutput { s.ResourceType = &v return s } type DescribeBatchPredictionsInput struct { _ struct{} `type:"structure"` // The equal to operator. The BatchPrediction results will have FilterVariable // values that exactly match the value specified with EQ. EQ *string `type:"string"` // Use one of the following variables to filter a list of BatchPrediction: // // * CreatedAt - Sets the search criteria to the BatchPrediction creation // date. // * Status - Sets the search criteria to the BatchPrediction status. // * Name - Sets the search criteria to the contents of the BatchPredictionName. // // * IAMUser - Sets the search criteria to the user account that invoked // the BatchPrediction creation. // * MLModelId - Sets the search criteria to the MLModel used in the BatchPrediction. // // * DataSourceId - Sets the search criteria to the DataSource used in the // BatchPrediction. // * DataURI - Sets the search criteria to the data file(s) used in the BatchPrediction. // The URL can identify either a file or an Amazon Simple Storage Solution // (Amazon S3) bucket or directory. FilterVariable *string `type:"string" enum:"BatchPredictionFilterVariable"` // The greater than or equal to operator. The BatchPrediction results will have // FilterVariable values that are greater than or equal to the value specified // with GE. GE *string `type:"string"` // The greater than operator. The BatchPrediction results will have FilterVariable // values that are greater than the value specified with GT. GT *string `type:"string"` // The less than or equal to operator. The BatchPrediction results will have // FilterVariable values that are less than or equal to the value specified // with LE. LE *string `type:"string"` // The less than operator. The BatchPrediction results will have FilterVariable // values that are less than the value specified with LT. LT *string `type:"string"` // The number of pages of information to include in the result. The range of // acceptable values is 1 through 100. The default value is 100. Limit *int64 `min:"1" type:"integer"` // The not equal to operator. The BatchPrediction results will have FilterVariable // values not equal to the value specified with NE. NE *string `type:"string"` // An ID of the page in the paginated results. NextToken *string `type:"string"` // A string that is found at the beginning of a variable, such as Name or Id. // // For example, a Batch Prediction operation could have the Name2014-09-09-HolidayGiftMailer. // To search for this BatchPrediction, select Name for the FilterVariable and // any of the following strings for the Prefix: // // * 2014-09 // // * 2014-09-09 // // * 2014-09-09-Holiday Prefix *string `type:"string"` // A two-value parameter that determines the sequence of the resulting list // of MLModels. // // * asc - Arranges the list in ascending order (A-Z, 0-9). // * dsc - Arranges the list in descending order (Z-A, 9-0). // Results are sorted by FilterVariable. SortOrder *string `type:"string" enum:"SortOrder"` } // String returns the string representation func (s DescribeBatchPredictionsInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DescribeBatchPredictionsInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DescribeBatchPredictionsInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DescribeBatchPredictionsInput"} if s.Limit != nil && *s.Limit < 1 { invalidParams.Add(request.NewErrParamMinValue("Limit", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetEQ sets the EQ field's value. func (s *DescribeBatchPredictionsInput) SetEQ(v string) *DescribeBatchPredictionsInput { s.EQ = &v return s } // SetFilterVariable sets the FilterVariable field's value. func (s *DescribeBatchPredictionsInput) SetFilterVariable(v string) *DescribeBatchPredictionsInput { s.FilterVariable = &v return s } // SetGE sets the GE field's value. func (s *DescribeBatchPredictionsInput) SetGE(v string) *DescribeBatchPredictionsInput { s.GE = &v return s } // SetGT sets the GT field's value. func (s *DescribeBatchPredictionsInput) SetGT(v string) *DescribeBatchPredictionsInput { s.GT = &v return s } // SetLE sets the LE field's value. func (s *DescribeBatchPredictionsInput) SetLE(v string) *DescribeBatchPredictionsInput { s.LE = &v return s } // SetLT sets the LT field's value. func (s *DescribeBatchPredictionsInput) SetLT(v string) *DescribeBatchPredictionsInput { s.LT = &v return s } // SetLimit sets the Limit field's value. func (s *DescribeBatchPredictionsInput) SetLimit(v int64) *DescribeBatchPredictionsInput { s.Limit = &v return s } // SetNE sets the NE field's value. func (s *DescribeBatchPredictionsInput) SetNE(v string) *DescribeBatchPredictionsInput { s.NE = &v return s } // SetNextToken sets the NextToken field's value. func (s *DescribeBatchPredictionsInput) SetNextToken(v string) *DescribeBatchPredictionsInput { s.NextToken = &v return s } // SetPrefix sets the Prefix field's value. func (s *DescribeBatchPredictionsInput) SetPrefix(v string) *DescribeBatchPredictionsInput { s.Prefix = &v return s } // SetSortOrder sets the SortOrder field's value. func (s *DescribeBatchPredictionsInput) SetSortOrder(v string) *DescribeBatchPredictionsInput { s.SortOrder = &v return s } // Represents the output of a DescribeBatchPredictions operation. The content // is essentially a list of BatchPredictions. type DescribeBatchPredictionsOutput struct { _ struct{} `type:"structure"` // The ID of the next page in the paginated results that indicates at least // one more page follows. NextToken *string `type:"string"` // A list of BatchPrediction objects that meet the search criteria. Results []*BatchPrediction `type:"list"` } // String returns the string representation func (s DescribeBatchPredictionsOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DescribeBatchPredictionsOutput) GoString() string { return s.String() } // SetNextToken sets the NextToken field's value. func (s *DescribeBatchPredictionsOutput) SetNextToken(v string) *DescribeBatchPredictionsOutput { s.NextToken = &v return s } // SetResults sets the Results field's value. func (s *DescribeBatchPredictionsOutput) SetResults(v []*BatchPrediction) *DescribeBatchPredictionsOutput { s.Results = v return s } type DescribeDataSourcesInput struct { _ struct{} `type:"structure"` // The equal to operator. The DataSource results will have FilterVariable values // that exactly match the value specified with EQ. EQ *string `type:"string"` // Use one of the following variables to filter a list of DataSource: // // * CreatedAt - Sets the search criteria to DataSource creation dates. // * Status - Sets the search criteria to DataSource statuses. // * Name - Sets the search criteria to the contents of DataSourceName. // * DataUri - Sets the search criteria to the URI of data files used to // create the DataSource. The URI can identify either a file or an Amazon // Simple Storage Service (Amazon S3) bucket or directory. // * IAMUser - Sets the search criteria to the user account that invoked // the DataSource creation. FilterVariable *string `type:"string" enum:"DataSourceFilterVariable"` // The greater than or equal to operator. The DataSource results will have FilterVariable // values that are greater than or equal to the value specified with GE. GE *string `type:"string"` // The greater than operator. The DataSource results will have FilterVariable // values that are greater than the value specified with GT. GT *string `type:"string"` // The less than or equal to operator. The DataSource results will have FilterVariable // values that are less than or equal to the value specified with LE. LE *string `type:"string"` // The less than operator. The DataSource results will have FilterVariable values // that are less than the value specified with LT. LT *string `type:"string"` // The maximum number of DataSource to include in the result. Limit *int64 `min:"1" type:"integer"` // The not equal to operator. The DataSource results will have FilterVariable // values not equal to the value specified with NE. NE *string `type:"string"` // The ID of the page in the paginated results. NextToken *string `type:"string"` // A string that is found at the beginning of a variable, such as Name or Id. // // For example, a DataSource could have the Name2014-09-09-HolidayGiftMailer. // To search for this DataSource, select Name for the FilterVariable and any // of the following strings for the Prefix: // // * 2014-09 // // * 2014-09-09 // // * 2014-09-09-Holiday Prefix *string `type:"string"` // A two-value parameter that determines the sequence of the resulting list // of DataSource. // // * asc - Arranges the list in ascending order (A-Z, 0-9). // * dsc - Arranges the list in descending order (Z-A, 9-0). // Results are sorted by FilterVariable. SortOrder *string `type:"string" enum:"SortOrder"` } // String returns the string representation func (s DescribeDataSourcesInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DescribeDataSourcesInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DescribeDataSourcesInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DescribeDataSourcesInput"} if s.Limit != nil && *s.Limit < 1 { invalidParams.Add(request.NewErrParamMinValue("Limit", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetEQ sets the EQ field's value. func (s *DescribeDataSourcesInput) SetEQ(v string) *DescribeDataSourcesInput { s.EQ = &v return s } // SetFilterVariable sets the FilterVariable field's value. func (s *DescribeDataSourcesInput) SetFilterVariable(v string) *DescribeDataSourcesInput { s.FilterVariable = &v return s } // SetGE sets the GE field's value. func (s *DescribeDataSourcesInput) SetGE(v string) *DescribeDataSourcesInput { s.GE = &v return s } // SetGT sets the GT field's value. func (s *DescribeDataSourcesInput) SetGT(v string) *DescribeDataSourcesInput { s.GT = &v return s } // SetLE sets the LE field's value. func (s *DescribeDataSourcesInput) SetLE(v string) *DescribeDataSourcesInput { s.LE = &v return s } // SetLT sets the LT field's value. func (s *DescribeDataSourcesInput) SetLT(v string) *DescribeDataSourcesInput { s.LT = &v return s } // SetLimit sets the Limit field's value. func (s *DescribeDataSourcesInput) SetLimit(v int64) *DescribeDataSourcesInput { s.Limit = &v return s } // SetNE sets the NE field's value. func (s *DescribeDataSourcesInput) SetNE(v string) *DescribeDataSourcesInput { s.NE = &v return s } // SetNextToken sets the NextToken field's value. func (s *DescribeDataSourcesInput) SetNextToken(v string) *DescribeDataSourcesInput { s.NextToken = &v return s } // SetPrefix sets the Prefix field's value. func (s *DescribeDataSourcesInput) SetPrefix(v string) *DescribeDataSourcesInput { s.Prefix = &v return s } // SetSortOrder sets the SortOrder field's value. func (s *DescribeDataSourcesInput) SetSortOrder(v string) *DescribeDataSourcesInput { s.SortOrder = &v return s } // Represents the query results from a DescribeDataSources operation. The content // is essentially a list of DataSource. type DescribeDataSourcesOutput struct { _ struct{} `type:"structure"` // An ID of the next page in the paginated results that indicates at least one // more page follows. NextToken *string `type:"string"` // A list of DataSource that meet the search criteria. Results []*DataSource `type:"list"` } // String returns the string representation func (s DescribeDataSourcesOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DescribeDataSourcesOutput) GoString() string { return s.String() } // SetNextToken sets the NextToken field's value. func (s *DescribeDataSourcesOutput) SetNextToken(v string) *DescribeDataSourcesOutput { s.NextToken = &v return s } // SetResults sets the Results field's value. func (s *DescribeDataSourcesOutput) SetResults(v []*DataSource) *DescribeDataSourcesOutput { s.Results = v return s } type DescribeEvaluationsInput struct { _ struct{} `type:"structure"` // The equal to operator. The Evaluation results will have FilterVariable values // that exactly match the value specified with EQ. EQ *string `type:"string"` // Use one of the following variable to filter a list of Evaluation objects: // // * CreatedAt - Sets the search criteria to the Evaluation creation date. // // * Status - Sets the search criteria to the Evaluation status. // * Name - Sets the search criteria to the contents of EvaluationName. // * IAMUser - Sets the search criteria to the user account that invoked // an Evaluation. // * MLModelId - Sets the search criteria to the MLModel that was evaluated. // // * DataSourceId - Sets the search criteria to the DataSource used in Evaluation. // // * DataUri - Sets the search criteria to the data file(s) used in Evaluation. // The URL can identify either a file or an Amazon Simple Storage Solution // (Amazon S3) bucket or directory. FilterVariable *string `type:"string" enum:"EvaluationFilterVariable"` // The greater than or equal to operator. The Evaluation results will have FilterVariable // values that are greater than or equal to the value specified with GE. GE *string `type:"string"` // The greater than operator. The Evaluation results will have FilterVariable // values that are greater than the value specified with GT. GT *string `type:"string"` // The less than or equal to operator. The Evaluation results will have FilterVariable // values that are less than or equal to the value specified with LE. LE *string `type:"string"` // The less than operator. The Evaluation results will have FilterVariable values // that are less than the value specified with LT. LT *string `type:"string"` // The maximum number of Evaluation to include in the result. Limit *int64 `min:"1" type:"integer"` // The not equal to operator. The Evaluation results will have FilterVariable // values not equal to the value specified with NE. NE *string `type:"string"` // The ID of the page in the paginated results. NextToken *string `type:"string"` // A string that is found at the beginning of a variable, such as Name or Id. // // For example, an Evaluation could have the Name2014-09-09-HolidayGiftMailer. // To search for this Evaluation, select Name for the FilterVariable and any // of the following strings for the Prefix: // // * 2014-09 // // * 2014-09-09 // // * 2014-09-09-Holiday Prefix *string `type:"string"` // A two-value parameter that determines the sequence of the resulting list // of Evaluation. // // * asc - Arranges the list in ascending order (A-Z, 0-9). // * dsc - Arranges the list in descending order (Z-A, 9-0). // Results are sorted by FilterVariable. SortOrder *string `type:"string" enum:"SortOrder"` } // String returns the string representation func (s DescribeEvaluationsInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DescribeEvaluationsInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DescribeEvaluationsInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DescribeEvaluationsInput"} if s.Limit != nil && *s.Limit < 1 { invalidParams.Add(request.NewErrParamMinValue("Limit", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetEQ sets the EQ field's value. func (s *DescribeEvaluationsInput) SetEQ(v string) *DescribeEvaluationsInput { s.EQ = &v return s } // SetFilterVariable sets the FilterVariable field's value. func (s *DescribeEvaluationsInput) SetFilterVariable(v string) *DescribeEvaluationsInput { s.FilterVariable = &v return s } // SetGE sets the GE field's value. func (s *DescribeEvaluationsInput) SetGE(v string) *DescribeEvaluationsInput { s.GE = &v return s } // SetGT sets the GT field's value. func (s *DescribeEvaluationsInput) SetGT(v string) *DescribeEvaluationsInput { s.GT = &v return s } // SetLE sets the LE field's value. func (s *DescribeEvaluationsInput) SetLE(v string) *DescribeEvaluationsInput { s.LE = &v return s } // SetLT sets the LT field's value. func (s *DescribeEvaluationsInput) SetLT(v string) *DescribeEvaluationsInput { s.LT = &v return s } // SetLimit sets the Limit field's value. func (s *DescribeEvaluationsInput) SetLimit(v int64) *DescribeEvaluationsInput { s.Limit = &v return s } // SetNE sets the NE field's value. func (s *DescribeEvaluationsInput) SetNE(v string) *DescribeEvaluationsInput { s.NE = &v return s } // SetNextToken sets the NextToken field's value. func (s *DescribeEvaluationsInput) SetNextToken(v string) *DescribeEvaluationsInput { s.NextToken = &v return s } // SetPrefix sets the Prefix field's value. func (s *DescribeEvaluationsInput) SetPrefix(v string) *DescribeEvaluationsInput { s.Prefix = &v return s } // SetSortOrder sets the SortOrder field's value. func (s *DescribeEvaluationsInput) SetSortOrder(v string) *DescribeEvaluationsInput { s.SortOrder = &v return s } // Represents the query results from a DescribeEvaluations operation. The content // is essentially a list of Evaluation. type DescribeEvaluationsOutput struct { _ struct{} `type:"structure"` // The ID of the next page in the paginated results that indicates at least // one more page follows. NextToken *string `type:"string"` // A list of Evaluation that meet the search criteria. Results []*Evaluation `type:"list"` } // String returns the string representation func (s DescribeEvaluationsOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DescribeEvaluationsOutput) GoString() string { return s.String() } // SetNextToken sets the NextToken field's value. func (s *DescribeEvaluationsOutput) SetNextToken(v string) *DescribeEvaluationsOutput { s.NextToken = &v return s } // SetResults sets the Results field's value. func (s *DescribeEvaluationsOutput) SetResults(v []*Evaluation) *DescribeEvaluationsOutput { s.Results = v return s } type DescribeMLModelsInput struct { _ struct{} `type:"structure"` // The equal to operator. The MLModel results will have FilterVariable values // that exactly match the value specified with EQ. EQ *string `type:"string"` // Use one of the following variables to filter a list of MLModel: // // * CreatedAt - Sets the search criteria to MLModel creation date. // * Status - Sets the search criteria to MLModel status. // * Name - Sets the search criteria to the contents of MLModelName. // * IAMUser - Sets the search criteria to the user account that invoked // the MLModel creation. // * TrainingDataSourceId - Sets the search criteria to the DataSource used // to train one or more MLModel. // * RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time // endpoint status. // * MLModelType - Sets the search criteria to MLModel type: binary, regression, // or multi-class. // * Algorithm - Sets the search criteria to the algorithm that the MLModel // uses. // * TrainingDataURI - Sets the search criteria to the data file(s) used // in training a MLModel. The URL can identify either a file or an Amazon // Simple Storage Service (Amazon S3) bucket or directory. FilterVariable *string `type:"string" enum:"MLModelFilterVariable"` // The greater than or equal to operator. The MLModel results will have FilterVariable // values that are greater than or equal to the value specified with GE. GE *string `type:"string"` // The greater than operator. The MLModel results will have FilterVariable values // that are greater than the value specified with GT. GT *string `type:"string"` // The less than or equal to operator. The MLModel results will have FilterVariable // values that are less than or equal to the value specified with LE. LE *string `type:"string"` // The less than operator. The MLModel results will have FilterVariable values // that are less than the value specified with LT. LT *string `type:"string"` // The number of pages of information to include in the result. The range of // acceptable values is 1 through 100. The default value is 100. Limit *int64 `min:"1" type:"integer"` // The not equal to operator. The MLModel results will have FilterVariable values // not equal to the value specified with NE. NE *string `type:"string"` // The ID of the page in the paginated results. NextToken *string `type:"string"` // A string that is found at the beginning of a variable, such as Name or Id. // // For example, an MLModel could have the Name2014-09-09-HolidayGiftMailer. // To search for this MLModel, select Name for the FilterVariable and any of // the following strings for the Prefix: // // * 2014-09 // // * 2014-09-09 // // * 2014-09-09-Holiday Prefix *string `type:"string"` // A two-value parameter that determines the sequence of the resulting list // of MLModel. // // * asc - Arranges the list in ascending order (A-Z, 0-9). // * dsc - Arranges the list in descending order (Z-A, 9-0). // Results are sorted by FilterVariable. SortOrder *string `type:"string" enum:"SortOrder"` } // String returns the string representation func (s DescribeMLModelsInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DescribeMLModelsInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DescribeMLModelsInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DescribeMLModelsInput"} if s.Limit != nil && *s.Limit < 1 { invalidParams.Add(request.NewErrParamMinValue("Limit", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetEQ sets the EQ field's value. func (s *DescribeMLModelsInput) SetEQ(v string) *DescribeMLModelsInput { s.EQ = &v return s } // SetFilterVariable sets the FilterVariable field's value. func (s *DescribeMLModelsInput) SetFilterVariable(v string) *DescribeMLModelsInput { s.FilterVariable = &v return s } // SetGE sets the GE field's value. func (s *DescribeMLModelsInput) SetGE(v string) *DescribeMLModelsInput { s.GE = &v return s } // SetGT sets the GT field's value. func (s *DescribeMLModelsInput) SetGT(v string) *DescribeMLModelsInput { s.GT = &v return s } // SetLE sets the LE field's value. func (s *DescribeMLModelsInput) SetLE(v string) *DescribeMLModelsInput { s.LE = &v return s } // SetLT sets the LT field's value. func (s *DescribeMLModelsInput) SetLT(v string) *DescribeMLModelsInput { s.LT = &v return s } // SetLimit sets the Limit field's value. func (s *DescribeMLModelsInput) SetLimit(v int64) *DescribeMLModelsInput { s.Limit = &v return s } // SetNE sets the NE field's value. func (s *DescribeMLModelsInput) SetNE(v string) *DescribeMLModelsInput { s.NE = &v return s } // SetNextToken sets the NextToken field's value. func (s *DescribeMLModelsInput) SetNextToken(v string) *DescribeMLModelsInput { s.NextToken = &v return s } // SetPrefix sets the Prefix field's value. func (s *DescribeMLModelsInput) SetPrefix(v string) *DescribeMLModelsInput { s.Prefix = &v return s } // SetSortOrder sets the SortOrder field's value. func (s *DescribeMLModelsInput) SetSortOrder(v string) *DescribeMLModelsInput { s.SortOrder = &v return s } // Represents the output of a DescribeMLModels operation. The content is essentially // a list of MLModel. type DescribeMLModelsOutput struct { _ struct{} `type:"structure"` // The ID of the next page in the paginated results that indicates at least // one more page follows. NextToken *string `type:"string"` // A list of MLModel that meet the search criteria. Results []*MLModel `type:"list"` } // String returns the string representation func (s DescribeMLModelsOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DescribeMLModelsOutput) GoString() string { return s.String() } // SetNextToken sets the NextToken field's value. func (s *DescribeMLModelsOutput) SetNextToken(v string) *DescribeMLModelsOutput { s.NextToken = &v return s } // SetResults sets the Results field's value. func (s *DescribeMLModelsOutput) SetResults(v []*MLModel) *DescribeMLModelsOutput { s.Results = v return s } type DescribeTagsInput struct { _ struct{} `type:"structure"` // The ID of the ML object. For example, exampleModelId. // // ResourceId is a required field ResourceId *string `min:"1" type:"string" required:"true"` // The type of the ML object. // // ResourceType is a required field ResourceType *string `type:"string" required:"true" enum:"TaggableResourceType"` } // String returns the string representation func (s DescribeTagsInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DescribeTagsInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *DescribeTagsInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "DescribeTagsInput"} if s.ResourceId == nil { invalidParams.Add(request.NewErrParamRequired("ResourceId")) } if s.ResourceId != nil && len(*s.ResourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("ResourceId", 1)) } if s.ResourceType == nil { invalidParams.Add(request.NewErrParamRequired("ResourceType")) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetResourceId sets the ResourceId field's value. func (s *DescribeTagsInput) SetResourceId(v string) *DescribeTagsInput { s.ResourceId = &v return s } // SetResourceType sets the ResourceType field's value. func (s *DescribeTagsInput) SetResourceType(v string) *DescribeTagsInput { s.ResourceType = &v return s } // Amazon ML returns the following elements. type DescribeTagsOutput struct { _ struct{} `type:"structure"` // The ID of the tagged ML object. ResourceId *string `min:"1" type:"string"` // The type of the tagged ML object. ResourceType *string `type:"string" enum:"TaggableResourceType"` // A list of tags associated with the ML object. Tags []*Tag `type:"list"` } // String returns the string representation func (s DescribeTagsOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s DescribeTagsOutput) GoString() string { return s.String() } // SetResourceId sets the ResourceId field's value. func (s *DescribeTagsOutput) SetResourceId(v string) *DescribeTagsOutput { s.ResourceId = &v return s } // SetResourceType sets the ResourceType field's value. func (s *DescribeTagsOutput) SetResourceType(v string) *DescribeTagsOutput { s.ResourceType = &v return s } // SetTags sets the Tags field's value. func (s *DescribeTagsOutput) SetTags(v []*Tag) *DescribeTagsOutput { s.Tags = v return s } // Represents the output of GetEvaluation operation. // // The content consists of the detailed metadata and data file information and // the current status of the Evaluation. type Evaluation struct { _ struct{} `type:"structure"` // Long integer type that is a 64-bit signed number. ComputeTime *int64 `type:"long"` // The time that the Evaluation was created. The time is expressed in epoch // time. CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The AWS user account that invoked the evaluation. The account type can be // either an AWS root account or an AWS Identity and Access Management (IAM) // user account. CreatedByIamUser *string `type:"string"` // The ID of the DataSource that is used to evaluate the MLModel. EvaluationDataSourceId *string `min:"1" type:"string"` // The ID that is assigned to the Evaluation at creation. EvaluationId *string `min:"1" type:"string"` // A timestamp represented in epoch time. FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The location and name of the data in Amazon Simple Storage Server (Amazon // S3) that is used in the evaluation. InputDataLocationS3 *string `type:"string"` // The time of the most recent edit to the Evaluation. The time is expressed // in epoch time. LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The ID of the MLModel that is the focus of the evaluation. MLModelId *string `min:"1" type:"string"` // A description of the most recent details about evaluating the MLModel. Message *string `type:"string"` // A user-supplied name or description of the Evaluation. Name *string `type:"string"` // Measurements of how well the MLModel performed, using observations referenced // by the DataSource. One of the following metrics is returned, based on the // type of the MLModel: // // * BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique // to measure performance. // // * RegressionRMSE: A regression MLModel uses the Root Mean Square Error // (RMSE) technique to measure performance. RMSE measures the difference // between predicted and actual values for a single variable. // // * MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique // to measure performance. // // For more information about performance metrics, please see the Amazon Machine // Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg). PerformanceMetrics *PerformanceMetrics `type:"structure"` // A timestamp represented in epoch time. StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The status of the evaluation. This element can have one of the following // values: // // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to // evaluate an MLModel. // * INPROGRESS - The evaluation is underway. // * FAILED - The request to evaluate an MLModel did not run to completion. // It is not usable. // * COMPLETED - The evaluation process completed successfully. // * DELETED - The Evaluation is marked as deleted. It is not usable. Status *string `type:"string" enum:"EntityStatus"` } // String returns the string representation func (s Evaluation) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s Evaluation) GoString() string { return s.String() } // SetComputeTime sets the ComputeTime field's value. func (s *Evaluation) SetComputeTime(v int64) *Evaluation { s.ComputeTime = &v return s } // SetCreatedAt sets the CreatedAt field's value. func (s *Evaluation) SetCreatedAt(v time.Time) *Evaluation { s.CreatedAt = &v return s } // SetCreatedByIamUser sets the CreatedByIamUser field's value. func (s *Evaluation) SetCreatedByIamUser(v string) *Evaluation { s.CreatedByIamUser = &v return s } // SetEvaluationDataSourceId sets the EvaluationDataSourceId field's value. func (s *Evaluation) SetEvaluationDataSourceId(v string) *Evaluation { s.EvaluationDataSourceId = &v return s } // SetEvaluationId sets the EvaluationId field's value. func (s *Evaluation) SetEvaluationId(v string) *Evaluation { s.EvaluationId = &v return s } // SetFinishedAt sets the FinishedAt field's value. func (s *Evaluation) SetFinishedAt(v time.Time) *Evaluation { s.FinishedAt = &v return s } // SetInputDataLocationS3 sets the InputDataLocationS3 field's value. func (s *Evaluation) SetInputDataLocationS3(v string) *Evaluation { s.InputDataLocationS3 = &v return s } // SetLastUpdatedAt sets the LastUpdatedAt field's value. func (s *Evaluation) SetLastUpdatedAt(v time.Time) *Evaluation { s.LastUpdatedAt = &v return s } // SetMLModelId sets the MLModelId field's value. func (s *Evaluation) SetMLModelId(v string) *Evaluation { s.MLModelId = &v return s } // SetMessage sets the Message field's value. func (s *Evaluation) SetMessage(v string) *Evaluation { s.Message = &v return s } // SetName sets the Name field's value. func (s *Evaluation) SetName(v string) *Evaluation { s.Name = &v return s } // SetPerformanceMetrics sets the PerformanceMetrics field's value. func (s *Evaluation) SetPerformanceMetrics(v *PerformanceMetrics) *Evaluation { s.PerformanceMetrics = v return s } // SetStartedAt sets the StartedAt field's value. func (s *Evaluation) SetStartedAt(v time.Time) *Evaluation { s.StartedAt = &v return s } // SetStatus sets the Status field's value. func (s *Evaluation) SetStatus(v string) *Evaluation { s.Status = &v return s } type GetBatchPredictionInput struct { _ struct{} `type:"structure"` // An ID assigned to the BatchPrediction at creation. // // BatchPredictionId is a required field BatchPredictionId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s GetBatchPredictionInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s GetBatchPredictionInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *GetBatchPredictionInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "GetBatchPredictionInput"} if s.BatchPredictionId == nil { invalidParams.Add(request.NewErrParamRequired("BatchPredictionId")) } if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 { invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetBatchPredictionId sets the BatchPredictionId field's value. func (s *GetBatchPredictionInput) SetBatchPredictionId(v string) *GetBatchPredictionInput { s.BatchPredictionId = &v return s } // Represents the output of a GetBatchPrediction operation and describes a BatchPrediction. type GetBatchPredictionOutput struct { _ struct{} `type:"structure"` // The ID of the DataSource that was used to create the BatchPrediction. BatchPredictionDataSourceId *string `min:"1" type:"string"` // An ID assigned to the BatchPrediction at creation. This value should be identical // to the value of the BatchPredictionID in the request. BatchPredictionId *string `min:"1" type:"string"` // The approximate CPU time in milliseconds that Amazon Machine Learning spent // processing the BatchPrediction, normalized and scaled on computation resources. // ComputeTime is only available if the BatchPrediction is in the COMPLETED // state. ComputeTime *int64 `type:"long"` // The time when the BatchPrediction was created. The time is expressed in epoch // time. CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The AWS user account that invoked the BatchPrediction. The account type can // be either an AWS root account or an AWS Identity and Access Management (IAM) // user account. CreatedByIamUser *string `type:"string"` // The epoch time when Amazon Machine Learning marked the BatchPrediction as // COMPLETED or FAILED. FinishedAt is only available when the BatchPrediction // is in the COMPLETED or FAILED state. FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The location of the data file or directory in Amazon Simple Storage Service // (Amazon S3). InputDataLocationS3 *string `type:"string"` // The number of invalid records that Amazon Machine Learning saw while processing // the BatchPrediction. InvalidRecordCount *int64 `type:"long"` // The time of the most recent edit to BatchPrediction. The time is expressed // in epoch time. LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // A link to the file that contains logs of the CreateBatchPrediction operation. LogUri *string `type:"string"` // The ID of the MLModel that generated predictions for the BatchPrediction // request. MLModelId *string `min:"1" type:"string"` // A description of the most recent details about processing the batch prediction // request. Message *string `type:"string"` // A user-supplied name or description of the BatchPrediction. Name *string `type:"string"` // The location of an Amazon S3 bucket or directory to receive the operation // results. OutputUri *string `type:"string"` // The epoch time when Amazon Machine Learning marked the BatchPrediction as // INPROGRESS. StartedAt isn't available if the BatchPrediction is in the PENDING // state. StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The status of the BatchPrediction, which can be one of the following values: // // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to // generate batch predictions. // * INPROGRESS - The batch predictions are in progress. // * FAILED - The request to perform a batch prediction did not run to completion. // It is not usable. // * COMPLETED - The batch prediction process completed successfully. // * DELETED - The BatchPrediction is marked as deleted. It is not usable. Status *string `type:"string" enum:"EntityStatus"` // The number of total records that Amazon Machine Learning saw while processing // the BatchPrediction. TotalRecordCount *int64 `type:"long"` } // String returns the string representation func (s GetBatchPredictionOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s GetBatchPredictionOutput) GoString() string { return s.String() } // SetBatchPredictionDataSourceId sets the BatchPredictionDataSourceId field's value. func (s *GetBatchPredictionOutput) SetBatchPredictionDataSourceId(v string) *GetBatchPredictionOutput { s.BatchPredictionDataSourceId = &v return s } // SetBatchPredictionId sets the BatchPredictionId field's value. func (s *GetBatchPredictionOutput) SetBatchPredictionId(v string) *GetBatchPredictionOutput { s.BatchPredictionId = &v return s } // SetComputeTime sets the ComputeTime field's value. func (s *GetBatchPredictionOutput) SetComputeTime(v int64) *GetBatchPredictionOutput { s.ComputeTime = &v return s } // SetCreatedAt sets the CreatedAt field's value. func (s *GetBatchPredictionOutput) SetCreatedAt(v time.Time) *GetBatchPredictionOutput { s.CreatedAt = &v return s } // SetCreatedByIamUser sets the CreatedByIamUser field's value. func (s *GetBatchPredictionOutput) SetCreatedByIamUser(v string) *GetBatchPredictionOutput { s.CreatedByIamUser = &v return s } // SetFinishedAt sets the FinishedAt field's value. func (s *GetBatchPredictionOutput) SetFinishedAt(v time.Time) *GetBatchPredictionOutput { s.FinishedAt = &v return s } // SetInputDataLocationS3 sets the InputDataLocationS3 field's value. func (s *GetBatchPredictionOutput) SetInputDataLocationS3(v string) *GetBatchPredictionOutput { s.InputDataLocationS3 = &v return s } // SetInvalidRecordCount sets the InvalidRecordCount field's value. func (s *GetBatchPredictionOutput) SetInvalidRecordCount(v int64) *GetBatchPredictionOutput { s.InvalidRecordCount = &v return s } // SetLastUpdatedAt sets the LastUpdatedAt field's value. func (s *GetBatchPredictionOutput) SetLastUpdatedAt(v time.Time) *GetBatchPredictionOutput { s.LastUpdatedAt = &v return s } // SetLogUri sets the LogUri field's value. func (s *GetBatchPredictionOutput) SetLogUri(v string) *GetBatchPredictionOutput { s.LogUri = &v return s } // SetMLModelId sets the MLModelId field's value. func (s *GetBatchPredictionOutput) SetMLModelId(v string) *GetBatchPredictionOutput { s.MLModelId = &v return s } // SetMessage sets the Message field's value. func (s *GetBatchPredictionOutput) SetMessage(v string) *GetBatchPredictionOutput { s.Message = &v return s } // SetName sets the Name field's value. func (s *GetBatchPredictionOutput) SetName(v string) *GetBatchPredictionOutput { s.Name = &v return s } // SetOutputUri sets the OutputUri field's value. func (s *GetBatchPredictionOutput) SetOutputUri(v string) *GetBatchPredictionOutput { s.OutputUri = &v return s } // SetStartedAt sets the StartedAt field's value. func (s *GetBatchPredictionOutput) SetStartedAt(v time.Time) *GetBatchPredictionOutput { s.StartedAt = &v return s } // SetStatus sets the Status field's value. func (s *GetBatchPredictionOutput) SetStatus(v string) *GetBatchPredictionOutput { s.Status = &v return s } // SetTotalRecordCount sets the TotalRecordCount field's value. func (s *GetBatchPredictionOutput) SetTotalRecordCount(v int64) *GetBatchPredictionOutput { s.TotalRecordCount = &v return s } type GetDataSourceInput struct { _ struct{} `type:"structure"` // The ID assigned to the DataSource at creation. // // DataSourceId is a required field DataSourceId *string `min:"1" type:"string" required:"true"` // Specifies whether the GetDataSource operation should return DataSourceSchema. // // If true, DataSourceSchema is returned. // // If false, DataSourceSchema is not returned. Verbose *bool `type:"boolean"` } // String returns the string representation func (s GetDataSourceInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s GetDataSourceInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *GetDataSourceInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "GetDataSourceInput"} if s.DataSourceId == nil { invalidParams.Add(request.NewErrParamRequired("DataSourceId")) } if s.DataSourceId != nil && len(*s.DataSourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetDataSourceId sets the DataSourceId field's value. func (s *GetDataSourceInput) SetDataSourceId(v string) *GetDataSourceInput { s.DataSourceId = &v return s } // SetVerbose sets the Verbose field's value. func (s *GetDataSourceInput) SetVerbose(v bool) *GetDataSourceInput { s.Verbose = &v return s } // Represents the output of a GetDataSource operation and describes a DataSource. type GetDataSourceOutput struct { _ struct{} `type:"structure"` // The parameter is true if statistics need to be generated from the observation // data. ComputeStatistics *bool `type:"boolean"` // The approximate CPU time in milliseconds that Amazon Machine Learning spent // processing the DataSource, normalized and scaled on computation resources. // ComputeTime is only available if the DataSource is in the COMPLETED state // and the ComputeStatistics is set to true. ComputeTime *int64 `type:"long"` // The time that the DataSource was created. The time is expressed in epoch // time. CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The AWS user account from which the DataSource was created. The account type // can be either an AWS root account or an AWS Identity and Access Management // (IAM) user account. CreatedByIamUser *string `type:"string"` // The location of the data file or directory in Amazon Simple Storage Service // (Amazon S3). DataLocationS3 *string `type:"string"` // A JSON string that represents the splitting and rearrangement requirement // used when this DataSource was created. DataRearrangement *string `type:"string"` // The total size of observations in the data files. DataSizeInBytes *int64 `type:"long"` // The ID assigned to the DataSource at creation. This value should be identical // to the value of the DataSourceId in the request. DataSourceId *string `min:"1" type:"string"` // The schema used by all of the data files of this DataSource. // // NoteThis parameter is provided as part of the verbose format. DataSourceSchema *string `type:"string"` // The epoch time when Amazon Machine Learning marked the DataSource as COMPLETED // or FAILED. FinishedAt is only available when the DataSource is in the COMPLETED // or FAILED state. FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The time of the most recent edit to the DataSource. The time is expressed // in epoch time. LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // A link to the file containing logs of CreateDataSourceFrom* operations. LogUri *string `type:"string"` // The user-supplied description of the most recent details about creating the // DataSource. Message *string `type:"string"` // A user-supplied name or description of the DataSource. Name *string `type:"string"` // The number of data files referenced by the DataSource. NumberOfFiles *int64 `type:"long"` // The datasource details that are specific to Amazon RDS. RDSMetadata *RDSMetadata `type:"structure"` // Describes the DataSource details specific to Amazon Redshift. RedshiftMetadata *RedshiftMetadata `type:"structure"` // The Amazon Resource Name (ARN) of an AWS IAM Role (http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts), // such as the following: arn:aws:iam::account:role/rolename. RoleARN *string `min:"1" type:"string"` // The epoch time when Amazon Machine Learning marked the DataSource as INPROGRESS. // StartedAt isn't available if the DataSource is in the PENDING state. StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The current status of the DataSource. This element can have one of the following // values: // // * PENDING - Amazon ML submitted a request to create a DataSource. // * INPROGRESS - The creation process is underway. // * FAILED - The request to create a DataSource did not run to completion. // It is not usable. // * COMPLETED - The creation process completed successfully. // * DELETED - The DataSource is marked as deleted. It is not usable. Status *string `type:"string" enum:"EntityStatus"` } // String returns the string representation func (s GetDataSourceOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s GetDataSourceOutput) GoString() string { return s.String() } // SetComputeStatistics sets the ComputeStatistics field's value. func (s *GetDataSourceOutput) SetComputeStatistics(v bool) *GetDataSourceOutput { s.ComputeStatistics = &v return s } // SetComputeTime sets the ComputeTime field's value. func (s *GetDataSourceOutput) SetComputeTime(v int64) *GetDataSourceOutput { s.ComputeTime = &v return s } // SetCreatedAt sets the CreatedAt field's value. func (s *GetDataSourceOutput) SetCreatedAt(v time.Time) *GetDataSourceOutput { s.CreatedAt = &v return s } // SetCreatedByIamUser sets the CreatedByIamUser field's value. func (s *GetDataSourceOutput) SetCreatedByIamUser(v string) *GetDataSourceOutput { s.CreatedByIamUser = &v return s } // SetDataLocationS3 sets the DataLocationS3 field's value. func (s *GetDataSourceOutput) SetDataLocationS3(v string) *GetDataSourceOutput { s.DataLocationS3 = &v return s } // SetDataRearrangement sets the DataRearrangement field's value. func (s *GetDataSourceOutput) SetDataRearrangement(v string) *GetDataSourceOutput { s.DataRearrangement = &v return s } // SetDataSizeInBytes sets the DataSizeInBytes field's value. func (s *GetDataSourceOutput) SetDataSizeInBytes(v int64) *GetDataSourceOutput { s.DataSizeInBytes = &v return s } // SetDataSourceId sets the DataSourceId field's value. func (s *GetDataSourceOutput) SetDataSourceId(v string) *GetDataSourceOutput { s.DataSourceId = &v return s } // SetDataSourceSchema sets the DataSourceSchema field's value. func (s *GetDataSourceOutput) SetDataSourceSchema(v string) *GetDataSourceOutput { s.DataSourceSchema = &v return s } // SetFinishedAt sets the FinishedAt field's value. func (s *GetDataSourceOutput) SetFinishedAt(v time.Time) *GetDataSourceOutput { s.FinishedAt = &v return s } // SetLastUpdatedAt sets the LastUpdatedAt field's value. func (s *GetDataSourceOutput) SetLastUpdatedAt(v time.Time) *GetDataSourceOutput { s.LastUpdatedAt = &v return s } // SetLogUri sets the LogUri field's value. func (s *GetDataSourceOutput) SetLogUri(v string) *GetDataSourceOutput { s.LogUri = &v return s } // SetMessage sets the Message field's value. func (s *GetDataSourceOutput) SetMessage(v string) *GetDataSourceOutput { s.Message = &v return s } // SetName sets the Name field's value. func (s *GetDataSourceOutput) SetName(v string) *GetDataSourceOutput { s.Name = &v return s } // SetNumberOfFiles sets the NumberOfFiles field's value. func (s *GetDataSourceOutput) SetNumberOfFiles(v int64) *GetDataSourceOutput { s.NumberOfFiles = &v return s } // SetRDSMetadata sets the RDSMetadata field's value. func (s *GetDataSourceOutput) SetRDSMetadata(v *RDSMetadata) *GetDataSourceOutput { s.RDSMetadata = v return s } // SetRedshiftMetadata sets the RedshiftMetadata field's value. func (s *GetDataSourceOutput) SetRedshiftMetadata(v *RedshiftMetadata) *GetDataSourceOutput { s.RedshiftMetadata = v return s } // SetRoleARN sets the RoleARN field's value. func (s *GetDataSourceOutput) SetRoleARN(v string) *GetDataSourceOutput { s.RoleARN = &v return s } // SetStartedAt sets the StartedAt field's value. func (s *GetDataSourceOutput) SetStartedAt(v time.Time) *GetDataSourceOutput { s.StartedAt = &v return s } // SetStatus sets the Status field's value. func (s *GetDataSourceOutput) SetStatus(v string) *GetDataSourceOutput { s.Status = &v return s } type GetEvaluationInput struct { _ struct{} `type:"structure"` // The ID of the Evaluation to retrieve. The evaluation of each MLModel is recorded // and cataloged. The ID provides the means to access the information. // // EvaluationId is a required field EvaluationId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s GetEvaluationInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s GetEvaluationInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *GetEvaluationInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "GetEvaluationInput"} if s.EvaluationId == nil { invalidParams.Add(request.NewErrParamRequired("EvaluationId")) } if s.EvaluationId != nil && len(*s.EvaluationId) < 1 { invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetEvaluationId sets the EvaluationId field's value. func (s *GetEvaluationInput) SetEvaluationId(v string) *GetEvaluationInput { s.EvaluationId = &v return s } // Represents the output of a GetEvaluation operation and describes an Evaluation. type GetEvaluationOutput struct { _ struct{} `type:"structure"` // The approximate CPU time in milliseconds that Amazon Machine Learning spent // processing the Evaluation, normalized and scaled on computation resources. // ComputeTime is only available if the Evaluation is in the COMPLETED state. ComputeTime *int64 `type:"long"` // The time that the Evaluation was created. The time is expressed in epoch // time. CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The AWS user account that invoked the evaluation. The account type can be // either an AWS root account or an AWS Identity and Access Management (IAM) // user account. CreatedByIamUser *string `type:"string"` // The DataSource used for this evaluation. EvaluationDataSourceId *string `min:"1" type:"string"` // The evaluation ID which is same as the EvaluationId in the request. EvaluationId *string `min:"1" type:"string"` // The epoch time when Amazon Machine Learning marked the Evaluation as COMPLETED // or FAILED. FinishedAt is only available when the Evaluation is in the COMPLETED // or FAILED state. FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The location of the data file or directory in Amazon Simple Storage Service // (Amazon S3). InputDataLocationS3 *string `type:"string"` // The time of the most recent edit to the Evaluation. The time is expressed // in epoch time. LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // A link to the file that contains logs of the CreateEvaluation operation. LogUri *string `type:"string"` // The ID of the MLModel that was the focus of the evaluation. MLModelId *string `min:"1" type:"string"` // A description of the most recent details about evaluating the MLModel. Message *string `type:"string"` // A user-supplied name or description of the Evaluation. Name *string `type:"string"` // Measurements of how well the MLModel performed using observations referenced // by the DataSource. One of the following metric is returned based on the type // of the MLModel: // // * BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique // to measure performance. // // * RegressionRMSE: A regression MLModel uses the Root Mean Square Error // (RMSE) technique to measure performance. RMSE measures the difference // between predicted and actual values for a single variable. // // * MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique // to measure performance. // // For more information about performance metrics, please see the Amazon Machine // Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg). PerformanceMetrics *PerformanceMetrics `type:"structure"` // The epoch time when Amazon Machine Learning marked the Evaluation as INPROGRESS. // StartedAt isn't available if the Evaluation is in the PENDING state. StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The status of the evaluation. This element can have one of the following // values: // // * PENDING - Amazon Machine Language (Amazon ML) submitted a request to // evaluate an MLModel. // * INPROGRESS - The evaluation is underway. // * FAILED - The request to evaluate an MLModel did not run to completion. // It is not usable. // * COMPLETED - The evaluation process completed successfully. // * DELETED - The Evaluation is marked as deleted. It is not usable. Status *string `type:"string" enum:"EntityStatus"` } // String returns the string representation func (s GetEvaluationOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s GetEvaluationOutput) GoString() string { return s.String() } // SetComputeTime sets the ComputeTime field's value. func (s *GetEvaluationOutput) SetComputeTime(v int64) *GetEvaluationOutput { s.ComputeTime = &v return s } // SetCreatedAt sets the CreatedAt field's value. func (s *GetEvaluationOutput) SetCreatedAt(v time.Time) *GetEvaluationOutput { s.CreatedAt = &v return s } // SetCreatedByIamUser sets the CreatedByIamUser field's value. func (s *GetEvaluationOutput) SetCreatedByIamUser(v string) *GetEvaluationOutput { s.CreatedByIamUser = &v return s } // SetEvaluationDataSourceId sets the EvaluationDataSourceId field's value. func (s *GetEvaluationOutput) SetEvaluationDataSourceId(v string) *GetEvaluationOutput { s.EvaluationDataSourceId = &v return s } // SetEvaluationId sets the EvaluationId field's value. func (s *GetEvaluationOutput) SetEvaluationId(v string) *GetEvaluationOutput { s.EvaluationId = &v return s } // SetFinishedAt sets the FinishedAt field's value. func (s *GetEvaluationOutput) SetFinishedAt(v time.Time) *GetEvaluationOutput { s.FinishedAt = &v return s } // SetInputDataLocationS3 sets the InputDataLocationS3 field's value. func (s *GetEvaluationOutput) SetInputDataLocationS3(v string) *GetEvaluationOutput { s.InputDataLocationS3 = &v return s } // SetLastUpdatedAt sets the LastUpdatedAt field's value. func (s *GetEvaluationOutput) SetLastUpdatedAt(v time.Time) *GetEvaluationOutput { s.LastUpdatedAt = &v return s } // SetLogUri sets the LogUri field's value. func (s *GetEvaluationOutput) SetLogUri(v string) *GetEvaluationOutput { s.LogUri = &v return s } // SetMLModelId sets the MLModelId field's value. func (s *GetEvaluationOutput) SetMLModelId(v string) *GetEvaluationOutput { s.MLModelId = &v return s } // SetMessage sets the Message field's value. func (s *GetEvaluationOutput) SetMessage(v string) *GetEvaluationOutput { s.Message = &v return s } // SetName sets the Name field's value. func (s *GetEvaluationOutput) SetName(v string) *GetEvaluationOutput { s.Name = &v return s } // SetPerformanceMetrics sets the PerformanceMetrics field's value. func (s *GetEvaluationOutput) SetPerformanceMetrics(v *PerformanceMetrics) *GetEvaluationOutput { s.PerformanceMetrics = v return s } // SetStartedAt sets the StartedAt field's value. func (s *GetEvaluationOutput) SetStartedAt(v time.Time) *GetEvaluationOutput { s.StartedAt = &v return s } // SetStatus sets the Status field's value. func (s *GetEvaluationOutput) SetStatus(v string) *GetEvaluationOutput { s.Status = &v return s } type GetMLModelInput struct { _ struct{} `type:"structure"` // The ID assigned to the MLModel at creation. // // MLModelId is a required field MLModelId *string `min:"1" type:"string" required:"true"` // Specifies whether the GetMLModel operation should return Recipe. // // If true, Recipe is returned. // // If false, Recipe is not returned. Verbose *bool `type:"boolean"` } // String returns the string representation func (s GetMLModelInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s GetMLModelInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *GetMLModelInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "GetMLModelInput"} if s.MLModelId == nil { invalidParams.Add(request.NewErrParamRequired("MLModelId")) } if s.MLModelId != nil && len(*s.MLModelId) < 1 { invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetMLModelId sets the MLModelId field's value. func (s *GetMLModelInput) SetMLModelId(v string) *GetMLModelInput { s.MLModelId = &v return s } // SetVerbose sets the Verbose field's value. func (s *GetMLModelInput) SetVerbose(v bool) *GetMLModelInput { s.Verbose = &v return s } // Represents the output of a GetMLModel operation, and provides detailed information // about a MLModel. type GetMLModelOutput struct { _ struct{} `type:"structure"` // The approximate CPU time in milliseconds that Amazon Machine Learning spent // processing the MLModel, normalized and scaled on computation resources. ComputeTime // is only available if the MLModel is in the COMPLETED state. ComputeTime *int64 `type:"long"` // The time that the MLModel was created. The time is expressed in epoch time. CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The AWS user account from which the MLModel was created. The account type // can be either an AWS root account or an AWS Identity and Access Management // (IAM) user account. CreatedByIamUser *string `type:"string"` // The current endpoint of the MLModel EndpointInfo *RealtimeEndpointInfo `type:"structure"` // The epoch time when Amazon Machine Learning marked the MLModel as COMPLETED // or FAILED. FinishedAt is only available when the MLModel is in the COMPLETED // or FAILED state. FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The location of the data file or directory in Amazon Simple Storage Service // (Amazon S3). InputDataLocationS3 *string `type:"string"` // The time of the most recent edit to the MLModel. The time is expressed in // epoch time. LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // A link to the file that contains logs of the CreateMLModel operation. LogUri *string `type:"string"` // The MLModel ID, which is same as the MLModelId in the request. MLModelId *string `min:"1" type:"string"` // Identifies the MLModel category. The following are the available types: // // * REGRESSION -- Produces a numeric result. For example, "What price should // a house be listed at?" // * BINARY -- Produces one of two possible results. For example, "Is this // an e-commerce website?" // * MULTICLASS -- Produces one of several possible results. For example, // "Is this a HIGH, LOW or MEDIUM risk trade?" MLModelType *string `type:"string" enum:"MLModelType"` // A description of the most recent details about accessing the MLModel. Message *string `type:"string"` // A user-supplied name or description of the MLModel. Name *string `type:"string"` // The recipe to use when training the MLModel. The Recipe provides detailed // information about the observation data to use during training, and manipulations // to perform on the observation data during training. // // NoteThis parameter is provided as part of the verbose format. Recipe *string `type:"string"` // The schema used by all of the data files referenced by the DataSource. // // NoteThis parameter is provided as part of the verbose format. Schema *string `type:"string"` // The scoring threshold is used in binary classification MLModelmodels. It // marks the boundary between a positive prediction and a negative prediction. // // Output values greater than or equal to the threshold receive a positive result // from the MLModel, such as true. Output values less than the threshold receive // a negative response from the MLModel, such as false. ScoreThreshold *float64 `type:"float"` // The time of the most recent edit to the ScoreThreshold. The time is expressed // in epoch time. ScoreThresholdLastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // Long integer type that is a 64-bit signed number. SizeInBytes *int64 `type:"long"` // The epoch time when Amazon Machine Learning marked the MLModel as INPROGRESS. // StartedAt isn't available if the MLModel is in the PENDING state. StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The current status of the MLModel. This element can have one of the following // values: // // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to // describe a MLModel. // * INPROGRESS - The request is processing. // * FAILED - The request did not run to completion. The ML model isn't usable. // // * COMPLETED - The request completed successfully. // * DELETED - The MLModel is marked as deleted. It isn't usable. Status *string `type:"string" enum:"EntityStatus"` // The ID of the training DataSource. TrainingDataSourceId *string `min:"1" type:"string"` // A list of the training parameters in the MLModel. The list is implemented // as a map of key-value pairs. // // The following is the current set of training parameters: // // * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending // on the input data, the size of the model might affect its performance. // // The value is an integer that ranges from 100000 to 2147483648. The default // value is 33554432. // // * sgd.maxPasses - The number of times that the training process traverses // the observations to build the MLModel. The value is an integer that ranges // from 1 to 10000. The default value is 10. // // * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling // data improves a model's ability to find the optimal solution for a variety // of data types. The valid values are auto and none. The default value is // none. We strongly recommend that you shuffle your data. // // * sgd.l1RegularizationAmount - The coefficient regularization L1 norm. // It controls overfitting the data by penalizing large coefficients. This // tends to drive coefficients to zero, resulting in a sparse feature set. // If you use this parameter, start by specifying a small value, such as // 1.0E-08. // // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to // not use L1 normalization. This parameter can't be used when L2 is specified. // Use this parameter sparingly. // // * sgd.l2RegularizationAmount - The coefficient regularization L2 norm. // It controls overfitting the data by penalizing large coefficients. This // tends to drive coefficients to small, nonzero values. If you use this // parameter, start by specifying a small value, such as 1.0E-08. // // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to // not use L2 normalization. This parameter can't be used when L1 is specified. // Use this parameter sparingly. TrainingParameters map[string]*string `type:"map"` } // String returns the string representation func (s GetMLModelOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s GetMLModelOutput) GoString() string { return s.String() } // SetComputeTime sets the ComputeTime field's value. func (s *GetMLModelOutput) SetComputeTime(v int64) *GetMLModelOutput { s.ComputeTime = &v return s } // SetCreatedAt sets the CreatedAt field's value. func (s *GetMLModelOutput) SetCreatedAt(v time.Time) *GetMLModelOutput { s.CreatedAt = &v return s } // SetCreatedByIamUser sets the CreatedByIamUser field's value. func (s *GetMLModelOutput) SetCreatedByIamUser(v string) *GetMLModelOutput { s.CreatedByIamUser = &v return s } // SetEndpointInfo sets the EndpointInfo field's value. func (s *GetMLModelOutput) SetEndpointInfo(v *RealtimeEndpointInfo) *GetMLModelOutput { s.EndpointInfo = v return s } // SetFinishedAt sets the FinishedAt field's value. func (s *GetMLModelOutput) SetFinishedAt(v time.Time) *GetMLModelOutput { s.FinishedAt = &v return s } // SetInputDataLocationS3 sets the InputDataLocationS3 field's value. func (s *GetMLModelOutput) SetInputDataLocationS3(v string) *GetMLModelOutput { s.InputDataLocationS3 = &v return s } // SetLastUpdatedAt sets the LastUpdatedAt field's value. func (s *GetMLModelOutput) SetLastUpdatedAt(v time.Time) *GetMLModelOutput { s.LastUpdatedAt = &v return s } // SetLogUri sets the LogUri field's value. func (s *GetMLModelOutput) SetLogUri(v string) *GetMLModelOutput { s.LogUri = &v return s } // SetMLModelId sets the MLModelId field's value. func (s *GetMLModelOutput) SetMLModelId(v string) *GetMLModelOutput { s.MLModelId = &v return s } // SetMLModelType sets the MLModelType field's value. func (s *GetMLModelOutput) SetMLModelType(v string) *GetMLModelOutput { s.MLModelType = &v return s } // SetMessage sets the Message field's value. func (s *GetMLModelOutput) SetMessage(v string) *GetMLModelOutput { s.Message = &v return s } // SetName sets the Name field's value. func (s *GetMLModelOutput) SetName(v string) *GetMLModelOutput { s.Name = &v return s } // SetRecipe sets the Recipe field's value. func (s *GetMLModelOutput) SetRecipe(v string) *GetMLModelOutput { s.Recipe = &v return s } // SetSchema sets the Schema field's value. func (s *GetMLModelOutput) SetSchema(v string) *GetMLModelOutput { s.Schema = &v return s } // SetScoreThreshold sets the ScoreThreshold field's value. func (s *GetMLModelOutput) SetScoreThreshold(v float64) *GetMLModelOutput { s.ScoreThreshold = &v return s } // SetScoreThresholdLastUpdatedAt sets the ScoreThresholdLastUpdatedAt field's value. func (s *GetMLModelOutput) SetScoreThresholdLastUpdatedAt(v time.Time) *GetMLModelOutput { s.ScoreThresholdLastUpdatedAt = &v return s } // SetSizeInBytes sets the SizeInBytes field's value. func (s *GetMLModelOutput) SetSizeInBytes(v int64) *GetMLModelOutput { s.SizeInBytes = &v return s } // SetStartedAt sets the StartedAt field's value. func (s *GetMLModelOutput) SetStartedAt(v time.Time) *GetMLModelOutput { s.StartedAt = &v return s } // SetStatus sets the Status field's value. func (s *GetMLModelOutput) SetStatus(v string) *GetMLModelOutput { s.Status = &v return s } // SetTrainingDataSourceId sets the TrainingDataSourceId field's value. func (s *GetMLModelOutput) SetTrainingDataSourceId(v string) *GetMLModelOutput { s.TrainingDataSourceId = &v return s } // SetTrainingParameters sets the TrainingParameters field's value. func (s *GetMLModelOutput) SetTrainingParameters(v map[string]*string) *GetMLModelOutput { s.TrainingParameters = v return s } // Represents the output of a GetMLModel operation. // // The content consists of the detailed metadata and the current status of the // MLModel. type MLModel struct { _ struct{} `type:"structure"` // The algorithm used to train the MLModel. The following algorithm is supported: // // * SGD -- Stochastic gradient descent. The goal of SGD is to minimize the // gradient of the loss function. Algorithm *string `type:"string" enum:"Algorithm"` // Long integer type that is a 64-bit signed number. ComputeTime *int64 `type:"long"` // The time that the MLModel was created. The time is expressed in epoch time. CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The AWS user account from which the MLModel was created. The account type // can be either an AWS root account or an AWS Identity and Access Management // (IAM) user account. CreatedByIamUser *string `type:"string"` // The current endpoint of the MLModel. EndpointInfo *RealtimeEndpointInfo `type:"structure"` // A timestamp represented in epoch time. FinishedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The location of the data file or directory in Amazon Simple Storage Service // (Amazon S3). InputDataLocationS3 *string `type:"string"` // The time of the most recent edit to the MLModel. The time is expressed in // epoch time. LastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The ID assigned to the MLModel at creation. MLModelId *string `min:"1" type:"string"` // Identifies the MLModel category. The following are the available types: // // * REGRESSION - Produces a numeric result. For example, "What price should // a house be listed at?" // * BINARY - Produces one of two possible results. For example, "Is this // a child-friendly web site?". // * MULTICLASS - Produces one of several possible results. For example, // "Is this a HIGH-, LOW-, or MEDIUM-risk trade?". MLModelType *string `type:"string" enum:"MLModelType"` // A description of the most recent details about accessing the MLModel. Message *string `type:"string"` // A user-supplied name or description of the MLModel. Name *string `type:"string"` ScoreThreshold *float64 `type:"float"` // The time of the most recent edit to the ScoreThreshold. The time is expressed // in epoch time. ScoreThresholdLastUpdatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // Long integer type that is a 64-bit signed number. SizeInBytes *int64 `type:"long"` // A timestamp represented in epoch time. StartedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The current status of an MLModel. This element can have one of the following // values: // // * PENDING - Amazon Machine Learning (Amazon ML) submitted a request to // create an MLModel. // * INPROGRESS - The creation process is underway. // * FAILED - The request to create an MLModel didn't run to completion. // The model isn't usable. // * COMPLETED - The creation process completed successfully. // * DELETED - The MLModel is marked as deleted. It isn't usable. Status *string `type:"string" enum:"EntityStatus"` // The ID of the training DataSource. The CreateMLModel operation uses the TrainingDataSourceId. TrainingDataSourceId *string `min:"1" type:"string"` // A list of the training parameters in the MLModel. The list is implemented // as a map of key-value pairs. // // The following is the current set of training parameters: // // * sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending // on the input data, the size of the model might affect its performance. // // The value is an integer that ranges from 100000 to 2147483648. The default // value is 33554432. // // * sgd.maxPasses - The number of times that the training process traverses // the observations to build the MLModel. The value is an integer that ranges // from 1 to 10000. The default value is 10. // // * sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling // the data improves a model's ability to find the optimal solution for a // variety of data types. The valid values are auto and none. The default // value is none. // // * sgd.l1RegularizationAmount - The coefficient regularization L1 norm, // which controls overfitting the data by penalizing large coefficients. // This parameter tends to drive coefficients to zero, resulting in sparse // feature set. If you use this parameter, start by specifying a small value, // such as 1.0E-08. // // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to // not use L1 normalization. This parameter can't be used when L2 is specified. // Use this parameter sparingly. // // * sgd.l2RegularizationAmount - The coefficient regularization L2 norm, // which controls overfitting the data by penalizing large coefficients. // This tends to drive coefficients to small, nonzero values. If you use // this parameter, start by specifying a small value, such as 1.0E-08. // // The value is a double that ranges from 0 to MAX_DOUBLE. The default is to // not use L2 normalization. This parameter can't be used when L1 is specified. // Use this parameter sparingly. TrainingParameters map[string]*string `type:"map"` } // String returns the string representation func (s MLModel) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s MLModel) GoString() string { return s.String() } // SetAlgorithm sets the Algorithm field's value. func (s *MLModel) SetAlgorithm(v string) *MLModel { s.Algorithm = &v return s } // SetComputeTime sets the ComputeTime field's value. func (s *MLModel) SetComputeTime(v int64) *MLModel { s.ComputeTime = &v return s } // SetCreatedAt sets the CreatedAt field's value. func (s *MLModel) SetCreatedAt(v time.Time) *MLModel { s.CreatedAt = &v return s } // SetCreatedByIamUser sets the CreatedByIamUser field's value. func (s *MLModel) SetCreatedByIamUser(v string) *MLModel { s.CreatedByIamUser = &v return s } // SetEndpointInfo sets the EndpointInfo field's value. func (s *MLModel) SetEndpointInfo(v *RealtimeEndpointInfo) *MLModel { s.EndpointInfo = v return s } // SetFinishedAt sets the FinishedAt field's value. func (s *MLModel) SetFinishedAt(v time.Time) *MLModel { s.FinishedAt = &v return s } // SetInputDataLocationS3 sets the InputDataLocationS3 field's value. func (s *MLModel) SetInputDataLocationS3(v string) *MLModel { s.InputDataLocationS3 = &v return s } // SetLastUpdatedAt sets the LastUpdatedAt field's value. func (s *MLModel) SetLastUpdatedAt(v time.Time) *MLModel { s.LastUpdatedAt = &v return s } // SetMLModelId sets the MLModelId field's value. func (s *MLModel) SetMLModelId(v string) *MLModel { s.MLModelId = &v return s } // SetMLModelType sets the MLModelType field's value. func (s *MLModel) SetMLModelType(v string) *MLModel { s.MLModelType = &v return s } // SetMessage sets the Message field's value. func (s *MLModel) SetMessage(v string) *MLModel { s.Message = &v return s } // SetName sets the Name field's value. func (s *MLModel) SetName(v string) *MLModel { s.Name = &v return s } // SetScoreThreshold sets the ScoreThreshold field's value. func (s *MLModel) SetScoreThreshold(v float64) *MLModel { s.ScoreThreshold = &v return s } // SetScoreThresholdLastUpdatedAt sets the ScoreThresholdLastUpdatedAt field's value. func (s *MLModel) SetScoreThresholdLastUpdatedAt(v time.Time) *MLModel { s.ScoreThresholdLastUpdatedAt = &v return s } // SetSizeInBytes sets the SizeInBytes field's value. func (s *MLModel) SetSizeInBytes(v int64) *MLModel { s.SizeInBytes = &v return s } // SetStartedAt sets the StartedAt field's value. func (s *MLModel) SetStartedAt(v time.Time) *MLModel { s.StartedAt = &v return s } // SetStatus sets the Status field's value. func (s *MLModel) SetStatus(v string) *MLModel { s.Status = &v return s } // SetTrainingDataSourceId sets the TrainingDataSourceId field's value. func (s *MLModel) SetTrainingDataSourceId(v string) *MLModel { s.TrainingDataSourceId = &v return s } // SetTrainingParameters sets the TrainingParameters field's value. func (s *MLModel) SetTrainingParameters(v map[string]*string) *MLModel { s.TrainingParameters = v return s } // Measurements of how well the MLModel performed on known observations. One // of the following metrics is returned, based on the type of the MLModel: // // * BinaryAUC: The binary MLModel uses the Area Under the Curve (AUC) technique // to measure performance. // // * RegressionRMSE: The regression MLModel uses the Root Mean Square Error // (RMSE) technique to measure performance. RMSE measures the difference // between predicted and actual values for a single variable. // // * MulticlassAvgFScore: The multiclass MLModel uses the F1 score technique // to measure performance. // // For more information about performance metrics, please see the Amazon Machine // Learning Developer Guide (http://docs.aws.amazon.com/machine-learning/latest/dg). type PerformanceMetrics struct { _ struct{} `type:"structure"` Properties map[string]*string `type:"map"` } // String returns the string representation func (s PerformanceMetrics) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s PerformanceMetrics) GoString() string { return s.String() } // SetProperties sets the Properties field's value. func (s *PerformanceMetrics) SetProperties(v map[string]*string) *PerformanceMetrics { s.Properties = v return s } type PredictInput struct { _ struct{} `type:"structure"` // A unique identifier of the MLModel. // // MLModelId is a required field MLModelId *string `min:"1" type:"string" required:"true"` // PredictEndpoint is a required field PredictEndpoint *string `type:"string" required:"true"` // A map of variable name-value pairs that represent an observation. // // Record is a required field Record map[string]*string `type:"map" required:"true"` } // String returns the string representation func (s PredictInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s PredictInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *PredictInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "PredictInput"} if s.MLModelId == nil { invalidParams.Add(request.NewErrParamRequired("MLModelId")) } if s.MLModelId != nil && len(*s.MLModelId) < 1 { invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1)) } if s.PredictEndpoint == nil { invalidParams.Add(request.NewErrParamRequired("PredictEndpoint")) } if s.Record == nil { invalidParams.Add(request.NewErrParamRequired("Record")) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetMLModelId sets the MLModelId field's value. func (s *PredictInput) SetMLModelId(v string) *PredictInput { s.MLModelId = &v return s } // SetPredictEndpoint sets the PredictEndpoint field's value. func (s *PredictInput) SetPredictEndpoint(v string) *PredictInput { s.PredictEndpoint = &v return s } // SetRecord sets the Record field's value. func (s *PredictInput) SetRecord(v map[string]*string) *PredictInput { s.Record = v return s } type PredictOutput struct { _ struct{} `type:"structure"` // The output from a Predict operation: // // * Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE // - REGRESSION | BINARY | MULTICLASSDetailsAttributes.ALGORITHM - SGD // // * PredictedLabel - Present for either a BINARY or MULTICLASSMLModel request. // // // * PredictedScores - Contains the raw classification score corresponding // to each label. // // * PredictedValue - Present for a REGRESSIONMLModel request. Prediction *Prediction `type:"structure"` } // String returns the string representation func (s PredictOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s PredictOutput) GoString() string { return s.String() } // SetPrediction sets the Prediction field's value. func (s *PredictOutput) SetPrediction(v *Prediction) *PredictOutput { s.Prediction = v return s } // The output from a Predict operation: // // * Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE // - REGRESSION | BINARY | MULTICLASSDetailsAttributes.ALGORITHM - SGD // // * PredictedLabel - Present for either a BINARY or MULTICLASSMLModel request. // // // * PredictedScores - Contains the raw classification score corresponding // to each label. // // * PredictedValue - Present for a REGRESSIONMLModel request. type Prediction struct { _ struct{} `type:"structure"` // Provides any additional details regarding the prediction. Details map[string]*string `locationName:"details" type:"map"` // The prediction label for either a BINARY or MULTICLASSMLModel. PredictedLabel *string `locationName:"predictedLabel" min:"1" type:"string"` // Provides the raw classification score corresponding to each label. PredictedScores map[string]*float64 `locationName:"predictedScores" type:"map"` // The prediction value for REGRESSIONMLModel PredictedValue *float64 `locationName:"predictedValue" type:"float"` } // String returns the string representation func (s Prediction) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s Prediction) GoString() string { return s.String() } // SetDetails sets the Details field's value. func (s *Prediction) SetDetails(v map[string]*string) *Prediction { s.Details = v return s } // SetPredictedLabel sets the PredictedLabel field's value. func (s *Prediction) SetPredictedLabel(v string) *Prediction { s.PredictedLabel = &v return s } // SetPredictedScores sets the PredictedScores field's value. func (s *Prediction) SetPredictedScores(v map[string]*float64) *Prediction { s.PredictedScores = v return s } // SetPredictedValue sets the PredictedValue field's value. func (s *Prediction) SetPredictedValue(v float64) *Prediction { s.PredictedValue = &v return s } // The data specification of an Amazon Relational Database Service (Amazon RDS) // DataSource. type RDSDataSpec struct { _ struct{} `type:"structure"` // A JSON string that represents the splitting and rearrangement processing // to be applied to a DataSource. If the DataRearrangement parameter is not // provided, all of the input data is used to create the Datasource. // // There are multiple parameters that control what data is used to create a // datasource: // // * percentBegin // // Use percentBegin to indicate the beginning of the range of the data used // to create the Datasource. If you do not include percentBegin and percentEnd, // Amazon ML includes all of the data when creating the datasource. // // * percentEnd // // Use percentEnd to indicate the end of the range of the data used to create // the Datasource. If you do not include percentBegin and percentEnd, Amazon // ML includes all of the data when creating the datasource. // // * complement // // The complement parameter instructs Amazon ML to use the data that is not // included in the range of percentBegin to percentEnd to create a datasource. // The complement parameter is useful if you need to create complementary // datasources for training and evaluation. To create a complementary datasource, // use the same values for percentBegin and percentEnd, along with the complement // parameter. // // For example, the following two datasources do not share any data, and can // be used to train and evaluate a model. The first datasource has 25 percent // of the data, and the second one has 75 percent of the data. // // Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} // // Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, // "complement":"true"}} // // * strategy // // To change how Amazon ML splits the data for a datasource, use the strategy // parameter. // // The default value for the strategy parameter is sequential, meaning that // Amazon ML takes all of the data records between the percentBegin and percentEnd // parameters for the datasource, in the order that the records appear in // the input data. // // The following two DataRearrangement lines are examples of sequentially ordered // training and evaluation datasources: // // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"sequential"}} // // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"sequential", "complement":"true"}} // // To randomly split the input data into the proportions indicated by the percentBegin // and percentEnd parameters, set the strategy parameter to random and provide // a string that is used as the seed value for the random data splitting // (for example, you can use the S3 path to your data as the random seed // string). If you choose the random split strategy, Amazon ML assigns each // row of data a pseudo-random number between 0 and 100, and then selects // the rows that have an assigned number between percentBegin and percentEnd. // Pseudo-random numbers are assigned using both the input seed string value // and the byte offset as a seed, so changing the data results in a different // split. Any existing ordering is preserved. The random splitting strategy // ensures that variables in the training and evaluation data are distributed // similarly. It is useful in the cases where the input data may have an // implicit sort order, which would otherwise result in training and evaluation // datasources containing non-similar data records. // // The following two DataRearrangement lines are examples of non-sequentially // ordered training and evaluation datasources: // // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} // // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}} DataRearrangement *string `type:"string"` // A JSON string that represents the schema for an Amazon RDS DataSource. The // DataSchema defines the structure of the observation data in the data file(s) // referenced in the DataSource. // // A DataSchema is not required if you specify a DataSchemaUri // // Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames // have an array of key-value pairs for their value. Use the following format // to define your DataSchema. // // { "version": "1.0", // // "recordAnnotationFieldName": "F1", // // "recordWeightFieldName": "F2", // // "targetFieldName": "F3", // // "dataFormat": "CSV", // // "dataFileContainsHeader": true, // // "attributes": [ // // { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": // "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": // "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" // }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": // "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" // } ], // // "excludedVariableNames": [ "F6" ] } DataSchema *string `type:"string"` // The Amazon S3 location of the DataSchema. DataSchemaUri *string `type:"string"` // The AWS Identity and Access Management (IAM) credentials that are used connect // to the Amazon RDS database. // // DatabaseCredentials is a required field DatabaseCredentials *RDSDatabaseCredentials `type:"structure" required:"true"` // Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database. // // DatabaseInformation is a required field DatabaseInformation *RDSDatabase `type:"structure" required:"true"` // The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute // Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS // to an Amazon S3 task. For more information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html) // for data pipelines. // // ResourceRole is a required field ResourceRole *string `min:"1" type:"string" required:"true"` // The Amazon S3 location for staging Amazon RDS data. The data retrieved from // Amazon RDS using SelectSqlQuery is stored in this location. // // S3StagingLocation is a required field S3StagingLocation *string `type:"string" required:"true"` // The security group IDs to be used to access a VPC-based RDS DB instance. // Ensure that there are appropriate ingress rules set up to allow access to // the RDS DB instance. This attribute is used by Data Pipeline to carry out // the copy operation from Amazon RDS to an Amazon S3 task. // // SecurityGroupIds is a required field SecurityGroupIds []*string `type:"list" required:"true"` // The query that is used to retrieve the observation data for the DataSource. // // SelectSqlQuery is a required field SelectSqlQuery *string `min:"1" type:"string" required:"true"` // The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to // monitor the progress of the copy task from Amazon RDS to Amazon S3. For more // information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html) // for data pipelines. // // ServiceRole is a required field ServiceRole *string `min:"1" type:"string" required:"true"` // The subnet ID to be used to access a VPC-based RDS DB instance. This attribute // is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon // S3. // // SubnetId is a required field SubnetId *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s RDSDataSpec) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s RDSDataSpec) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *RDSDataSpec) Validate() error { invalidParams := request.ErrInvalidParams{Context: "RDSDataSpec"} if s.DatabaseCredentials == nil { invalidParams.Add(request.NewErrParamRequired("DatabaseCredentials")) } if s.DatabaseInformation == nil { invalidParams.Add(request.NewErrParamRequired("DatabaseInformation")) } if s.ResourceRole == nil { invalidParams.Add(request.NewErrParamRequired("ResourceRole")) } if s.ResourceRole != nil && len(*s.ResourceRole) < 1 { invalidParams.Add(request.NewErrParamMinLen("ResourceRole", 1)) } if s.S3StagingLocation == nil { invalidParams.Add(request.NewErrParamRequired("S3StagingLocation")) } if s.SecurityGroupIds == nil { invalidParams.Add(request.NewErrParamRequired("SecurityGroupIds")) } if s.SelectSqlQuery == nil { invalidParams.Add(request.NewErrParamRequired("SelectSqlQuery")) } if s.SelectSqlQuery != nil && len(*s.SelectSqlQuery) < 1 { invalidParams.Add(request.NewErrParamMinLen("SelectSqlQuery", 1)) } if s.ServiceRole == nil { invalidParams.Add(request.NewErrParamRequired("ServiceRole")) } if s.ServiceRole != nil && len(*s.ServiceRole) < 1 { invalidParams.Add(request.NewErrParamMinLen("ServiceRole", 1)) } if s.SubnetId == nil { invalidParams.Add(request.NewErrParamRequired("SubnetId")) } if s.SubnetId != nil && len(*s.SubnetId) < 1 { invalidParams.Add(request.NewErrParamMinLen("SubnetId", 1)) } if s.DatabaseCredentials != nil { if err := s.DatabaseCredentials.Validate(); err != nil { invalidParams.AddNested("DatabaseCredentials", err.(request.ErrInvalidParams)) } } if s.DatabaseInformation != nil { if err := s.DatabaseInformation.Validate(); err != nil { invalidParams.AddNested("DatabaseInformation", err.(request.ErrInvalidParams)) } } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetDataRearrangement sets the DataRearrangement field's value. func (s *RDSDataSpec) SetDataRearrangement(v string) *RDSDataSpec { s.DataRearrangement = &v return s } // SetDataSchema sets the DataSchema field's value. func (s *RDSDataSpec) SetDataSchema(v string) *RDSDataSpec { s.DataSchema = &v return s } // SetDataSchemaUri sets the DataSchemaUri field's value. func (s *RDSDataSpec) SetDataSchemaUri(v string) *RDSDataSpec { s.DataSchemaUri = &v return s } // SetDatabaseCredentials sets the DatabaseCredentials field's value. func (s *RDSDataSpec) SetDatabaseCredentials(v *RDSDatabaseCredentials) *RDSDataSpec { s.DatabaseCredentials = v return s } // SetDatabaseInformation sets the DatabaseInformation field's value. func (s *RDSDataSpec) SetDatabaseInformation(v *RDSDatabase) *RDSDataSpec { s.DatabaseInformation = v return s } // SetResourceRole sets the ResourceRole field's value. func (s *RDSDataSpec) SetResourceRole(v string) *RDSDataSpec { s.ResourceRole = &v return s } // SetS3StagingLocation sets the S3StagingLocation field's value. func (s *RDSDataSpec) SetS3StagingLocation(v string) *RDSDataSpec { s.S3StagingLocation = &v return s } // SetSecurityGroupIds sets the SecurityGroupIds field's value. func (s *RDSDataSpec) SetSecurityGroupIds(v []*string) *RDSDataSpec { s.SecurityGroupIds = v return s } // SetSelectSqlQuery sets the SelectSqlQuery field's value. func (s *RDSDataSpec) SetSelectSqlQuery(v string) *RDSDataSpec { s.SelectSqlQuery = &v return s } // SetServiceRole sets the ServiceRole field's value. func (s *RDSDataSpec) SetServiceRole(v string) *RDSDataSpec { s.ServiceRole = &v return s } // SetSubnetId sets the SubnetId field's value. func (s *RDSDataSpec) SetSubnetId(v string) *RDSDataSpec { s.SubnetId = &v return s } // The database details of an Amazon RDS database. type RDSDatabase struct { _ struct{} `type:"structure"` // The name of a database hosted on an RDS DB instance. // // DatabaseName is a required field DatabaseName *string `min:"1" type:"string" required:"true"` // The ID of an RDS DB instance. // // InstanceIdentifier is a required field InstanceIdentifier *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s RDSDatabase) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s RDSDatabase) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *RDSDatabase) Validate() error { invalidParams := request.ErrInvalidParams{Context: "RDSDatabase"} if s.DatabaseName == nil { invalidParams.Add(request.NewErrParamRequired("DatabaseName")) } if s.DatabaseName != nil && len(*s.DatabaseName) < 1 { invalidParams.Add(request.NewErrParamMinLen("DatabaseName", 1)) } if s.InstanceIdentifier == nil { invalidParams.Add(request.NewErrParamRequired("InstanceIdentifier")) } if s.InstanceIdentifier != nil && len(*s.InstanceIdentifier) < 1 { invalidParams.Add(request.NewErrParamMinLen("InstanceIdentifier", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetDatabaseName sets the DatabaseName field's value. func (s *RDSDatabase) SetDatabaseName(v string) *RDSDatabase { s.DatabaseName = &v return s } // SetInstanceIdentifier sets the InstanceIdentifier field's value. func (s *RDSDatabase) SetInstanceIdentifier(v string) *RDSDatabase { s.InstanceIdentifier = &v return s } // The database credentials to connect to a database on an RDS DB instance. type RDSDatabaseCredentials struct { _ struct{} `type:"structure"` // The password to be used by Amazon ML to connect to a database on an RDS DB // instance. The password should have sufficient permissions to execute the // RDSSelectQuery query. // // Password is a required field Password *string `min:"8" type:"string" required:"true"` // The username to be used by Amazon ML to connect to database on an Amazon // RDS instance. The username should have sufficient permissions to execute // an RDSSelectSqlQuery query. // // Username is a required field Username *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s RDSDatabaseCredentials) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s RDSDatabaseCredentials) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *RDSDatabaseCredentials) Validate() error { invalidParams := request.ErrInvalidParams{Context: "RDSDatabaseCredentials"} if s.Password == nil { invalidParams.Add(request.NewErrParamRequired("Password")) } if s.Password != nil && len(*s.Password) < 8 { invalidParams.Add(request.NewErrParamMinLen("Password", 8)) } if s.Username == nil { invalidParams.Add(request.NewErrParamRequired("Username")) } if s.Username != nil && len(*s.Username) < 1 { invalidParams.Add(request.NewErrParamMinLen("Username", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetPassword sets the Password field's value. func (s *RDSDatabaseCredentials) SetPassword(v string) *RDSDatabaseCredentials { s.Password = &v return s } // SetUsername sets the Username field's value. func (s *RDSDatabaseCredentials) SetUsername(v string) *RDSDatabaseCredentials { s.Username = &v return s } // The datasource details that are specific to Amazon RDS. type RDSMetadata struct { _ struct{} `type:"structure"` // The ID of the Data Pipeline instance that is used to carry to copy data from // Amazon RDS to Amazon S3. You can use the ID to find details about the instance // in the Data Pipeline console. DataPipelineId *string `min:"1" type:"string"` // The database details required to connect to an Amazon RDS. Database *RDSDatabase `type:"structure"` // The username to be used by Amazon ML to connect to database on an Amazon // RDS instance. The username should have sufficient permissions to execute // an RDSSelectSqlQuery query. DatabaseUserName *string `min:"1" type:"string"` // The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance // to carry out the copy task from Amazon RDS to Amazon S3. For more information, // see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html) // for data pipelines. ResourceRole *string `min:"1" type:"string"` // The SQL query that is supplied during CreateDataSourceFromRDS. Returns only // if Verbose is true in GetDataSourceInput. SelectSqlQuery *string `min:"1" type:"string"` // The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to // monitor the progress of the copy task from Amazon RDS to Amazon S3. For more // information, see Role templates (http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html) // for data pipelines. ServiceRole *string `min:"1" type:"string"` } // String returns the string representation func (s RDSMetadata) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s RDSMetadata) GoString() string { return s.String() } // SetDataPipelineId sets the DataPipelineId field's value. func (s *RDSMetadata) SetDataPipelineId(v string) *RDSMetadata { s.DataPipelineId = &v return s } // SetDatabase sets the Database field's value. func (s *RDSMetadata) SetDatabase(v *RDSDatabase) *RDSMetadata { s.Database = v return s } // SetDatabaseUserName sets the DatabaseUserName field's value. func (s *RDSMetadata) SetDatabaseUserName(v string) *RDSMetadata { s.DatabaseUserName = &v return s } // SetResourceRole sets the ResourceRole field's value. func (s *RDSMetadata) SetResourceRole(v string) *RDSMetadata { s.ResourceRole = &v return s } // SetSelectSqlQuery sets the SelectSqlQuery field's value. func (s *RDSMetadata) SetSelectSqlQuery(v string) *RDSMetadata { s.SelectSqlQuery = &v return s } // SetServiceRole sets the ServiceRole field's value. func (s *RDSMetadata) SetServiceRole(v string) *RDSMetadata { s.ServiceRole = &v return s } // Describes the real-time endpoint information for an MLModel. type RealtimeEndpointInfo struct { _ struct{} `type:"structure"` // The time that the request to create the real-time endpoint for the MLModel // was received. The time is expressed in epoch time. CreatedAt *time.Time `type:"timestamp" timestampFormat:"unix"` // The current status of the real-time endpoint for the MLModel. This element // can have one of the following values: // // * NONE - Endpoint does not exist or was previously deleted. // * READY - Endpoint is ready to be used for real-time predictions. // * UPDATING - Updating/creating the endpoint. EndpointStatus *string `type:"string" enum:"RealtimeEndpointStatus"` // The URI that specifies where to send real-time prediction requests for the // MLModel. // // NoteThe application must wait until the real-time endpoint is ready before // using this URI. EndpointUrl *string `type:"string"` // The maximum processing rate for the real-time endpoint for MLModel, measured // in incoming requests per second. PeakRequestsPerSecond *int64 `type:"integer"` } // String returns the string representation func (s RealtimeEndpointInfo) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s RealtimeEndpointInfo) GoString() string { return s.String() } // SetCreatedAt sets the CreatedAt field's value. func (s *RealtimeEndpointInfo) SetCreatedAt(v time.Time) *RealtimeEndpointInfo { s.CreatedAt = &v return s } // SetEndpointStatus sets the EndpointStatus field's value. func (s *RealtimeEndpointInfo) SetEndpointStatus(v string) *RealtimeEndpointInfo { s.EndpointStatus = &v return s } // SetEndpointUrl sets the EndpointUrl field's value. func (s *RealtimeEndpointInfo) SetEndpointUrl(v string) *RealtimeEndpointInfo { s.EndpointUrl = &v return s } // SetPeakRequestsPerSecond sets the PeakRequestsPerSecond field's value. func (s *RealtimeEndpointInfo) SetPeakRequestsPerSecond(v int64) *RealtimeEndpointInfo { s.PeakRequestsPerSecond = &v return s } // Describes the data specification of an Amazon Redshift DataSource. type RedshiftDataSpec struct { _ struct{} `type:"structure"` // A JSON string that represents the splitting and rearrangement processing // to be applied to a DataSource. If the DataRearrangement parameter is not // provided, all of the input data is used to create the Datasource. // // There are multiple parameters that control what data is used to create a // datasource: // // * percentBegin // // Use percentBegin to indicate the beginning of the range of the data used // to create the Datasource. If you do not include percentBegin and percentEnd, // Amazon ML includes all of the data when creating the datasource. // // * percentEnd // // Use percentEnd to indicate the end of the range of the data used to create // the Datasource. If you do not include percentBegin and percentEnd, Amazon // ML includes all of the data when creating the datasource. // // * complement // // The complement parameter instructs Amazon ML to use the data that is not // included in the range of percentBegin to percentEnd to create a datasource. // The complement parameter is useful if you need to create complementary // datasources for training and evaluation. To create a complementary datasource, // use the same values for percentBegin and percentEnd, along with the complement // parameter. // // For example, the following two datasources do not share any data, and can // be used to train and evaluate a model. The first datasource has 25 percent // of the data, and the second one has 75 percent of the data. // // Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} // // Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, // "complement":"true"}} // // * strategy // // To change how Amazon ML splits the data for a datasource, use the strategy // parameter. // // The default value for the strategy parameter is sequential, meaning that // Amazon ML takes all of the data records between the percentBegin and percentEnd // parameters for the datasource, in the order that the records appear in // the input data. // // The following two DataRearrangement lines are examples of sequentially ordered // training and evaluation datasources: // // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"sequential"}} // // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"sequential", "complement":"true"}} // // To randomly split the input data into the proportions indicated by the percentBegin // and percentEnd parameters, set the strategy parameter to random and provide // a string that is used as the seed value for the random data splitting // (for example, you can use the S3 path to your data as the random seed // string). If you choose the random split strategy, Amazon ML assigns each // row of data a pseudo-random number between 0 and 100, and then selects // the rows that have an assigned number between percentBegin and percentEnd. // Pseudo-random numbers are assigned using both the input seed string value // and the byte offset as a seed, so changing the data results in a different // split. Any existing ordering is preserved. The random splitting strategy // ensures that variables in the training and evaluation data are distributed // similarly. It is useful in the cases where the input data may have an // implicit sort order, which would otherwise result in training and evaluation // datasources containing non-similar data records. // // The following two DataRearrangement lines are examples of non-sequentially // ordered training and evaluation datasources: // // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} // // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}} DataRearrangement *string `type:"string"` // A JSON string that represents the schema for an Amazon Redshift DataSource. // The DataSchema defines the structure of the observation data in the data // file(s) referenced in the DataSource. // // A DataSchema is not required if you specify a DataSchemaUri. // // Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames // have an array of key-value pairs for their value. Use the following format // to define your DataSchema. // // { "version": "1.0", // // "recordAnnotationFieldName": "F1", // // "recordWeightFieldName": "F2", // // "targetFieldName": "F3", // // "dataFormat": "CSV", // // "dataFileContainsHeader": true, // // "attributes": [ // // { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": // "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": // "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" // }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": // "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" // } ], // // "excludedVariableNames": [ "F6" ] } DataSchema *string `type:"string"` // Describes the schema location for an Amazon Redshift DataSource. DataSchemaUri *string `type:"string"` // Describes AWS Identity and Access Management (IAM) credentials that are used // connect to the Amazon Redshift database. // // DatabaseCredentials is a required field DatabaseCredentials *RedshiftDatabaseCredentials `type:"structure" required:"true"` // Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift DataSource. // // DatabaseInformation is a required field DatabaseInformation *RedshiftDatabase `type:"structure" required:"true"` // Describes an Amazon S3 location to store the result set of the SelectSqlQuery // query. // // S3StagingLocation is a required field S3StagingLocation *string `type:"string" required:"true"` // Describes the SQL Query to execute on an Amazon Redshift database for an // Amazon Redshift DataSource. // // SelectSqlQuery is a required field SelectSqlQuery *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s RedshiftDataSpec) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s RedshiftDataSpec) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *RedshiftDataSpec) Validate() error { invalidParams := request.ErrInvalidParams{Context: "RedshiftDataSpec"} if s.DatabaseCredentials == nil { invalidParams.Add(request.NewErrParamRequired("DatabaseCredentials")) } if s.DatabaseInformation == nil { invalidParams.Add(request.NewErrParamRequired("DatabaseInformation")) } if s.S3StagingLocation == nil { invalidParams.Add(request.NewErrParamRequired("S3StagingLocation")) } if s.SelectSqlQuery == nil { invalidParams.Add(request.NewErrParamRequired("SelectSqlQuery")) } if s.SelectSqlQuery != nil && len(*s.SelectSqlQuery) < 1 { invalidParams.Add(request.NewErrParamMinLen("SelectSqlQuery", 1)) } if s.DatabaseCredentials != nil { if err := s.DatabaseCredentials.Validate(); err != nil { invalidParams.AddNested("DatabaseCredentials", err.(request.ErrInvalidParams)) } } if s.DatabaseInformation != nil { if err := s.DatabaseInformation.Validate(); err != nil { invalidParams.AddNested("DatabaseInformation", err.(request.ErrInvalidParams)) } } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetDataRearrangement sets the DataRearrangement field's value. func (s *RedshiftDataSpec) SetDataRearrangement(v string) *RedshiftDataSpec { s.DataRearrangement = &v return s } // SetDataSchema sets the DataSchema field's value. func (s *RedshiftDataSpec) SetDataSchema(v string) *RedshiftDataSpec { s.DataSchema = &v return s } // SetDataSchemaUri sets the DataSchemaUri field's value. func (s *RedshiftDataSpec) SetDataSchemaUri(v string) *RedshiftDataSpec { s.DataSchemaUri = &v return s } // SetDatabaseCredentials sets the DatabaseCredentials field's value. func (s *RedshiftDataSpec) SetDatabaseCredentials(v *RedshiftDatabaseCredentials) *RedshiftDataSpec { s.DatabaseCredentials = v return s } // SetDatabaseInformation sets the DatabaseInformation field's value. func (s *RedshiftDataSpec) SetDatabaseInformation(v *RedshiftDatabase) *RedshiftDataSpec { s.DatabaseInformation = v return s } // SetS3StagingLocation sets the S3StagingLocation field's value. func (s *RedshiftDataSpec) SetS3StagingLocation(v string) *RedshiftDataSpec { s.S3StagingLocation = &v return s } // SetSelectSqlQuery sets the SelectSqlQuery field's value. func (s *RedshiftDataSpec) SetSelectSqlQuery(v string) *RedshiftDataSpec { s.SelectSqlQuery = &v return s } // Describes the database details required to connect to an Amazon Redshift // database. type RedshiftDatabase struct { _ struct{} `type:"structure"` // The ID of an Amazon Redshift cluster. // // ClusterIdentifier is a required field ClusterIdentifier *string `min:"1" type:"string" required:"true"` // The name of a database hosted on an Amazon Redshift cluster. // // DatabaseName is a required field DatabaseName *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s RedshiftDatabase) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s RedshiftDatabase) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *RedshiftDatabase) Validate() error { invalidParams := request.ErrInvalidParams{Context: "RedshiftDatabase"} if s.ClusterIdentifier == nil { invalidParams.Add(request.NewErrParamRequired("ClusterIdentifier")) } if s.ClusterIdentifier != nil && len(*s.ClusterIdentifier) < 1 { invalidParams.Add(request.NewErrParamMinLen("ClusterIdentifier", 1)) } if s.DatabaseName == nil { invalidParams.Add(request.NewErrParamRequired("DatabaseName")) } if s.DatabaseName != nil && len(*s.DatabaseName) < 1 { invalidParams.Add(request.NewErrParamMinLen("DatabaseName", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetClusterIdentifier sets the ClusterIdentifier field's value. func (s *RedshiftDatabase) SetClusterIdentifier(v string) *RedshiftDatabase { s.ClusterIdentifier = &v return s } // SetDatabaseName sets the DatabaseName field's value. func (s *RedshiftDatabase) SetDatabaseName(v string) *RedshiftDatabase { s.DatabaseName = &v return s } // Describes the database credentials for connecting to a database on an Amazon // Redshift cluster. type RedshiftDatabaseCredentials struct { _ struct{} `type:"structure"` // A password to be used by Amazon ML to connect to a database on an Amazon // Redshift cluster. The password should have sufficient permissions to execute // a RedshiftSelectSqlQuery query. The password should be valid for an Amazon // Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html). // // Password is a required field Password *string `min:"8" type:"string" required:"true"` // A username to be used by Amazon Machine Learning (Amazon ML)to connect to // a database on an Amazon Redshift cluster. The username should have sufficient // permissions to execute the RedshiftSelectSqlQuery query. The username should // be valid for an Amazon Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html). // // Username is a required field Username *string `min:"1" type:"string" required:"true"` } // String returns the string representation func (s RedshiftDatabaseCredentials) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s RedshiftDatabaseCredentials) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *RedshiftDatabaseCredentials) Validate() error { invalidParams := request.ErrInvalidParams{Context: "RedshiftDatabaseCredentials"} if s.Password == nil { invalidParams.Add(request.NewErrParamRequired("Password")) } if s.Password != nil && len(*s.Password) < 8 { invalidParams.Add(request.NewErrParamMinLen("Password", 8)) } if s.Username == nil { invalidParams.Add(request.NewErrParamRequired("Username")) } if s.Username != nil && len(*s.Username) < 1 { invalidParams.Add(request.NewErrParamMinLen("Username", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetPassword sets the Password field's value. func (s *RedshiftDatabaseCredentials) SetPassword(v string) *RedshiftDatabaseCredentials { s.Password = &v return s } // SetUsername sets the Username field's value. func (s *RedshiftDatabaseCredentials) SetUsername(v string) *RedshiftDatabaseCredentials { s.Username = &v return s } // Describes the DataSource details specific to Amazon Redshift. type RedshiftMetadata struct { _ struct{} `type:"structure"` // A username to be used by Amazon Machine Learning (Amazon ML)to connect to // a database on an Amazon Redshift cluster. The username should have sufficient // permissions to execute the RedshiftSelectSqlQuery query. The username should // be valid for an Amazon Redshift USER (http://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html). DatabaseUserName *string `min:"1" type:"string"` // Describes the database details required to connect to an Amazon Redshift // database. RedshiftDatabase *RedshiftDatabase `type:"structure"` // The SQL query that is specified during CreateDataSourceFromRedshift. Returns // only if Verbose is true in GetDataSourceInput. SelectSqlQuery *string `min:"1" type:"string"` } // String returns the string representation func (s RedshiftMetadata) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s RedshiftMetadata) GoString() string { return s.String() } // SetDatabaseUserName sets the DatabaseUserName field's value. func (s *RedshiftMetadata) SetDatabaseUserName(v string) *RedshiftMetadata { s.DatabaseUserName = &v return s } // SetRedshiftDatabase sets the RedshiftDatabase field's value. func (s *RedshiftMetadata) SetRedshiftDatabase(v *RedshiftDatabase) *RedshiftMetadata { s.RedshiftDatabase = v return s } // SetSelectSqlQuery sets the SelectSqlQuery field's value. func (s *RedshiftMetadata) SetSelectSqlQuery(v string) *RedshiftMetadata { s.SelectSqlQuery = &v return s } // Describes the data specification of a DataSource. type S3DataSpec struct { _ struct{} `type:"structure"` // The location of the data file(s) used by a DataSource. The URI specifies // a data file or an Amazon Simple Storage Service (Amazon S3) directory or // bucket containing data files. // // DataLocationS3 is a required field DataLocationS3 *string `type:"string" required:"true"` // A JSON string that represents the splitting and rearrangement processing // to be applied to a DataSource. If the DataRearrangement parameter is not // provided, all of the input data is used to create the Datasource. // // There are multiple parameters that control what data is used to create a // datasource: // // * percentBegin // // Use percentBegin to indicate the beginning of the range of the data used // to create the Datasource. If you do not include percentBegin and percentEnd, // Amazon ML includes all of the data when creating the datasource. // // * percentEnd // // Use percentEnd to indicate the end of the range of the data used to create // the Datasource. If you do not include percentBegin and percentEnd, Amazon // ML includes all of the data when creating the datasource. // // * complement // // The complement parameter instructs Amazon ML to use the data that is not // included in the range of percentBegin to percentEnd to create a datasource. // The complement parameter is useful if you need to create complementary // datasources for training and evaluation. To create a complementary datasource, // use the same values for percentBegin and percentEnd, along with the complement // parameter. // // For example, the following two datasources do not share any data, and can // be used to train and evaluate a model. The first datasource has 25 percent // of the data, and the second one has 75 percent of the data. // // Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}} // // Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, // "complement":"true"}} // // * strategy // // To change how Amazon ML splits the data for a datasource, use the strategy // parameter. // // The default value for the strategy parameter is sequential, meaning that // Amazon ML takes all of the data records between the percentBegin and percentEnd // parameters for the datasource, in the order that the records appear in // the input data. // // The following two DataRearrangement lines are examples of sequentially ordered // training and evaluation datasources: // // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"sequential"}} // // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"sequential", "complement":"true"}} // // To randomly split the input data into the proportions indicated by the percentBegin // and percentEnd parameters, set the strategy parameter to random and provide // a string that is used as the seed value for the random data splitting // (for example, you can use the S3 path to your data as the random seed // string). If you choose the random split strategy, Amazon ML assigns each // row of data a pseudo-random number between 0 and 100, and then selects // the rows that have an assigned number between percentBegin and percentEnd. // Pseudo-random numbers are assigned using both the input seed string value // and the byte offset as a seed, so changing the data results in a different // split. Any existing ordering is preserved. The random splitting strategy // ensures that variables in the training and evaluation data are distributed // similarly. It is useful in the cases where the input data may have an // implicit sort order, which would otherwise result in training and evaluation // datasources containing non-similar data records. // // The following two DataRearrangement lines are examples of non-sequentially // ordered training and evaluation datasources: // // Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}} // // Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, // "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}} DataRearrangement *string `type:"string"` // A JSON string that represents the schema for an Amazon S3 DataSource. The // DataSchema defines the structure of the observation data in the data file(s) // referenced in the DataSource. // // You must provide either the DataSchema or the DataSchemaLocationS3. // // Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames // have an array of key-value pairs for their value. Use the following format // to define your DataSchema. // // { "version": "1.0", // // "recordAnnotationFieldName": "F1", // // "recordWeightFieldName": "F2", // // "targetFieldName": "F3", // // "dataFormat": "CSV", // // "dataFileContainsHeader": true, // // "attributes": [ // // { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": // "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": // "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" // }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": // "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" // } ], // // "excludedVariableNames": [ "F6" ] } DataSchema *string `type:"string"` // Describes the schema location in Amazon S3. You must provide either the DataSchema // or the DataSchemaLocationS3. DataSchemaLocationS3 *string `type:"string"` } // String returns the string representation func (s S3DataSpec) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s S3DataSpec) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *S3DataSpec) Validate() error { invalidParams := request.ErrInvalidParams{Context: "S3DataSpec"} if s.DataLocationS3 == nil { invalidParams.Add(request.NewErrParamRequired("DataLocationS3")) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetDataLocationS3 sets the DataLocationS3 field's value. func (s *S3DataSpec) SetDataLocationS3(v string) *S3DataSpec { s.DataLocationS3 = &v return s } // SetDataRearrangement sets the DataRearrangement field's value. func (s *S3DataSpec) SetDataRearrangement(v string) *S3DataSpec { s.DataRearrangement = &v return s } // SetDataSchema sets the DataSchema field's value. func (s *S3DataSpec) SetDataSchema(v string) *S3DataSpec { s.DataSchema = &v return s } // SetDataSchemaLocationS3 sets the DataSchemaLocationS3 field's value. func (s *S3DataSpec) SetDataSchemaLocationS3(v string) *S3DataSpec { s.DataSchemaLocationS3 = &v return s } // A custom key-value pair associated with an ML object, such as an ML model. type Tag struct { _ struct{} `type:"structure"` // A unique identifier for the tag. Valid characters include Unicode letters, // digits, white space, _, ., /, =, +, -, %, and @. Key *string `min:"1" type:"string"` // An optional string, typically used to describe or define the tag. Valid characters // include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @. Value *string `type:"string"` } // String returns the string representation func (s Tag) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s Tag) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *Tag) Validate() error { invalidParams := request.ErrInvalidParams{Context: "Tag"} if s.Key != nil && len(*s.Key) < 1 { invalidParams.Add(request.NewErrParamMinLen("Key", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetKey sets the Key field's value. func (s *Tag) SetKey(v string) *Tag { s.Key = &v return s } // SetValue sets the Value field's value. func (s *Tag) SetValue(v string) *Tag { s.Value = &v return s } type UpdateBatchPredictionInput struct { _ struct{} `type:"structure"` // The ID assigned to the BatchPrediction during creation. // // BatchPredictionId is a required field BatchPredictionId *string `min:"1" type:"string" required:"true"` // A new user-supplied name or description of the BatchPrediction. // // BatchPredictionName is a required field BatchPredictionName *string `type:"string" required:"true"` } // String returns the string representation func (s UpdateBatchPredictionInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s UpdateBatchPredictionInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *UpdateBatchPredictionInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "UpdateBatchPredictionInput"} if s.BatchPredictionId == nil { invalidParams.Add(request.NewErrParamRequired("BatchPredictionId")) } if s.BatchPredictionId != nil && len(*s.BatchPredictionId) < 1 { invalidParams.Add(request.NewErrParamMinLen("BatchPredictionId", 1)) } if s.BatchPredictionName == nil { invalidParams.Add(request.NewErrParamRequired("BatchPredictionName")) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetBatchPredictionId sets the BatchPredictionId field's value. func (s *UpdateBatchPredictionInput) SetBatchPredictionId(v string) *UpdateBatchPredictionInput { s.BatchPredictionId = &v return s } // SetBatchPredictionName sets the BatchPredictionName field's value. func (s *UpdateBatchPredictionInput) SetBatchPredictionName(v string) *UpdateBatchPredictionInput { s.BatchPredictionName = &v return s } // Represents the output of an UpdateBatchPrediction operation. // // You can see the updated content by using the GetBatchPrediction operation. type UpdateBatchPredictionOutput struct { _ struct{} `type:"structure"` // The ID assigned to the BatchPrediction during creation. This value should // be identical to the value of the BatchPredictionId in the request. BatchPredictionId *string `min:"1" type:"string"` } // String returns the string representation func (s UpdateBatchPredictionOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s UpdateBatchPredictionOutput) GoString() string { return s.String() } // SetBatchPredictionId sets the BatchPredictionId field's value. func (s *UpdateBatchPredictionOutput) SetBatchPredictionId(v string) *UpdateBatchPredictionOutput { s.BatchPredictionId = &v return s } type UpdateDataSourceInput struct { _ struct{} `type:"structure"` // The ID assigned to the DataSource during creation. // // DataSourceId is a required field DataSourceId *string `min:"1" type:"string" required:"true"` // A new user-supplied name or description of the DataSource that will replace // the current description. // // DataSourceName is a required field DataSourceName *string `type:"string" required:"true"` } // String returns the string representation func (s UpdateDataSourceInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s UpdateDataSourceInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *UpdateDataSourceInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "UpdateDataSourceInput"} if s.DataSourceId == nil { invalidParams.Add(request.NewErrParamRequired("DataSourceId")) } if s.DataSourceId != nil && len(*s.DataSourceId) < 1 { invalidParams.Add(request.NewErrParamMinLen("DataSourceId", 1)) } if s.DataSourceName == nil { invalidParams.Add(request.NewErrParamRequired("DataSourceName")) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetDataSourceId sets the DataSourceId field's value. func (s *UpdateDataSourceInput) SetDataSourceId(v string) *UpdateDataSourceInput { s.DataSourceId = &v return s } // SetDataSourceName sets the DataSourceName field's value. func (s *UpdateDataSourceInput) SetDataSourceName(v string) *UpdateDataSourceInput { s.DataSourceName = &v return s } // Represents the output of an UpdateDataSource operation. // // You can see the updated content by using the GetBatchPrediction operation. type UpdateDataSourceOutput struct { _ struct{} `type:"structure"` // The ID assigned to the DataSource during creation. This value should be identical // to the value of the DataSourceID in the request. DataSourceId *string `min:"1" type:"string"` } // String returns the string representation func (s UpdateDataSourceOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s UpdateDataSourceOutput) GoString() string { return s.String() } // SetDataSourceId sets the DataSourceId field's value. func (s *UpdateDataSourceOutput) SetDataSourceId(v string) *UpdateDataSourceOutput { s.DataSourceId = &v return s } type UpdateEvaluationInput struct { _ struct{} `type:"structure"` // The ID assigned to the Evaluation during creation. // // EvaluationId is a required field EvaluationId *string `min:"1" type:"string" required:"true"` // A new user-supplied name or description of the Evaluation that will replace // the current content. // // EvaluationName is a required field EvaluationName *string `type:"string" required:"true"` } // String returns the string representation func (s UpdateEvaluationInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s UpdateEvaluationInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *UpdateEvaluationInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "UpdateEvaluationInput"} if s.EvaluationId == nil { invalidParams.Add(request.NewErrParamRequired("EvaluationId")) } if s.EvaluationId != nil && len(*s.EvaluationId) < 1 { invalidParams.Add(request.NewErrParamMinLen("EvaluationId", 1)) } if s.EvaluationName == nil { invalidParams.Add(request.NewErrParamRequired("EvaluationName")) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetEvaluationId sets the EvaluationId field's value. func (s *UpdateEvaluationInput) SetEvaluationId(v string) *UpdateEvaluationInput { s.EvaluationId = &v return s } // SetEvaluationName sets the EvaluationName field's value. func (s *UpdateEvaluationInput) SetEvaluationName(v string) *UpdateEvaluationInput { s.EvaluationName = &v return s } // Represents the output of an UpdateEvaluation operation. // // You can see the updated content by using the GetEvaluation operation. type UpdateEvaluationOutput struct { _ struct{} `type:"structure"` // The ID assigned to the Evaluation during creation. This value should be identical // to the value of the Evaluation in the request. EvaluationId *string `min:"1" type:"string"` } // String returns the string representation func (s UpdateEvaluationOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s UpdateEvaluationOutput) GoString() string { return s.String() } // SetEvaluationId sets the EvaluationId field's value. func (s *UpdateEvaluationOutput) SetEvaluationId(v string) *UpdateEvaluationOutput { s.EvaluationId = &v return s } type UpdateMLModelInput struct { _ struct{} `type:"structure"` // The ID assigned to the MLModel during creation. // // MLModelId is a required field MLModelId *string `min:"1" type:"string" required:"true"` // A user-supplied name or description of the MLModel. MLModelName *string `type:"string"` // The ScoreThreshold used in binary classification MLModel that marks the boundary // between a positive prediction and a negative prediction. // // Output values greater than or equal to the ScoreThreshold receive a positive // result from the MLModel, such as true. Output values less than the ScoreThreshold // receive a negative response from the MLModel, such as false. ScoreThreshold *float64 `type:"float"` } // String returns the string representation func (s UpdateMLModelInput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s UpdateMLModelInput) GoString() string { return s.String() } // Validate inspects the fields of the type to determine if they are valid. func (s *UpdateMLModelInput) Validate() error { invalidParams := request.ErrInvalidParams{Context: "UpdateMLModelInput"} if s.MLModelId == nil { invalidParams.Add(request.NewErrParamRequired("MLModelId")) } if s.MLModelId != nil && len(*s.MLModelId) < 1 { invalidParams.Add(request.NewErrParamMinLen("MLModelId", 1)) } if invalidParams.Len() > 0 { return invalidParams } return nil } // SetMLModelId sets the MLModelId field's value. func (s *UpdateMLModelInput) SetMLModelId(v string) *UpdateMLModelInput { s.MLModelId = &v return s } // SetMLModelName sets the MLModelName field's value. func (s *UpdateMLModelInput) SetMLModelName(v string) *UpdateMLModelInput { s.MLModelName = &v return s } // SetScoreThreshold sets the ScoreThreshold field's value. func (s *UpdateMLModelInput) SetScoreThreshold(v float64) *UpdateMLModelInput { s.ScoreThreshold = &v return s } // Represents the output of an UpdateMLModel operation. // // You can see the updated content by using the GetMLModel operation. type UpdateMLModelOutput struct { _ struct{} `type:"structure"` // The ID assigned to the MLModel during creation. This value should be identical // to the value of the MLModelID in the request. MLModelId *string `min:"1" type:"string"` } // String returns the string representation func (s UpdateMLModelOutput) String() string { return awsutil.Prettify(s) } // GoString returns the string representation func (s UpdateMLModelOutput) GoString() string { return s.String() } // SetMLModelId sets the MLModelId field's value. func (s *UpdateMLModelOutput) SetMLModelId(v string) *UpdateMLModelOutput { s.MLModelId = &v return s } // The function used to train an MLModel. Training choices supported by Amazon // ML include the following: // // * SGD - Stochastic Gradient Descent. // * RandomForest - Random forest of decision trees. const ( // AlgorithmSgd is a Algorithm enum value AlgorithmSgd = "sgd" ) // A list of the variables to use in searching or filtering BatchPrediction. // // * CreatedAt - Sets the search criteria to BatchPrediction creation date. // // * Status - Sets the search criteria to BatchPrediction status. // * Name - Sets the search criteria to the contents of BatchPredictionName. // // * IAMUser - Sets the search criteria to the user account that invoked // the BatchPrediction creation. // * MLModelId - Sets the search criteria to the MLModel used in the BatchPrediction. // // * DataSourceId - Sets the search criteria to the DataSource used in the // BatchPrediction. // * DataURI - Sets the search criteria to the data file(s) used in the BatchPrediction. // The URL can identify either a file or an Amazon Simple Storage Service // (Amazon S3) bucket or directory. const ( // BatchPredictionFilterVariableCreatedAt is a BatchPredictionFilterVariable enum value BatchPredictionFilterVariableCreatedAt = "CreatedAt" // BatchPredictionFilterVariableLastUpdatedAt is a BatchPredictionFilterVariable enum value BatchPredictionFilterVariableLastUpdatedAt = "LastUpdatedAt" // BatchPredictionFilterVariableStatus is a BatchPredictionFilterVariable enum value BatchPredictionFilterVariableStatus = "Status" // BatchPredictionFilterVariableName is a BatchPredictionFilterVariable enum value BatchPredictionFilterVariableName = "Name" // BatchPredictionFilterVariableIamuser is a BatchPredictionFilterVariable enum value BatchPredictionFilterVariableIamuser = "IAMUser" // BatchPredictionFilterVariableMlmodelId is a BatchPredictionFilterVariable enum value BatchPredictionFilterVariableMlmodelId = "MLModelId" // BatchPredictionFilterVariableDataSourceId is a BatchPredictionFilterVariable enum value BatchPredictionFilterVariableDataSourceId = "DataSourceId" // BatchPredictionFilterVariableDataUri is a BatchPredictionFilterVariable enum value BatchPredictionFilterVariableDataUri = "DataURI" ) // A list of the variables to use in searching or filtering DataSource. // // * CreatedAt - Sets the search criteria to DataSource creation date. // * Status - Sets the search criteria to DataSource status. // * Name - Sets the search criteria to the contents of DataSourceName. // * DataUri - Sets the search criteria to the URI of data files used to // create the DataSource. The URI can identify either a file or an Amazon // Simple Storage Service (Amazon S3) bucket or directory. // * IAMUser - Sets the search criteria to the user account that invoked // the DataSource creation. // NoteThe variable names should match the variable names in the DataSource. const ( // DataSourceFilterVariableCreatedAt is a DataSourceFilterVariable enum value DataSourceFilterVariableCreatedAt = "CreatedAt" // DataSourceFilterVariableLastUpdatedAt is a DataSourceFilterVariable enum value DataSourceFilterVariableLastUpdatedAt = "LastUpdatedAt" // DataSourceFilterVariableStatus is a DataSourceFilterVariable enum value DataSourceFilterVariableStatus = "Status" // DataSourceFilterVariableName is a DataSourceFilterVariable enum value DataSourceFilterVariableName = "Name" // DataSourceFilterVariableDataLocationS3 is a DataSourceFilterVariable enum value DataSourceFilterVariableDataLocationS3 = "DataLocationS3" // DataSourceFilterVariableIamuser is a DataSourceFilterVariable enum value DataSourceFilterVariableIamuser = "IAMUser" ) // Contains the key values of DetailsMap: PredictiveModelType- Indicates the type of the MLModel. Algorithm- Indicates the algorithm that was used for the MLModel const ( // DetailsAttributesPredictiveModelType is a DetailsAttributes enum value DetailsAttributesPredictiveModelType = "PredictiveModelType" // DetailsAttributesAlgorithm is a DetailsAttributes enum value DetailsAttributesAlgorithm = "Algorithm" ) // Object status with the following possible values: // // * PENDING // * INPROGRESS // * FAILED // * COMPLETED // * DELETED const ( // EntityStatusPending is a EntityStatus enum value EntityStatusPending = "PENDING" // EntityStatusInprogress is a EntityStatus enum value EntityStatusInprogress = "INPROGRESS" // EntityStatusFailed is a EntityStatus enum value EntityStatusFailed = "FAILED" // EntityStatusCompleted is a EntityStatus enum value EntityStatusCompleted = "COMPLETED" // EntityStatusDeleted is a EntityStatus enum value EntityStatusDeleted = "DELETED" ) // A list of the variables to use in searching or filtering Evaluation. // // * CreatedAt - Sets the search criteria to Evaluation creation date. // * Status - Sets the search criteria to Evaluation status. // * Name - Sets the search criteria to the contents of EvaluationName. // * IAMUser - Sets the search criteria to the user account that invoked // an evaluation. // * MLModelId - Sets the search criteria to the Predictor that was evaluated. // // * DataSourceId - Sets the search criteria to the DataSource used in evaluation. // // * DataUri - Sets the search criteria to the data file(s) used in evaluation. // The URL can identify either a file or an Amazon Simple Storage Service // (Amazon S3) bucket or directory. const ( // EvaluationFilterVariableCreatedAt is a EvaluationFilterVariable enum value EvaluationFilterVariableCreatedAt = "CreatedAt" // EvaluationFilterVariableLastUpdatedAt is a EvaluationFilterVariable enum value EvaluationFilterVariableLastUpdatedAt = "LastUpdatedAt" // EvaluationFilterVariableStatus is a EvaluationFilterVariable enum value EvaluationFilterVariableStatus = "Status" // EvaluationFilterVariableName is a EvaluationFilterVariable enum value EvaluationFilterVariableName = "Name" // EvaluationFilterVariableIamuser is a EvaluationFilterVariable enum value EvaluationFilterVariableIamuser = "IAMUser" // EvaluationFilterVariableMlmodelId is a EvaluationFilterVariable enum value EvaluationFilterVariableMlmodelId = "MLModelId" // EvaluationFilterVariableDataSourceId is a EvaluationFilterVariable enum value EvaluationFilterVariableDataSourceId = "DataSourceId" // EvaluationFilterVariableDataUri is a EvaluationFilterVariable enum value EvaluationFilterVariableDataUri = "DataURI" ) const ( // MLModelFilterVariableCreatedAt is a MLModelFilterVariable enum value MLModelFilterVariableCreatedAt = "CreatedAt" // MLModelFilterVariableLastUpdatedAt is a MLModelFilterVariable enum value MLModelFilterVariableLastUpdatedAt = "LastUpdatedAt" // MLModelFilterVariableStatus is a MLModelFilterVariable enum value MLModelFilterVariableStatus = "Status" // MLModelFilterVariableName is a MLModelFilterVariable enum value MLModelFilterVariableName = "Name" // MLModelFilterVariableIamuser is a MLModelFilterVariable enum value MLModelFilterVariableIamuser = "IAMUser" // MLModelFilterVariableTrainingDataSourceId is a MLModelFilterVariable enum value MLModelFilterVariableTrainingDataSourceId = "TrainingDataSourceId" // MLModelFilterVariableRealtimeEndpointStatus is a MLModelFilterVariable enum value MLModelFilterVariableRealtimeEndpointStatus = "RealtimeEndpointStatus" // MLModelFilterVariableMlmodelType is a MLModelFilterVariable enum value MLModelFilterVariableMlmodelType = "MLModelType" // MLModelFilterVariableAlgorithm is a MLModelFilterVariable enum value MLModelFilterVariableAlgorithm = "Algorithm" // MLModelFilterVariableTrainingDataUri is a MLModelFilterVariable enum value MLModelFilterVariableTrainingDataUri = "TrainingDataURI" ) const ( // MLModelTypeRegression is a MLModelType enum value MLModelTypeRegression = "REGRESSION" // MLModelTypeBinary is a MLModelType enum value MLModelTypeBinary = "BINARY" // MLModelTypeMulticlass is a MLModelType enum value MLModelTypeMulticlass = "MULTICLASS" ) const ( // RealtimeEndpointStatusNone is a RealtimeEndpointStatus enum value RealtimeEndpointStatusNone = "NONE" // RealtimeEndpointStatusReady is a RealtimeEndpointStatus enum value RealtimeEndpointStatusReady = "READY" // RealtimeEndpointStatusUpdating is a RealtimeEndpointStatus enum value RealtimeEndpointStatusUpdating = "UPDATING" // RealtimeEndpointStatusFailed is a RealtimeEndpointStatus enum value RealtimeEndpointStatusFailed = "FAILED" ) // The sort order specified in a listing condition. Possible values include // the following: // // * asc - Present the information in ascending order (from A-Z). // * dsc - Present the information in descending order (from Z-A). const ( // SortOrderAsc is a SortOrder enum value SortOrderAsc = "asc" // SortOrderDsc is a SortOrder enum value SortOrderDsc = "dsc" ) const ( // TaggableResourceTypeBatchPrediction is a TaggableResourceType enum value TaggableResourceTypeBatchPrediction = "BatchPrediction" // TaggableResourceTypeDataSource is a TaggableResourceType enum value TaggableResourceTypeDataSource = "DataSource" // TaggableResourceTypeEvaluation is a TaggableResourceType enum value TaggableResourceTypeEvaluation = "Evaluation" // TaggableResourceTypeMlmodel is a TaggableResourceType enum value TaggableResourceTypeMlmodel = "MLModel" )