rclone/vendor/google.golang.org/api/iterator/examples_test.go

228 lines
6.1 KiB
Go

// Copyright 2016 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package iterator_test
import (
"bytes"
"fmt"
"html/template"
"log"
"math"
"net/http"
"sort"
"strconv"
"golang.org/x/net/context"
"google.golang.org/api/iterator"
)
var (
client *Client
ctx = context.Background()
)
var pageTemplate = template.Must(template.New("").Parse(`
<table>
{{range .Entries}}
<tr><td>{{.}}</td></tr>
{{end}}
</table>
{{with .Next}}
<a href="/entries?pageToken={{.}}">Next Page</a>
{{end}}
`))
// This example demonstrates how to use Pager to support
// pagination on a web site.
func Example_webHandler(w http.ResponseWriter, r *http.Request) {
const pageSize = 25
it := client.Items(ctx)
var items []int
pageToken, err := iterator.NewPager(it, pageSize, r.URL.Query().Get("pageToken")).NextPage(&items)
if err != nil {
http.Error(w, fmt.Sprintf("getting next page: %v", err), http.StatusInternalServerError)
}
data := struct {
Items []int
Next string
}{
items,
pageToken,
}
var buf bytes.Buffer
if err := pageTemplate.Execute(&buf, data); err != nil {
http.Error(w, fmt.Sprintf("executing page template: %v", err), http.StatusInternalServerError)
}
w.Header().Set("Content-Type", "text/html; charset=utf-8")
if _, err := buf.WriteTo(w); err != nil {
log.Printf("writing response: %v", err)
}
}
// This example demonstrates how to use a Pager to page through an iterator in a loop.
func Example_pageLoop() {
// Find all primes up to 42, in pages of size 5.
const max = 42
const pageSize = 5
p := iterator.NewPager(Primes(max), pageSize, "" /* start from the beginning */)
for page := 0; ; page++ {
var items []int
pageToken, err := p.NextPage(&items)
if err != nil {
log.Fatalf("Iterator paging failed: %v", err)
}
fmt.Printf("Page %d: %v\n", page, items)
if pageToken == "" {
break
}
}
// Output:
// Page 0: [2 3 5 7 11]
// Page 1: [13 17 19 23 29]
// Page 2: [31 37 41]
}
// The example demonstrates how to use a Pager to request a page from a given token.
func Example_pageToken() {
const pageSize = 5
const pageToken = "1337"
p := iterator.NewPager(Primes(0), pageSize, pageToken)
var items []int
nextPage, err := p.NextPage(&items)
if err != nil {
log.Fatalf("Iterator paging failed: %v", err)
}
fmt.Printf("Primes: %v\nToken: %q\n", items, nextPage)
// Output:
// Primes: [1361 1367 1373 1381 1399]
// Token: "1400"
}
// This example demonstrates how to get exactly the items in the buffer, without
// triggering an extra RPC.
func Example_serverPages() {
// The iterator returned by Primes has a default page size of 20, which means
// it will return all the primes in the range [2, 21).
it := Primes(0)
var items []int
for {
item, err := it.Next()
if err != nil && err != iterator.Done {
log.Fatal(err)
}
if err == iterator.Done {
break
}
items = append(items, item)
if it.PageInfo().Remaining() == 0 {
break
}
}
fmt.Println(items)
// Output:
// [2 3 5 7 11 13 17 19]
}
// Primes returns a iterator which returns a sequence of prime numbers.
// If non-zero, max specifies the maximum number which could possibly be
// returned.
func Primes(max int) *SieveIterator {
it := &SieveIterator{pos: 2, max: max}
it.pageInfo, it.nextFunc = iterator.NewPageInfo(
it.fetch,
func() int { return len(it.items) },
func() interface{} { b := it.items; it.items = nil; return b })
return it
}
// SieveIterator is an iterator that returns primes using the sieve of
// Eratosthenes. It is a demonstration of how an iterator might work.
// Internally, it uses "page size" as the number of ints to consider,
// and "page token" as the first number to consider (defaults to 2).
type SieveIterator struct {
pageInfo *iterator.PageInfo
nextFunc func() error
max int // The largest number to consider.
p []int // Primes in the range [2, pos).
pos int // Next number to consider when generating p.
items []int
}
// PageInfo returns a PageInfo, which supports pagination.
func (it *SieveIterator) PageInfo() *iterator.PageInfo { return it.pageInfo }
func (it *SieveIterator) fetch(pageSize int, pageToken string) (string, error) {
start := 2
if pageToken != "" {
s, err := strconv.Atoi(pageToken)
if err != nil || s < 2 {
return "", fmt.Errorf("invalid token %q", pageToken)
}
start = s
}
if pageSize == 0 {
pageSize = 20 // Default page size.
}
// Make sure sufficient primes have been calculated.
it.calc(start + pageSize)
// Find the subslice of primes which match this page.
// Note that PageInfo requires that fetch does not remove any existing items,
// so we cannot assume that items is empty at this call.
items := it.p[sort.SearchInts(it.p, start):]
items = items[:sort.SearchInts(items, start+pageSize)]
it.items = append(it.items, items...)
if it.max > 0 && start+pageSize > it.max {
return "", nil // No more possible numbers to return.
}
return strconv.Itoa(start + pageSize), nil
}
// calc populates p with all primes up to, but not including, max.
func (it *SieveIterator) calc(max int) {
if it.max > 0 && max > it.max+1 { // it.max is an inclusive bounds, max is exclusive.
max = it.max + 1
}
outer:
for x := it.pos; x < max; x++ {
sqrt := int(math.Sqrt(float64(x)))
for _, p := range it.p {
switch {
case x%p == 0:
// Not a prime.
continue outer
case p > sqrt:
// Only need to check up to sqrt.
break
}
}
it.p = append(it.p, x)
}
it.pos = max
}
func (it *SieveIterator) Next() (int, error) {
if err := it.nextFunc(); err != nil {
return 0, err
}
item := it.items[0]
it.items = it.items[1:]
return item, nil
}