shorewall_code/Shorewall-docs2/shorewall_setup_guide_fr.xml
2005-12-19 18:39:39 +00:00

2645 lines
112 KiB
XML

<?xml version="1.0" encoding="ISO-8859-15"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<article id="IPIP" lang="fr">
<!--$Id$-->
<articleinfo>
<title>Guide de configuration Shorewall</title>
<authorgroup>
<author>
<firstname>Tom</firstname>
<surname>Eastep</surname>
</author>
<author>
<firstname>Fabien</firstname>
<surname>Demassieux</surname>
</author>
<author>
<firstname>Guy</firstname>
<surname>Marcenac</surname>
</author>
</authorgroup>
<pubdate>2005-12-18</pubdate>
<copyright>
<year>2001-2005</year>
<holder>Thomas M. Eastep</holder>
<holder>Fabien Demassieux</holder>
<holder>Guy Marcenac</holder>
</copyright>
<legalnotice>
<para>Permission est accordée de copier, distribuer et/ou modifier ce
document selon les termes de la Licence de Documentation Libre GNU (GNU
Free Documentation License), version 1.2 ou toute version ultérieure
publiée par la Free Software Foundation ; sans section Invariables, sans
première de Couverture, et sans texte de quatrième de couverture. Une
copie de la présente Licence est incluse dans la section intitulée. Une
traduction française de la licence se trouve dans la section
<quote><ulink
url="http://www.idealx.org/dossier/oss/gfdl.fr.html">Licence de
Documentation Libre GNU</ulink></quote>. Ce paragraphe est une
traduction française pour aider à votre compréhension. Seul le texte
original en anglais présenté ci-dessous fixe les conditions
d'utilisation de cette documentation.</para>
<para>Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, with no Front-Cover, and with no Back-Cover
Texts. A copy of the license is included in the section entitled
<quote><ulink url="GnuCopyright.htm">GNU Free Documentation
License</ulink></quote>.</para>
</legalnotice>
</articleinfo>
<note>
<para><emphasis role="underline">Notes du traducteur :</emphasis> Le
traduction initiale a été réalisée par <ulink
url="mailto:fd03x@wanadoo.fr">Fabien Demassieux</ulink>. J'ai assuré la
révision pour l'adapter à la version 3 de Shorewall. Si vous trouvez des
erreurs ou des améliorations à y apporter vous pouvez me contacter <ulink
url="mailto:guy@posteurs.com">Guy Marcenac</ulink>.</para>
</note>
<caution>
<para><emphasis role="bold">Cet article s'applique à Shorewall 3.0 et à
ses versions ultérieures. Si vous utilisez une version plus ancienne de
Shorewall, référez-vous à la documentation s'appliquant à votre
version.</emphasis></para>
</caution>
<section id="Introduction">
<title>Introduction</title>
<para>Ce guide est destiné aux utilisateurs qui configurent Shorewall dans
un environnement où un ensemble d'adresses IP publiques doit être pris en
compte ainsi qu'à ceux qui souhaitent en savoir plus à propos de Shorewall
que ce que contiennent le guides pour une utilisation avec une <ulink
url="shorewall_quickstart_guide.htm">adresse IP unique</ulink>. Le champs
d'application étant très large, ce guide vous donnera des indications
générales à suivre et vous indiquera d'autres ressources si
nécessaire.</para>
<caution>
<para>Shorewall a besoin que le paquetage
<command><command>iproute</command></command>/<command><command>iproute2</command></command>
soit installé (avec la distribution <trademark>RedHat</trademark>, le
paquetage s'appelle <command><command>iproute</command></command>). Vous
pouvez contrôler que le paquetage est installé en vérifiant la présence
du programme <command><command>ip</command></command> sur votre
firewall. En tant que <systemitem class="username">root</systemitem>,
vous pouvez utiliser la commande <command>which</command> pour
cela:</para>
<programlisting>[root@gateway root]# <command>which ip</command>
/sbin/ip
[root@gateway root]#</programlisting>
<para>Je vous recommande de commencer par une lecture complète du guide
afin de vous familiariser avec les concepts mis en oeuvre, puis de
recommencer la lecture et seulement alors d'appliquer vos modifications
de configuration.</para>
<para>Les points où des modifications s'imposent sont indiqués par
<inlinegraphic fileref="images/BD21298_.gif" format="GIF" />.</para>
</caution>
<caution>
<para>Si vous éditez vos fichiers de configuration sur un système
<trademark>Windows</trademark>, vous devez les enregistrer comme des
fichiers <trademark>Unix</trademark> si votre éditeur supporte cette
option sinon vous devez les convertir avec <command>dos2unix</command>
avant d'essayer de les utiliser. De la même manière, si vous copiez un
fichier de configuration depuis votre disque dur
<trademark>Windows</trademark> vers une disquette, vous devez lancer
<command>dos2unix</command> sur la copie avant de l'utiliser avec
Shorewall.</para>
<simplelist>
<member><ulink url="http://www.simtel.net/pub/pd/51438.html">Version
Windows de dos2unix</ulink></member>
<member><ulink
url="http://www.megaloman.com/~hany/software/hd2u/">Version Linux de
dos2unix</ulink></member>
</simplelist>
</caution>
</section>
<section id="Concepts">
<title>Les Concepts de Shorewall</title>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Les fichiers de configuration pour Shorewall sont situés dans le
répertoire /etc/shorewall -- pour de simples paramétrages, vous n'aurez à
faire qu'avec quelques-uns d'entre eux comme décrit dans ce guide. Des
squelettes de fichiers sont créés durant <ulink url="Install.htm">la
procédure d'installation de Shorewall</ulink>.</para>
<warning>
<para><emphasis role="bold">Note aux utilisateurs de
Debian</emphasis></para>
<para>Si vous vous servez du .deb pour installer, vous vous rendrez
compte que votre répertoire <filename
class="directory">/etc/shorewall</filename> est vide. Ceci est voulu.
Les squelettes des fichiers de configuration se trouvent sur votre
système dans le répertoire <filename
class="directory">/usr/share/doc/shorewall/default-config</filename>.
Copiez simplement les fichiers dont vous avez besoin depuis ce
répertoire dans <filename class="directory">/etc/shorewall</filename>,
puis modifiez ces copies.</para>
<para>Remarquez que vous devez copier<filename>
/usr/share/doc/shorewall/default-config/shorewall.conf</filename> et
<filename>/usr/share/doc/shorewall/default-config/modules</filename>
dans <filename
class="directory"><filename>/etc/shorewall</filename></filename> même si
vous ne modifiez pas ces fichiers.</para>
</warning>
<para>Au fur et à mesure de la présentation de chaque fichier, je vous
suggère de jeter un oeil à ceux physiquement présents sur votre système --
chacun des fichiers contient des instructions de configuration détaillées
et des entrées par défaut.</para>
<para>Shorewall voit le réseau où il fonctionne, comme étant composé d'un
ensemble de zones. Dans ce guide nous utiliserons les zones
suivantes:</para>
<variablelist>
<varlistentry>
<term>fw</term>
<listitem>
<para>Le firewall lui-même.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>net</term>
<listitem>
<para>L'internet public.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>loc</term>
<listitem>
<para>Un réseau local privé utilisant des adresses IP
privées.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>dmz</term>
<listitem>
<para>Une zone démilitarisée (<acronym>DMZ</acronym>) contenant les
serveurs publiquement accessibles.</para>
</listitem>
</varlistentry>
</variablelist>
<para>Les Zones sont définies dans le fichier <filename><ulink
url="Documentation.htm#Zones"><filename>/etc/shorewall/zones</filename></ulink></filename>.</para>
<important>
<para>Le fichier <filename>/etc/shorewall/zones</filename> fourni avec
la distribution est vide. Vous pouvez créer l'ensemble de zones standard
décrites au-dessus en copiant puis en collant ce qui suit dans le
fichier:</para>
<programlisting>#ZONE TYPE OPTIONS
fw firewall
net ipv4
loc ipv4
dmz ipv4</programlisting>
</important>
<para>Remarquez que Shorewall reconnaît aussi le système firewall comme sa
propre zone - l'exemple ci-dessus suit la convention qui veut que la zone
firewall soit nommée <emphasis role="bold">fw</emphasis>. Le nom de la
zone firewall (<emphasis role="bold">fw</emphasis> dans l'exemple plus
haut) est stocké dans la variable d'environnement <emphasis>$FW</emphasis>
lorsque le fichier <filename>/etc/shorewall/zones</filename> est traité. A
l'exception du nom attribué à la zone firewall, Shorewall n'attache aucune
signification aux noms de zone. Le zones sont entièrement ce que VOUS en
faites. Ceci signifie que vous ne devriez pas attendre de Shorewall qu'il
fasse quoi que ce soit de spécial <quote>car il s'agit de la zone
internet</quote> ou <quote>car ceci est la
<acronym>DMZ</acronym></quote>.</para>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Éditez le fichier <filename>/etc/shorewall/zones</filename> et
faites-y les changements nécessaires.</para>
<para>Les règles qui concernent le trafic à autoriser ou à refuser sous
exprimées en termes de Zones.</para>
<itemizedlist>
<listitem>
<para>Vous exprimez les politiques par défaut entre une zone et une
autre zone dans le fichier <filename><ulink
url="Documentation.htm#Policy">/etc/shorewall/policy</ulink></filename>.</para>
</listitem>
<listitem>
<para>Vous définissez les exceptions à ces politiques par défaut dans
le fichier <filename><ulink
url="Documentation.htm#Rules">/etc/shorewall/rules</ulink></filename>.</para>
</listitem>
</itemizedlist>
<para>Shorewall est construit sur les mécanismes de <ulink
url="http://www.netfilter.org">Netfilter</ulink>, service de filtrage du
noyau (kernel). Netfilter fournit une <ulink
url="http://www.cs.princeton.edu/~jns/security/iptables/iptables_conntrack.html">fonction
de suivi de connexion</ulink> qui permet une analyse d'état des paquets
(stateful inspection). Cette propriété permet aux règles du firewall
d'être définies en termes de connexions plutôt qu'en termes de paquets.
Avec Shorewall, vous:</para>
<orderedlist>
<listitem>
<para>Identifiez la zone source (client).</para>
</listitem>
<listitem>
<para>Identifiez la zone destination (serveur).</para>
</listitem>
<listitem>
<para>Si la politique depuis la zone du client vers la zone du serveur
est ce que vous souhaitez pour cette paire client/serveur, vous n'avez
rien de plus à faire.</para>
</listitem>
<listitem>
<para>Si la politique n'est pas ce que vous souhaitez, alors vous
devez ajouter une règle. Cette règle est exprimée en termes de zone
client et de zone serveur.</para>
</listitem>
</orderedlist>
<para><emphasis role="bold">Autoriser les connexions d'un certain type
depuis la zone A vers le firewall et depuis firewall vers la zone B
<emphasis role="bold">NE SIGNIFIE PAS que ces connections sont autorisés
de la zone A à la zone B</emphasis></emphasis> (autrement dit, les
connexions impliquant la zone firewall ne sont pas transitives).</para>
<para>Pour chaque connexion demandant à entrer dans le firewall, la
requête est en premier lieu vérifiée par rapport au fichier
<filename>/etc/shorewall/rules</filename>. Si aucune règle dans ce fichier
ne correspond à la demande de connexion alors la première politique dans
le fichier <filename>/etc/shorewall/policy</filename> qui y correspond
sera appliquée. S'il y a une <ulink
url="shorewall_extension_scripts.htm">action commune</ulink> définie pour
cette politique dans <filename>/etc/shorewall/actions</filename> ou dans
<filename>/usr/share/shorewall/actions.std</filename> cette action commune
sera exécutée avant que l'action spécifiée dans
<filename>/etc/shorewall/rules</filename> ne soit appliquée.</para>
<para>Avant Shorewall 2.2.0, le fichier
<filename>/etc/shorewall/policy</filename> avait les politiques
suivantes:</para>
<programlisting>#SOURCE ZONE DESTINATION ZONE POLICY LOG LIMIT:BURST
# LEVEL
fw net ACCEPT
net all DROP info
all all REJECT info</programlisting>
<important>
<para>Le fichier de politiques distribué actuellement est vide. Vous
pouvez y copier et coller les entrées présentées ci-dessus comme point
de départ, puis l'adapter à vos propres politiques.</para>
</important>
<para>Les politiques précédentes vont:</para>
<orderedlist>
<listitem>
<para>Autoriser (ACCEPT) toutes les connexions de votre réseau local
vers internet</para>
</listitem>
<listitem>
<para>Ignorer (DROP) toutes les tentatives de connexions d'internet
vers le firewall ou vers votre réseau local et enregistrer dans vos
journaux (log) un message au niveau info (<ulink
url="shorewall_logging.html">vous trouverez ici la description des
niveaux de journalisation</ulink>).</para>
</listitem>
<listitem>
<para>Rejeter (REJECT) toutes les autres demandes de connexion et
générer un message de niveau info dans votre journal. Quant la requête
est rejetée et que le protocole est TCP, le firewall retourne un
paquet RST. Pour tous les autres protocoles, quand une requête est
rejetée, le firewall renvoie un paquet ICMP port-unreachable.</para>
</listitem>
</orderedlist>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Maintenant, éditez votre <filename>/etc/shorewall/policy
</filename>et apportez-y tous les changements que vous souhaitez.</para>
</section>
<section id="Interfaces">
<title>Interfaces Réseau</title>
<para>Dans la suite du guide, nous nous référerons au schéma ci-dessous.
Bien qu'il puisse ne pas correspondre à votre propre réseau, il peut être
utilisé pour illustrer les aspects importants de la configuration de
Shorewall.</para>
<para>Sur ce schéma:</para>
<itemizedlist>
<listitem>
<para>La zone <acronym>DMZ</acronym> est composée des systèmes DMZ 1
et DMZ 2. On utilise une <acronym>DMZ</acronym> pour isoler ses
serveurs accessibles depuis internet de ses systèmes locaux. Ainsi si
un des serveurs de la <acronym>DMZ</acronym> est compromis, vous avez
encore un firewall entre le système compromis et vos systèmes
locaux.</para>
</listitem>
<listitem>
<para>La zone <quote>local</quote> est composée des systèmes Local 1,
Local 2 et Local 3.</para>
</listitem>
<listitem>
<para>Tous les systèmes à l'extérieur du firewall, y compris ceux de
votre FAI, sont dans la zone internet.</para>
</listitem>
</itemizedlist>
<graphic align="center" fileref="images/dmz3.png" />
<para>La façon la plus simple pour définir les zones est d'associer le nom
de la zone (définie précédemment dans
<filename>/etc/shorewall/zones</filename>) à une interface réseau. Ceci
est fait dans le fichier <ulink
url="Documentation.htm#Interfaces">/etc/shorewall/interfaces</ulink>.</para>
<para>Le firewall illustré ci-dessus à trois interfaces réseau. Lorsque la
connexion internet passe par un <quote>modem</quote> câble
ou<acronym><acronym> ADSL
</acronym></acronym><emphasis><emphasis>l'Interface
Externe</emphasis></emphasis> sera l'adaptateur éthernet qui est connecté
à ce <quote>Modem</quote> (par exemple <filename
class="devicefile">eth0</filename>). Par contre, si vous vous connectez
avec <acronym>PPPoE</acronym> (Point-to-Point Protocol over Ethernet) ou
avec <acronym><acronym>PPTP</acronym></acronym> (Point-to-Point Tunneling
Protocol), l'interface externe sera une interface ppp (par exemple
<filename class="devicefile"><filename
class="devicefile">ppp0</filename></filename>). Si vous vous connectez
avec un simple modem <acronym><acronym>RTC</acronym></acronym>, votre
interface externe sera aussi <filename class="devicefile"><filename
class="devicefile">ppp0</filename></filename>. Si vous vous connectez en
utilisant l'<acronym><acronym>ISDN</acronym></acronym>, votre interface
externe sera <filename class="devicefile"><filename
class="devicefile">ippp0</filename></filename>.</para>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para><emphasis role="bold">Si votre interface vers l'extérieur est
<filename class="devicefile">ppp0</filename> ou <filename
class="devicefile">ippp0</filename> alors vous mettrez CLAMPMSS=yes dans
le fichier
<filename>/etc/shorewall/shorewall.conf</filename></emphasis>.</para>
<para>Votre <emphasis>Interface locale</emphasis> sera un adaptateur
éthernet (<filename class="devicefile"><filename
class="devicefile">eth0</filename></filename>, <filename
class="devicefile"><filename class="devicefile">eth1</filename></filename>
or <filename class="devicefile"><filename
class="devicefile">eth2</filename></filename>) et sera connectée à un hub
ou à un switch. Vos ordinateurs locaux seront connectés à ce même hub ou
switch (note : si vous n'avez qu'un seul ordinateur en local, vous pouvez
le connecter directement au firewall par un câble croisé).</para>
<para>Votre <emphasis>interface <acronym>DMZ</acronym></emphasis> sera
aussi un adaptateur éthernet (<filename class="devicefile"><filename
class="devicefile">eth0</filename></filename>, <filename
class="devicefile"><filename class="devicefile">eth1</filename></filename>
or <filename class="devicefile"><filename
class="devicefile">eth2</filename></filename>) et sera connecté à un hub
ou un à switch. Vos ordinateurs appartenant à la DMZ seront connectés à ce
même hub ou switch (note : si vous n'avez qu'un seul ordinateur dans la
<acronym>DMZ</acronym>, vous pouvez le connecter directement au firewall
par un câble croisé).</para>
<warning>
<para><emphasis role="bold">Ne connectez pas les interfaces interne et
externe sur le même hub ou le même switch, sauf à des fins de
test</emphasis>. Vous pouvez tester en utilisant ce type de
configuration si vous spécifiez l'option <emphasis
role="bold">arp_filter</emphasis> ou l'option <emphasis
role="bold">arp_ignore</emphasis> dans le fichier <filename
class="directory">/etc/shorewall/</filename><filename>interfaces, et
ce</filename> pour toutes les interfaces connectées au hub/switch
commun. <emphasis role="bold">Il est très fortement déconseillé
d'utiliser une telle configuration avec un firewall en
production</emphasis>.</para>
</warning>
<para>Dans la suite, nous supposerons que:</para>
<itemizedlist>
<listitem>
<para>L'interface externe est <filename class="devicefile"><filename
class="devicefile">eth0</filename></filename>.</para>
</listitem>
<listitem>
<para>L'interface locale est <filename class="devicefile"><filename
class="devicefile">eth1</filename></filename>.</para>
</listitem>
<listitem>
<para>L'interface <acronym>DMZ</acronym> est <filename
class="devicefile"><filename
class="devicefile">eth2</filename></filename>.</para>
</listitem>
</itemizedlist>
<para>La configuration par défaut de Shorewall ne définit le contenu
d'aucune zone. Pour définir la configuration présentée plus haut, le
fichier <ulink
url="Documentation.htm#Interfaces">/etc/shorewall/interfaces</ulink> doit
contenir:</para>
<programlisting>#ZONE INTERFACE BROADCAST OPTIONS
net eth0 detect rfc1918
loc eth1 detect
dmz eth2 detect</programlisting>
<para>Remarquez que la zone $FW n'a aucune entrée dans le fichier
<filename>/etc/shorewall/interfaces.</filename></para>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Éditez le fichier <filename>/etc/shorewall/interfaces.</filename>
Définissez les interfaces du réseau de votre firewall et associez chacune
d'entre elles à une zone. Si vous avez une zone qui est connectée par plus
d'une interface, incluez simplement une entrée pour chaque interface et
répétez le nom de zone autant de fois que nécessaire.</para>
<example>
<title>Interfaces Multiples associées une Zone</title>
<programlisting>#ZONE INTERFACE BROADCAST OPTIONS
net eth0 detect rfc1918
loc eth1 detect
loc eth2 detect</programlisting>
</example>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Vous pouvez définir des zones plus compliquées en utilisant le
fichier<filename> <ulink
url="Documentation.htm#Hosts">/etc/shorewall/hosts</ulink></filename> mais
dans la plus part des cas, cela ne sera pas nécessaire. Vous trouverez des
exemples dans <ulink
url="Shorewall_and_Aliased_Interfaces.html">Shorewall_and_Aliased_Interfaces.html</ulink>
et <ulink url="Multiple_Zones.html">Multiple_Zones.html</ulink>.</para>
</section>
<section id="Addressing">
<title>Adressage, Sous-réseaux et Routage</title>
<para>Normalement, votre <acronym>FAI</acronym> vous attribue un ensemble
d'adresses IP publiques. Vous utiliserez une de ces adresses pour
configurer l'interface externe de votre firewall. Vous déciderez ensuite
comment utiliser le reste de vos adresses. Avant d'aborder ce point, il
nous faut rappeler le contexte.</para>
<para>Si vous êtes déjà familier de l'adressage IP et du routage, vous
pouvez directement aller à la prochaine section.</para>
<para>La présentation qui suit ne fait que d'effleurer les questions de
l'adressage et du routage. Si vous vous voulez en apprendre plus sur
l'adressage <acronym>IP</acronym> et le routage, je vous recommande
<quote>IP Fundamentals: What Everyone Needs to Know about Addressing &amp;
Routing</quote>, Thomas A. Maufer, Prentice-Hall, 1999, ISBN 0-13-975483-0
(<ulink
url="http://www.phptr.com/browse/product.asp?product_id={58D4F6D4-54C5-48BA-8EDD-86EBD7A42AF6}">lien</ulink>).</para>
<section id="Addresses">
<title>Adressage IP</title>
<para>Les adresses IP version 4 (IPv4) sont codées sur 32 bits. La
notation w.x.y.z fait référence à une adresse dont l'octet de poids fort
a pour valeur <quote>w</quote>, le suivant a pour valeur
<quote>x</quote>, etc. Si nous prenons l'adresse 192.0.2.14 et que nous
l'exprimons en hexadécimal, nous obtenons</para>
<para><programlisting>C0.00.02.0E</programlisting>et si nous la
regardons comme un entier de 32 bits nous avons</para>
<para><programlisting>C000020E</programlisting></para>
</section>
<section id="Subnets">
<title>Sous-réseaux</title>
<para>Vous entendrez encore aujourd'hui les termes de <quote>Réseau de
classe A</quote>, <quote>Réseau de classe B</quote> et <quote>Réseau de
classe C</quote>. Au début de l'existence de l'IP, les réseaux ne
pouvaient avoir que trois tailles (il y avait aussi les réseaux de
classe D mais il étaient utilisés différemment):</para>
<simplelist>
<member>Classe A - masque de sous-réseau 255.0.0.0, taille = 2 **
24</member>
<member>Classe B - masque de sous-réseau 255.255.0.0, taille = 2 **
16</member>
<member>Classe C - masque de sous-réseau 255.255.255.0, taille =
256</member>
</simplelist>
<para>La classe d'un réseau était déterminée de façon unique par la
valeur de l'octet de poids fort de son adresse, ainsi en regardant une
adresse IP on pouvait déterminer immédiatement la valeur du masque
réseau. Le masque réseau est un nombre qui combiné à une adresse par un
ET logique, isole l'adresse du réseau auquel cette adresse appartient.
Le reste de l'adresse est le <emphasis>numéro d'hôte</emphasis>. Par
exemple, dans l'adresse de classe C 192.0.2.14, la valeur hexadécimale
de l'adresse du réseau est C00002 et le numéro d'hôte est 0E.</para>
<para>Comme internet se développait, il devint clair qu'un
partitionnement aussi grossier de l'espace d'adresses de 32 bits allait
être très limitatif (rapidement, les grandes sociétés et les universités
s'étaient déjà attribuées leur propre réseau de classe A !). Après
quelques faux départs, la technique courante du sous-adressage de ces
réseaux en plus petits sous-réseaux évolua. On fait référence à cette
technique sous l'appellation de Routage Inter-Domaine Sans Classe ou
<emphasis>Classless InterDomain Routing</emphasis>
(<acronym>CIDR</acronym>). Aujourd'hui, les systèmes avec lesquels vous
travaillez sont probablement compatibles avec la notation CIDR. La
gestion des réseaux basée sur les Classes est du domaine du
passé.</para>
<para>Un <emphasis>sous-réseau</emphasis> (<emphasis>subnet</emphasis>
ou <emphasis>subnetwork</emphasis>) est un ensemble contigu d'adresses
IP tel que:</para>
<orderedlist>
<listitem>
<para>Le nombre d'adresses dans le jeu est un multiple de 2.</para>
</listitem>
<listitem>
<para>La première adresse dans le jeu est un multiple de la taille
du jeu.</para>
</listitem>
<listitem>
<para>La première adresse du sous-réseau est réservée et on s'y
réfère comme étant <emphasis>l'adresse du
sous-réseau</emphasis>.</para>
</listitem>
<listitem>
<para>La dernière adresse du sous-réseau est réservée comme
<emphasis>adresse de diffusion (broadcast) du
sous-réseau</emphasis>.</para>
</listitem>
</orderedlist>
<para>Comme vous pouvez le constater par cette définition, dans chaque
sous-réseau de taille n il y a (n - 2) adresses utilisables (adresses
qui peuvent être attribuées à un hôte). La première et la dernière
adresse du sous-réseau sont utilisées respectivement pour identifier
l'adresse du sous-réseau et l'adresse de diffusion du sous-réseau. En
conséquence, de petits sous-réseaux sont plus gourmands en adresses IP
que des sous-réseaux plus étendus.</para>
<para>Comme n est une puissance de deux, nous pouvons aisément calculer
le <emphasis>Logarithme à base 2 de n </emphasis>(log2). La taille et le
logarithme à base 2 pour les tailles de sous-réseau les plus communes
sont donnés par la table suivante:</para>
<table>
<title>Logarithmes base 2</title>
<tgroup cols="3">
<tbody>
<row>
<entry><emphasis role="bold">n</emphasis></entry>
<entry><emphasis role="bold">log2 n</emphasis></entry>
<entry><emphasis role="bold">(32 - log2 n)</emphasis></entry>
</row>
<row>
<entry>8</entry>
<entry>3</entry>
<entry>29</entry>
</row>
<row>
<entry>16</entry>
<entry>4</entry>
<entry>28</entry>
</row>
<row>
<entry>32</entry>
<entry>5</entry>
<entry>27</entry>
</row>
<row>
<entry>64</entry>
<entry>6</entry>
<entry>26</entry>
</row>
<row>
<entry>128</entry>
<entry>7</entry>
<entry>25</entry>
</row>
<row>
<entry>256</entry>
<entry>8</entry>
<entry>24</entry>
</row>
<row>
<entry>512</entry>
<entry>9</entry>
<entry>23</entry>
</row>
<row>
<entry>1024</entry>
<entry>10</entry>
<entry>22</entry>
</row>
<row>
<entry>2048</entry>
<entry>11</entry>
<entry>21</entry>
</row>
<row>
<entry>4096</entry>
<entry>12</entry>
<entry>20</entry>
</row>
<row>
<entry>8192</entry>
<entry>13</entry>
<entry>19</entry>
</row>
<row>
<entry>16384</entry>
<entry>14</entry>
<entry>18</entry>
</row>
<row>
<entry>32768</entry>
<entry>15</entry>
<entry>17</entry>
</row>
<row>
<entry>65536</entry>
<entry>16</entry>
<entry>16</entry>
</row>
</tbody>
</tgroup>
</table>
<para>Vous constaterez que la table ci-dessus contient aussi une colonne
(32 - log2<emphasis role="bold"> n</emphasis>). Ce nombre est le
<emphasis>Masque de Sous-réseau à Longueur Variable</emphasis> ou
<emphasis>Variable Length Subnet Mask</emphasis>
(<acronym>VLSM</acronym>) pour un sous-réseau de taille n. De la table
ci-dessus, nous pouvons déduire la suivante, qui est plus facile à
utiliser.</para>
<table>
<title>VLSM</title>
<tgroup cols="3">
<tbody>
<row>
<entry><emphasis role="bold">Taille du
sous-réseau</emphasis></entry>
<entry><emphasis role="bold">VLSM</emphasis></entry>
<entry><emphasis role="bold">Masque de
sous-réseau</emphasis></entry>
</row>
<row>
<entry>8</entry>
<entry>/29</entry>
<entry>255.255.255.248</entry>
</row>
<row>
<entry>16</entry>
<entry>/28</entry>
<entry>255.255.255.240</entry>
</row>
<row>
<entry>32</entry>
<entry>/27</entry>
<entry>255.255.255.224</entry>
</row>
<row>
<entry>64</entry>
<entry>/26</entry>
<entry>255.255.255.192</entry>
</row>
<row>
<entry>128</entry>
<entry>/25</entry>
<entry>255.255.255.128</entry>
</row>
<row>
<entry>256</entry>
<entry>/24</entry>
<entry>255.255.255.0</entry>
</row>
<row>
<entry>512</entry>
<entry>/23</entry>
<entry>255.255.254.0</entry>
</row>
<row>
<entry>1024</entry>
<entry>/22</entry>
<entry>255.255.252.0</entry>
</row>
<row>
<entry>2048</entry>
<entry>/21</entry>
<entry>255.255.248.0</entry>
</row>
<row>
<entry>4096</entry>
<entry>/20</entry>
<entry>255.255.240.0</entry>
</row>
<row>
<entry>8192</entry>
<entry>/19</entry>
<entry>255.255.224.0</entry>
</row>
<row>
<entry>16384</entry>
<entry>/18</entry>
<entry>255.255.192.0</entry>
</row>
<row>
<entry>32768</entry>
<entry>/17</entry>
<entry>255.255.128.0</entry>
</row>
<row>
<entry>65536</entry>
<entry>/16</entry>
<entry>255.255.0.0</entry>
</row>
<row>
<entry>2 ** 24</entry>
<entry>/8</entry>
<entry>255.0.0.0</entry>
</row>
</tbody>
</tgroup>
</table>
<para>Notez que le <acronym>VLSM</acronym> est écrit avec un slash
(<quote>/</quote>) -- vous entendrez souvent nommer un réseau de taille
64 comme étant un <quote>slash 26</quote> et un de taille 8 comme étant
un <quote>slash 29</quote>.</para>
<para>Le masque de sous-réseau est simplement un nombre de 32 bits avec
les premiers bits correspondant au <acronym>VLSM</acronym> positionnés à
<quote>1</quote> et les bits suivants à <quote>0</quote>. Par exemple,
pour un sous-réseau de taille 64, le masque de sous-réseau débute par 26
bits à <quote>1</quote>:</para>
<para><programlisting>11111111111111111111111111000000 = FFFFFFC0 = FF.FF.FF.C0 = 255.255.255.192</programlisting>Le
masque de sous-réseau a la propriété suivante: si vous appliquez un ET
logique entre le masque de sous-réseau et une adresse dans le
sous-réseau, le résultat est l'adresse du sous-réseau. Tout aussi
important, si vous appliquer un ET logique entre le masque de
sous-réseau et une adresse en dehors du sous-réseau, le résultat n'est
PAS l'adresse du sous-réseau. Comme nous le verrons après, cette
propriété du masque de sous-réseau est très importante dans le
routage.</para>
<para>Pour un sous-réseau dont l'adresse est <emphasis
role="bold">a.b.c.d</emphasis> et dont le <acronym>VLSM</acronym> est
<emphasis role="bold">/v</emphasis>, nous notons le sous-réseau
<quote><emphasis role="bold">a.b.c.d/v</emphasis></quote> en utilisant
la <emphasis><emphasis>notation CIDR</emphasis></emphasis>.</para>
<table>
<title>Un exemple de sous-réseau :</title>
<tgroup cols="2">
<tbody>
<row>
<entry><emphasis role="bold">Sous-réseau:</emphasis></entry>
<entry>10.10.10.0 - 10.10.10.127</entry>
</row>
<row>
<entry><emphasis role="bold">Taille du
sous-réseau:</emphasis></entry>
<entry>128</entry>
</row>
<row>
<entry><emphasis role="bold">Adresse du
sous-réseau:</emphasis></entry>
<entry>10.10.10.0</entry>
</row>
<row>
<entry><emphasis role="bold">Adresse de
diffusion:</emphasis></entry>
<entry>10.10.10.127</entry>
</row>
<row>
<entry><emphasis role="bold">Notation CIDR:</emphasis></entry>
<entry>10.10.10.0/25</entry>
</row>
</tbody>
</tgroup>
</table>
<para>Il existe deux sous-réseaux dégénérés qui doivent être mentionnés:
le sous-réseau avec un seul membre et le sous-réseau avec 2 ** 32
membres.</para>
<table>
<title>/32 and /0</title>
<tgroup cols="4">
<tbody>
<row>
<entry><emphasis role="bold">Taille du
sous-réseau</emphasis></entry>
<entry><emphasis role="bold">Longueur VLSM</emphasis></entry>
<entry><emphasis role="bold">Masque de
sous-réseau</emphasis></entry>
<entry><emphasis role="bold">Notation CIDR</emphasis></entry>
</row>
<row>
<entry>1</entry>
<entry>32</entry>
<entry>255.255.255.255</entry>
<entry>a.b.c.d/32</entry>
</row>
<row>
<entry>32</entry>
<entry>0</entry>
<entry>0.0.0.0</entry>
<entry>0.0.0.0/0</entry>
</row>
</tbody>
</tgroup>
</table>
<para>Ainsi, chaque adresse <emphasis role="bold">a.b.c.d</emphasis>
peut aussi être écrite <emphasis role="bold">a.b.c.d/32</emphasis> et
l'ensemble des adresses possibles est écrit <emphasis
role="bold">0.0.0.0/0</emphasis>.</para>
<para>Un utilisateur de Shorewall a proposé cette très utile <ulink
url="http://shorewall.net/pub/shorewall/contrib/IPSubNetMask.html">représentation
graphique</ulink> de ces informations.</para>
<para>Dans la suite, nous utiliserons la notation <emphasis
role="bold">a.b.c.d/v</emphasis> pour décrire la configuration IP d'une
interface réseau (l'utilitaire <command>ip</command> utilise aussi cette
syntaxe). Dans cette notation l'interface est configurée avec une
adresse ip <emphasis role="bold">a.b.c.d</emphasis> avec le masque de
sous-réseau qui correspond au VLSM /<emphasis
role="bold">v</emphasis>.</para>
<example>
<title>192.0.2.65/29</title>
<para>L'interface est configurée avec l'adresse IP 192.0.2.65 et le
masque de sous-réseau 255.255.255.248.</para>
</example>
<para>/sbin/shorewall propose une commande <command>ipcalc</command> qui
calcule automatiquement les informations d'un [sous-]réseau.</para>
<example>
<title>Utiliser la commande
<command><command>ipcalc</command></command>.</title>
<programlisting>shorewall ipcalc 10.10.10.0/25
CIDR=10.10.10.0/25
NETMASK=255.255.255.128
NETWORK=10.10.10.0
BROADCAST=10.10.10.127</programlisting>
</example>
<example>
<title>Utiliser la commande
<command><command>ipcalc</command></command>.</title>
<programlisting>shorewall ipcalc 10.10.10.0 255.255.255.128
CIDR=10.10.10.0/25
NETMASK=255.255.255.128
NETWORK=10.10.10.0
BROADCAST=10.10.10.127</programlisting>
</example>
</section>
<section id="Routing">
<title>Routage</title>
<para>L'un des objectifs de la gestion en sous-réseaux est qu'elle pose
les bases pour le routage. Ci-dessous se trouve la table de routage de
mon firewall:</para>
<programlisting>[root@gateway root]# netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flgs MSS Win irtt Iface
192.168.9.1 0.0.0.0 255.255.255.255 UH 40 0 0 texas
206.124.146.177 0.0.0.0 255.255.255.255 UH 40 0 0 eth1
206.124.146.180 0.0.0.0 255.255.255.255 UH 40 0 0 eth3
192.168.3.0 0.0.0.0 255.255.255.0 U 40 0 0 eth3
192.168.2.0 0.0.0.0 255.255.255.0 U 40 0 0 eth1
192.168.1.0 0.0.0.0 255.255.255.0 U 40 0 0 eth2
206.124.146.0 0.0.0.0 255.255.255.0 U 40 0 0 eth0
192.168.9.0 192.0.2.223 255.255.255.0 UG 40 0 0 texas
127.0.0.0 0.0.0.0 255.0.0.0 U 40 0 0 lo
0.0.0.0 206.124.146.254 0.0.0.0 UG 40 0 0 eth0
[root@gateway root]#</programlisting>
<para>L'interface <emphasis>texas</emphasis> est un tunnel GRE vers un
site pair à Dallas, au Texas.</para>
<para>Les trois premières routes sont des routes vers des hôtes
(<emphasis>host routes)</emphasis> puisqu'elles indiquent comment aller
vers un hôte unique. Dans la sortie de <command>netstat</command>, cela
se voit très bien au masque de sous-réseau (Genmask) à 255.255.255.255,
ou bien au drapeau à <quote>H</quote> dans la colonne
<quote>Flags</quote> . Les autres routes sont des routes réseau car
elles indiquent au noyau comment router des paquets à un sous-réseau. La
dernière route est <emphasis>la route par défaut</emphasis>. La
passerelle mentionnée dans cette route est appelée <emphasis>la
passerelle par défaut (default gateway).</emphasis></para>
<para>Quant le noyau essaye d'envoyer un paquet à une adresse IP
<emphasis role="bold">A</emphasis>, il commence au début de la table de
routage et:</para>
<itemizedlist>
<listitem>
<para><emphasis role=""><emphasis>Il réalise un ET logique entre
A</emphasis></emphasis> et la valeur du masque de sou-réseau pour
cette entrée de la table.</para>
</listitem>
<listitem>
<para>Ce résultat est comparé avec la valeur de la
<quote>Destination</quote> dans cette entrée de la table.</para>
</listitem>
<listitem>
<para>Si le résultat et la valeur de la <quote>Destination</quote>
sont identiques, alors:</para>
<itemizedlist>
<listitem>
<para>Si la colonne <quote>Gateway</quote> n'est pas nulle, le
paquet est envoyé à la passerelle par l'interface nommée dans la
colonne <quote>Iface</quote>.</para>
</listitem>
<listitem>
<para>Sinon, le paquet est directement envoyé à <emphasis
role="bold">A</emphasis> à travers l'interface nommée dans la
colonne <quote>iface</quote>.</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>Sinon, les étapes précédentes sont répétées sur l'entrée
suivante de la table.</para>
</listitem>
</itemizedlist>
<para>Puisque la route par défaut correspond à toutes les adresses IP
(<emphasis role="bold">A </emphasis>ET 0.0.0.0 = 0.0.0.0), les paquets
qui ne correspondent à aucune des autres entrées de la table de routage
sont envoyés à la passerelle par défaut qui est généralement un routeur
de votre <acronym>FAI</acronym>.</para>
<para>Prenons un exemple. Supposons que vous souhaitiez router un paquet
à 192.168.1.5. Cette adresse ne correspond à aucune route d'hôte dans la
table mais lorsque nous faisons le ET logique de cette adresse avec
255.255.255.0, le résultat est 192.168.1.0 qui correspond à cette entrée
de la table:</para>
<para><programlisting>192.168.1.0 0.0.0.0 255.255.255.0 U 40 0 0 eth2</programlisting></para>
<para>Donc, pour router ce paquet à 192.168.1.5, il faudra le
transmettre directement à l'interface eth2.</para>
<para>Un point important doit être souligné -- tous les paquets sont
envoyés en utilisant la table de routage et les paquets en réponse ne
sont pas un cas particulier. Il semble exister une idée fausse comme
quoi les paquets réponses seraient comme les saumons et contiendraient
une sorte de code génétique qui leur permettrait suivre la même route
empruntée par les paquets de requête (request) à l'aller. Ce n'est pas
le cas. Les réponses peuvent prendre un chemin totalement différent de
celui pris par les paquets de la requête client à l'aller -- Ces routes
sont totalement indépendantes.</para>
</section>
<section>
<title id="ARP">Protocole de Résolution d'Adresse (ARP)</title>
<para>Quant on envoie des paquets sur éthernet, les adresses IP ne sont
pas utilisées. L'adressage éthernet est basé sur les adresses
<acronym>MAC</acronym> (<emphasis>Media Access Control)</emphasis>.
Chaque carte éthernet à sa propre adresse <acronym>MAC</acronym> unique
qui est gravée dans une <acronym>PROM</acronym> lors de sa fabrication.
Vous pouvez obtenir l'adresse <acronym>MAC</acronym> d'une carte
éthernet grâce à l'utilitaire
<quote><command>ip</command></quote>:</para>
<programlisting>[root@gateway root]# <command>ip addr show eth0</command>
2: eth0: &lt;BROADCAST,MULTICAST,UP&gt; mtu 1500 qdisc htb qlen 100
link/ether 02:00:08:e3:fa:55 brd ff:ff:ff:ff:ff:ff
inet 206.124.146.176/24 brd 206.124.146.255 scope global eth0
inet 206.124.146.178/24 brd 206.124.146.255 scope global secondary eth0
inet 206.124.146.179/24 brd 206.124.146.255 scope global secondary eth0
[root@gateway root]#
</programlisting>
<para>Comme vous pouvez le constater, l'adresse <acronym>MAC</acronym>
est codée sur 6 octets (48 bits). L'adresse <acronym>MAC</acronym> est
généralement imprimée sur la carte elle-même.</para>
<para>Comme IP utilise les adresses IP et Éthernet les adresses MAC, il
faut un mécanisme pour transcrire une adresse IP en adresse MAC. C'est
ce dont est chargé le protocole de résolution d'adresse
(<emphasis>Address Resolution Protocol
</emphasis><acronym>ARP</acronym>). Voici <acronym>ARP</acronym> en
action:</para>
<programlisting>[root@gateway root]# <command>tcpdump -nei eth2 arp</command>
tcpdump: listening on eth2
09:56:49.766757 2:0:8:e3:4c:48 0:6:25:aa:8a:f0 arp 42:
arp who-has 192.168.1.19 tell 192.168.1.254
09:56:49.769372 0:6:25:aa:8a:f0 2:0:8:e3:4c:48 arp 60:
arp reply 192.168.1.19 is-at 0:6:25:aa:8a:f0
2 packets received by filter
0 packets dropped by kernel
[root@gateway root]#</programlisting>
<para>Dans cet échange , 192.168.1.254 (MAC 2:0:8:e3:4c:48) veut
connaître l'adresse MAC du périphérique qui a l'adresse IP 192.168.1.19.
Le système ayant cette adresse IP répond que l'adresse MAC du
périphérique avec l'adresse IP 192.168.1.19 est 0:6:25:aa:8a:f0.</para>
<para>Afin de ne pas avoir à échanger des information
<acronym>ARP</acronym> chaque fois qu'un paquet doit être envoyé, le
système maintient un cache des correspondances IP&lt;-&gt; MAC. Vous
pouvez voir le contenu du cache <acronym>ARP</acronym> sur votre système
(y compris sur les systèmes <trademark>Windows</trademark>) en utilisant
la commande <command>arp</command></para>
<programlisting>[root@gateway root]# <command>arp -na</command>
? (206.124.146.177) at 00:A0:C9:15:39:78 [ether] on eth1
? (192.168.1.3) at 00:A0:CC:63:66:89 [ether] on eth2
? (192.168.1.5) at 00:A0:CC:DB:31:C4 [ether] on eth2
? (206.124.146.254) at 00:03:6C:8A:18:38 [ether] on eth0
? (192.168.1.19) at 00:06:25:AA:8A:F0 [ether] on eth2</programlisting>
<para>Les points d'interrogation au début des lignes sont le résultat de
l'utilisation de l'option <quote>n</quote> qui empêche le programme
<command>arp</command> de résoudre le noms <acronym>DNS</acronym> pour
les adresses IP (la commande <command>arp</command> <trademark>de
Windows</trademark> n'accepte pas cette option) . Si je n'avais pas
utilisé pas cette option, les points d'interrogation seraient remplacés
par les noms pleinement qualifiés (FQDN) correspondant à chaque adresse
IP. Remarquez que la dernière information dans le cache correspond à
celle que nous avons vue en utilisant <command>tcpdump</command> à
l'instant.</para>
</section>
<section id="RFC1918">
<title>RFC 1918</title>
<para>Les adresses IP sont allouées par l'<acronym>IANA</acronym>
(<ulink url="http://www.iana.org/">Internet Assigned Number
Authority</ulink>) qui délégue les allocations sur une base géographique
aux Registres Internet Régionaux (<acronym>RIR</acronym>). Par exemple,
les allocations pour les Etats-Unis et l'Afrique sub-Saharienne sont
déléguées à l'<acronym>ARIN</acronym> (<ulink
url="http://www.arin.net/">American Registry for Internet
Numbers</ulink>). Ces RIRs peuvent à leur tour déléguer à des bureaux
nationaux. La plupart d'entre nous ne traite pas avec ces autorités mais
obtient plutôt ses adresse IP de son <acronym>FAI</acronym>.</para>
<para>Dans la réalité, on ne peut en général pas se permettre d'avoir
autant d'adresses IP publiques que l'on a de périphériques en
nécessitant une. C'est cette raison qui nous amène à utiliser des
adresses IP privées. La RFC 1918 réserve plusieurs plages d'adresses à
cette fin :</para>
<programlisting>10.0.0.0 - 10.255.255.255
172.16.0.0 - 172.31.255.255
192.168.0.0 - 192.168.255.255</programlisting>
<para>Les adresses réservées par la RFC 1918 sont parfois appelées
non-routables car les routeurs d'infrastructure internet ne feront pas
suivre (forward) les paquets qui ont une adresse de destination de la
RFC 1918. Cela est compréhensible puisque chacun peut choisir n'importe
laquelle ces adresses pour son usage privé. Mais le terme de
non-routable est quelque peu malencontreux car il peut amener à conclure
de manière erronée que le trafic destiné à une de ces adresses ne peut
être envoyé à travers un routeur. Ceci est faux et les routeurs privés,
dont votre firewall Shorewall, peuvent parfaitement faire suivre du
trafic avec des adresses conformes à la RFC 1918.</para>
<para>Quant on choisit des adresses dans ces plages, il faut bien avoir
à l'esprit les choses suivantes:</para>
<itemizedlist>
<listitem>
<para>Comme l'espace des adresses IPv4 s'épuise, de plus en plus
d'organisation (y compris les FAI) commencent à utiliser les
adresses RFC 1918 dans leurs infrastructures.</para>
</listitem>
<listitem>
<para>Vous ne devez pas utiliser d'adresse IP qui soit utilisée par
votre <acronym>FAI</acronym> ou une autre organisation avec laquelle
vous souhaitez établir une liaison <acronym>VPN</acronym></para>
</listitem>
</itemizedlist>
<para>C'est pourquoi c'est une bonne idée de vérifier après de votre FAI
s'il n'utilise pas (ou ne prévoie pas d'utiliser) des adresses privées
avant de décider quelles adresses que vous allez utiliser.</para>
<note>
<para><emphasis role="bold">Dans ce document, les adresses IP externes
<quote>réelles</quote> sont dans la plage 192.0.2.x. Les adresses du
réseau 192.0.2.0/24 sont réservées par RFC 3330 pour l'utilisation
d'adresses IP publiques dans les exemples imprimés ainsi que dans les
réseaux de test. Ces adresses ne doivent pas être confondues avec les
adresses 192.168.0.0/16, qui comme décrit ci-dessus, sont réservées
par la RFC 1918 pour une utilisation privée.</emphasis></para>
</note>
</section>
</section>
<section id="Options">
<title>Configurer votre Réseau</title>
<para>Le choix d'une configuration pour votre réseau dépend d'abord du
nombre d'adresses IP publiques dont vous disposez et du nombre d'adresses
IP dont vous avez besoin. Quel que soit le nombre d'adresses dont vous
disposez, votre <acronym>FAI</acronym> peut vous servir ce jeu d'adresses
de deux manières:</para>
<itemizedlist>
<listitem>
<para><emphasis role="bold">Routées</emphasis> - Le trafic vers
chacune de vos adresses publiques sera routé à travers une seule
adresse de passerelle. Cela sera généralement fait si votre FAI vous
attribue un sous-réseau complet (/29 ou plus). Dans ce cas, vous
affecterez l'adresse de cette passerelle comme étant l'adresse de
l'interface externe de votre firewall/routeur.</para>
</listitem>
<listitem>
<para><emphasis role="bold">Non routées</emphasis> - Votre FAI enverra
le trafic à chacune de vos adresses directement.</para>
</listitem>
</itemizedlist>
<para>Dans les paragraphes qui suivent, nous étudierons chacun de ces cas
séparément.</para>
<para>Avant de commencer, il y a une chose que vous devez vérifier:</para>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Si vous utilisez un paquetage Debian, vérifiez votre fichier
<filename>shorewall.conf</filename> afin de vous assurer que les
paramètres suivants sont convenablement fixés. Si ce n'est pas le cas,
appliquez les changements nécessaires:</para>
<itemizedlist>
<listitem>
<para>IP_FORWARDING=On</para>
</listitem>
</itemizedlist>
<section id="Routed">
<title>Routé</title>
<para>Supposons que votre fournisseur d'accès vous ait assigné le
sous-réseau 192.0.2.64/28 routé par 192.0.2.65. Vous avez les adresses
IP 192.0.2.64 - 192.0.2.79 et l'adresse externe de votre firewall est
192.0.2.65. Votre FAI vous a aussi dit que vous devez utiliser le masque
de sous-réseau 255.255.255.0 (ainsi, votre /28 est un sous-ensemble du
/24, plus grand). Avec autant d'adresses IP, vous pouvez scinder votre
réseau /28 en deux sous-réseaux /29 et configurer votre réseau comme
l'indique le diagramme suivant.</para>
<graphic align="center" fileref="images/dmz4.png" />
<para>Dans l'exemple, la zone démilitarisé <acronym>DMZ</acronym> est
dans le sous-réseau 192.0.2.64/29 et le réseau local est dans
192.0.2.72/29. La passerelle par défaut pour les hôtes dans la
<acronym>DMZ</acronym> doit être configurée à 192.0.2.66 et la
passerelle par défaut pour ceux du réseau local doit être configurée à
192.0.2.73.</para>
<para>Notez que cette solution est plutôt gourmande en adresses
publiques puisqu'elle utilise 192.0.2.64 et 192.0.2.72 pour les adresses
de sous-réseau, 192.0.2.71 et 192.0.2.79 pour les adresses de diffusion
(broadcast) du réseau, et 192.0.2.66 et 168.0.2.73 pour les adresses
internes sur le firewall/routeur. Elle montre néammoins comment la
gestion en sous-réseaux peut fonctionner. Et si nous avions un réseau
/24 plutôt qu'un /28, l'utilisation de 6 adresses IP parmi les 256
disponibles serait largement justifiée par la simplicité du
paramétrage.</para>
<para>Le lecteur attentif aura peut-être remarqué que l'interface
externe du firewall/Routeur est en fait incluse dans le sous-réseau
<acronym>DMZ</acronym> (192.0.2.64/29). On peut se demander ce qui se
passe quand l'hôte DMZ 1 (192.0.2.67) essaye de communiquer avec
192.0.2.65. La table de routage sur l'hôte DMZ 1 doit ressembler à
cela:</para>
<programlisting format="linespecific">Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.0.2.64 0.0.0.0 255.255.255.248 U 40 0 0 eth0
0.0.0.0 192.0.2.66 0.0.0.0 UG 40 0 0 eth0</programlisting>
<para>Donc, lorsque l'hôte DMZ 1 voudra communiquer avec 192.0.2.65, il
enverra une requête <acronym>ARP</acronym> "qui-a 192.0.2.65" alors
qu'aucune interface sur le segment éthernet DMZ n'a cette adresse IP.
Assez bizarrement, le firewall répondra à la requête avec
<emphasis><emphasis role="underlined"><emphasis
role="underline">l'adresse MAC de sa propre interface
DMZ</emphasis></emphasis> </emphasis>! DMZ 1 peut alors envoyer des
trames éthernet adressées à cette adresse <acronym>MAC</acronym> et les
trames seront reçues correctement par le firewall/routeur.</para>
<para>L'avertissement fait plus haut qui déconseille très fortement la
connexion de plusieurs interfaces du firewall/routeur à un même hub ou
switch est une conséquence directe de ce comportement plutôt inattendu
d'<acronym>ARP</acronym> de la part du noyau Linux. Quant une requête
ARP destinée à une des adresses du firewall/routeur est envoyée par un
autre système connecté au même hub ou switch, toutes les interfaces du
firewall qui y sont connectées peuvent répondre ! C'est alors la course
à savoir quelle réponse <quote>c'est-ici</quote> atteindra la première
l'émetteur de la requête.</para>
</section>
<section id="NonRouted">
<title>Non routé</title>
<para>Si vous êtes dans la situation précédente mais que votre trafic
n'est pas routé par votre <acronym>FAI</acronym>, vous pouvez configurer
votre réseau exactement comme décrit plus haut, au prix d'une légère
contorsion supplémentaire: spécifiez simplement l'option
<quote><command>proxyarp</command></quote> sur les trois interfaces du
firewall dans le fichier
<filename>/etc/shorewall/interfaces</filename>.</para>
<para>La plupart d'entre nous n'ont pas le luxe d'avoir suffisamment
d'adresses publiques IP pour configurer leur réseau comme indiqué dans
l'exemple précédent (même si la configuration est routée).</para>
<para><emphasis role="bold">Dans le reste de cette section, supposons
que notre FAI nous ait assigné la plage d'adresses IP 192.0.2.176-180,
qu'il nous ait dit d'utiliser le masque de sous-réseau 255.255.255.0 et
que la passerelle par défaut soit 192.0.2.254.</emphasis></para>
<para>De toute évidence, ce jeu d'adresses ne comprend pas de
sous-réseau et n'a pas suffisamment d'adresses pour toutes les
interfaces de notre réseau. Nous pouvons utiliser quatre techniques
différentes pour contourner ce problème.</para>
<itemizedlist>
<listitem>
<para>La traduction d'adresses source (<emphasis>Source Network
Address Translation</emphasis> <emphasis
role="bold">SNAT</emphasis>).</para>
</listitem>
<listitem>
<para>La traduction d'adresses destination <emphasis>(Destination
Network Address Translation</emphasis> <emphasis
role="bold">DNAT</emphasis>) nommée aussi transfert ou suivi de port
<emphasis>(Port Forwarding</emphasis>).</para>
</listitem>
<listitem>
<para><emphasis role="bold"><emphasis>Le </emphasis>Proxy
ARP</emphasis>.</para>
</listitem>
<listitem>
<para>La traduction d'adresses réseau <emphasis>(Network Address
Translation</emphasis> <acronym>NAT</acronym>) à laquelle on fait
aussi référence sous l'appellation de un-à-un NAT (one-to-one
NAT).</para>
</listitem>
</itemizedlist>
<para>Souvent, une combinaison de ces techniques est utilisée. Chacune
d'entre elles sera détaillée dans la section suivante.</para>
<section id="SNAT">
<title>SNAT</title>
<para>Avec la <acronym>SNAT</acronym>, un segment interne du réseau
local est configuré en utilisant des adresses de la RFC 1918. Quant un
hôte <emphasis role="bold">A</emphasis> sur ce segment interne initie
une connexion vers un hôte <emphasis role="bold">B</emphasis> sur
internet, le firewall/routeur réécrit les entêtes IP de la requête
pour utiliser une de vos adresses publiques IP en tant qu'adresse
source. Quant <emphasis role="bold">B</emphasis> répond et que la
réponse est reçue par le firewall, le firewall change l'adresse
destination par celle de la RFC 1918 de <emphasis
role="bold">A</emphasis> et transfère la réponse à <emphasis
role="bold">A.</emphasis></para>
<para>Supposons que vous décidiez d'utiliser la SNAT sur votre zone
locale. Supposons également que vous utilisiez l'adresse publique
192.0.2.176 à la fois comme adresse externe du firewall et comme
adresse source des requêtes internet envoyées depuis cette
zone.</para>
<graphic align="center" fileref="images/dmz5.png" />
<para>On a assigné à la zone locale le sous-réseau 192.168.201.0/29
(masque de sous-réseau 255.255.255.248).</para>
<simplelist>
<member><inlinegraphic fileref="images/BD21298_.gif" /></member>
<member>Dans ce cas, les systèmes de la zone locale seraient
configurés avec 192.168.201.1 comme passerelle par défaut (adresse
IP de l'interface local du firewall).</member>
<member><inlinegraphic fileref="images/BD21298_.gif" /></member>
<member>La SNAT est configurée dans Shorewall avec le fichier
<filename><ulink
url="Documentation.htm#Masq">/etc/shorewall/masq</ulink></filename>.</member>
</simplelist>
<programlisting>#INTERFACE SUBNET ADDRESS
eth0 192.168.201.0/29 192.0.2.176</programlisting>
<para>Cet exemple utilise la technique normale qui assigne la même
adresse publique IP pour l'interface externe du firewall et pour la
SNAT. Si vous souhaitez utiliser une adresse IP différente, vous
pouvez soit utiliser les outils de configuration réseau de votre
distribution Linux pour ajouter cette adresse IP, soit mettre la
variable ADD_SNAT_ALIASES=Yes dans
<filename>/etc/shorewall/shorewall.conf</filename> et Shorewall
ajoutera l'adresse pour vous.</para>
</section>
<section id="dnat">
<title>DNAT</title>
<para>Quand la SNAT est utilisée, il est impossible pour les hôtes sur
internet d'initialiser une connexion avec un des systèmes internes
puisque ces systèmes n'ont pas d'adresses publiques IP. La DNAT
fournit une méthode pour autoriser des connexions sélectionnées depuis
internet.</para>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Supposons que votre fille souhaite héberger un serveur Web sur
son système "Local 3". Vous pourriez autoriser les connexions
d'internet à son serveur en ajoutant l'entrée suivante dans le fichier
<filename><ulink
url="Documentation.htm#Rules">/etc/shorewall/rules</ulink></filename>:</para>
<programlisting>#ACTION SOURCE DEST PROTO DEST SOURCE ORIGINAL
# PORT(S) PORT(S) DEST
DNAT net loc:192.168.201.4 tcp www</programlisting>
<para>Si une des amies de votre fille avec une adresse <emphasis
role="bold">A</emphasis> veut accéder au serveur de votre fille, elle
peut se connecter à http://192.0.2.176 (l'adresse IP externe de votre
firewall). Le firewall réécrira l'adresse IP de destination à
192.168.201.4 (le système de votre fille) et lui fera suivre la
requête. Quand le serveur de votre fille répondra, le firewall
remettra l'adresse source à 192.0.2.176 et retournera la réponse à
<emphasis role="bold">A</emphasis>.</para>
<para>Cet exemple utilise l'adresse externe IP du firewall pour la
<acronym>DNAT</acronym>. Vous pouvez utiliser une autre de vos
adresses IP publiques. Pour cela, mettez-la dans la colonne ORIGINAL
DEST de la règle ci-dessus. Par contre, Shorewall n'ajoutera pas à
votre place cette adresse à l'interface externe du firewall.</para>
<important>
<para>Quand vous testez des règles <acronym>DNAT</acronym> comme
celles présentée plus haut, vous devez le faire depuis un client A
L'EXTÉRIEUR DE VOTRE FIREWALL (depuis la zone <quote>net</quote>).
Vous ne pouvez pas tester ces règles de l'intérieur !</para>
<para>Pour quelques astuces sur la résolution de problèmes avec la
DNAT, <ulink url="FAQ.htm#faq1a">voyez les FAQ 1a et
1b</ulink>.</para>
</important>
</section>
<section id="ProxyARP">
<title>Proxy ARP</title>
<para>Le principe du proxy <acronym>ARP</acronym> est:</para>
<itemizedlist>
<listitem>
<para>On attribue à un hôte <emphasis role="bold">H</emphasis>
derrière notre firewall une de nos adresses publiques <emphasis
role="bold">A</emphasis> et on lui donne le même masque de
sous-réseau <emphasis role="bold">M</emphasis> que celui de
l'interface externe du firewall.</para>
</listitem>
<listitem>
<para>Le firewall répond aux requêtes ARP
<quote>qui-a-l'adresse</quote> <emphasis
role="bold">A</emphasis><emphasis> </emphasis>émises par les hôtes
à l'extérieur du firewall.</para>
</listitem>
<listitem>
<para>Lorsque c'est l'hôte <emphasis role="bold">H</emphasis> qui
émet une requête <quote>qui-a-l'adresse</quote><emphasis>
</emphasis><emphasis><emphasis>pour un hôte
</emphasis></emphasis>situé à l'extérieur du firewall et
appartenant au sous-réseau défini par <emphasis
role="bold">A</emphasis> et <emphasis role="bold">M</emphasis>,
c'est le firewall qui répondra à <emphasis
role="bold">H</emphasis> avec l'adresse MAC de l'interface du
firewall à laquelle est raccordé <emphasis
role="bold">H</emphasis>.</para>
</listitem>
</itemizedlist>
<para>Pour une description plus complète du fonctionnement du Proxy
ARP, vous pouvez vous référer à la <ulink
url="ProxyARP.htm">Documentation du Proxy Shorewall</ulink>.</para>
<para>Supposons que nous décidions d'utiliser le Proxy ARP sur la DMZ
de notre exemple de réseau.</para>
<graphic align="center" fileref="images/dmz6.png" />
<para>Ici, nous avons assigné les adresses IP 192.0.2.177 au système
DMZ 1 et 192.0.2.178 au système DMZ 2. Remarquez que nous avons
assigné une adresse RFC 1918 et un masque de sous-réseau arbitraires à
l'interface DMZ de notre firewall. Cette adresse et ce masque ne sont
pas pertinents - vérifiez juste que celle-ci n'est en conflit avec
aucun autre sous-réseau déjà défini.</para>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>La configuration du Proxy ARP est faite dans le fichier <ulink
url="ProxyARP.htm"><filename>/etc/shorewall/proxyarp</filename></ulink>.</para>
<programlisting>#ADDRESS INTERFACE EXTERNAL HAVE ROUTE PERSISTANT
192.0.2.177 eth2 eth0 No
192.0.2.178 eth2 eth0 No</programlisting>
<para>La variable HAVE ROUTE étant à No, Shorewall ajoutera les routes
d'hôte pour 192.0.2.177 et 192.0.2.178 par <filename
class="devicefile">eth2</filename>. Les interfaces éthernet des
machines DMZ 1 et DMZ 2 devront être configurées avec les adresses IP
données plus haut, mais elles devront avoir la même passerelle par
défaut que le firewall lui-même (192.0.2.254 dans notre exemple).
Autrement dit, elles doivent être configurées exactement comme si
elles étaient parallèles au firewall plutôt que derrière lui.</para>
<caution>
<para><emphasis role="bold">Ne pas ajouter le(s) adresse(s) traitées
par le proxy ARP (192.0.2.177 et 192.0.2.178 dans l'exemple
ci-dessus) à l'interface externe du firewall (eth0 dans cet
exemple).</emphasis></para>
</caution>
<para>Un mot de mise en garde. En général, les <acronym>FAI</acronym>
configurent leurs routeurs avec un timeout de cache
<acronym>ARP</acronym> assez élevé. Si vous déplacez un système
parallèle à votre firewall derrière le Proxy ARP du firewall, cela
peut mettre des HEURES avant que ce système ne puisse communiquer avec
internet. Il y a deux choses que vous pouvez essayer de faire:</para>
<orderedlist>
<listitem>
<para>(Salutations à Bradey Honsinger) Une lecture de
<quote>TCP/IP Illustrated, Vol 1</quote> de Richard Stevens révèle
qu'un paquet ARP <quote>gratuit</quote> (gratuitous) peut amener
le routeur de votre FAI à rafraîchir son cache (section 4.7). Un
paquet ARP <quote>gratuit</quote> est simplement une requête d'un
hôte demandant l'adresse MAC associée à sa propre adresse
IP.</para>
<para>En plus de garantir que cette adresse IP n'est pas
dupliquée, <quote>si l'hôte qui envoie la commande ARP
<quote>gratuit</quote> vient juste de changer son adresse
matérielle ..., ce paquet force tous les autres hôtes...qui ont
une entrée dans leur cache ARP pour l'ancienne adresse matérielle
à mettre leurs caches à jour</quote></para>
<para>Ce qui est exactement, bien sûr, ce que vous souhaitez faire
lorsque vous basculez un hôte qui était directement exposé sur
internet vers l'arrière de votre firewall Shorewall en utilisant
le proxy ARP (ou en faisant du NAT un-à-un pour la même raison).
Heureusement, les versions récentes du paquetage
<command>iputils</command> de <trademark>Redhat</trademark>
comprennent <command>arping</command>, dont l'option "-U" fait
cela:</para>
<para><programlisting><command>arping -U -I &lt;net if&gt; &lt;newly proxied IP&gt;</command><command>
arping -U -I eth0 66.58.99.83</command> # for example</programlisting>Stevens
continue en mentionnant que certains systèmes ne répondent pas
correctement à la commande ARP <quote>gratuit</quote>, mais une
recherche sur google pour <quote>arping -U</quote> semble
démontrer que cela fonctionne dans la plupart des cas.</para>
</listitem>
<listitem>
<para>Vous pouvez appeler votre <acronym>FAI</acronym> et lui
demander de purger l'entrée obsolète de son cache
<acronym>ARP</acronym>, mais la plupart ne voudront ou ne pourront
le faire.</para>
</listitem>
</orderedlist>
<para>Vous pouvez vérifier si le cache ARP de votre FAI est obsolète
en utilisant <command>ping</command> et <command>tcpdump</command>.
Supposez que vous pensez que la passerelle routeur a une entrée ARP
obsolète pour 192.0.2.177. Sur le firewall, lancez
<command>tcpdump</command> de cette façon:</para>
<para><programlisting><command>tcpdump -nei eth0 icmp</command></programlisting></para>
<para>Maintenant depuis 192.0.2.177, <command>ping</command>ez la
passerelle de votre FAI (que nous supposons être 192.0.2.254):</para>
<para><programlisting><command>ping 192.0.2.254</command></programlisting></para>
<para>Nous pouvons maintenant observer le résultat de
<command>tcpdump</command>:</para>
<para><programlisting>13:35:12.159321 <emphasis role="bold">0:4:e2:20:20:33</emphasis> 0:0:77:95:dd:19 ip 98:
192.0.2.177 &gt; 192.0.2.254: icmp: echo request (DF)
13:35:12.207615 0:0:77:95:dd:19 <emphasis role="bold">0:c0:a8:50:b2:57</emphasis> ip 98:
192.0.2.254 &gt; 192.0.2.177 : icmp: echo reply</programlisting>Remarquez
que l'adresse source <acronym>MAC</acronym> dans la requête echo est
différente de l'adresse <acronym>MAC</acronym> de destination dans la
réponse echo ! Dans ce cas, 0:4:e2:20:20:33 était l'adresse
<acronym>MAC</acronym> de l'interface réseau <filename
class="devicefile">eth0</filename> du firewall tandis que
0:c0:a8:50:b2:57 était l'adresse <acronym>MAC</acronym> de la carte
réseau de DMZ 1. En d'autre termes, le cache <acronym>ARP</acronym> de
la passerelle associe encore 192.0.2.177 avec la carte réseau de DMZ 1
plutôt qu'avec l'interface <filename class="devicefile"><filename
class="devicefile">eth0</filename></filename> du firewall.</para>
</section>
<section>
<title id="NAT">NAT un-à-un</title>
<para>Avec le NAT un-à-un (one-to-one NAT), vous attribuez des
adresses RFC 1918 à vos systèmes puis vous établissez une
correspondance un pour un de ces adresses avec les adresses IP
publiques. Pour les occurrences des connexions sortantes, la
traduction d'adresses sources (<acronym>SNAT</acronym>) sera alors
effectuée. Pour les occurrences des connexions entrantes, c'est la
traduction d'adresses destination (<acronym>DNAT</acronym>) qui sera
réalisée.</para>
<para>Voyons avec l'exemple précédent du serveur web de votre fille
tournant sur le système Local 3.</para>
<graphic align="center" fileref="images/dmz6.png" />
<para>Souvenons-nous que dans cette configuration, le réseau local
utilise la <acronym>SNAT</acronym> et qu'il partage l'IP externe du
firewall (192.0.2.176) pour les connexions sortantes. On obtient ce
résultat grâce à l'entrée suivante dans le fichier
<filename><filename>/etc/shorewall/masq</filename></filename>:</para>
<programlisting>#INTERFACE SUBNET ADDRESS
eth0 192.168.201.0/29 192.0.2.176</programlisting>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Supposons maintenant que vous ayez décidé d'allouer à votre
fille sa propre adresse IP (192.0.2.179) pour l'ensemble des
connexions entrantes et sortantes. Vous pouvez faire cela en ajoutant
cette entrée dans le fichier<filename><ulink url="NAT.htm">
/etc/shorewall/nat</ulink></filename>.</para>
<programlisting>#EXTERNAL INTERFACE INTERNAL ALL INTERFACES LOCAL
192.0.2.179 eth0 192.168.201.4 No No</programlisting>
<para>Avec cette entrée active, votre fille a sa propre adresse IP et
les deux autres systèmes locaux partagent l'adresse IP du
firewall.</para>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Une fois que la relation entre 192.0.2.179 et192.168.201.4 est
établie avec l'entrée ci-dessus dans le fichier
<filename>nat</filename>, l'utilisation d'une règle d'une règle DNAT
pour le serveur Web de votre fille n'est plus appropriée -- vous
devriez plutôt utiliser une simple règle ACCEPT:</para>
<programlisting>#ACTION SOURCE DEST PROTO DEST SOURCE ORIGINAL
# PORT(S) PORT(S) DEST
ACCEPT net loc:192.168.201.4 tcp www</programlisting>
<para>Un mot de mise en garde. En général, les <acronym>FAI</acronym>
configurent leurs routeurs avec un timeout de cache
<acronym>ARP</acronym> assez élevé. Si vous déplacez un système
parallèle à votre firewall derrière le Proxy ARP du firewall, cela
peut mettre des HEURES avant que ce système ne puisse communiquer avec
internet. Il y a deux choses que vous pouvez essayer de faire:</para>
<orderedlist>
<listitem>
<para>(Salutations à Bradey Honsinger) Une lecture de
<quote>TCP/IP Illustrated, Vol 1</quote> de Richard Stevens révèle
qu'un paquet ARP <quote>gratuit</quote> (gratuitous) peut amener
le routeur de votre FAI à rafraîchir son cache (section 4.7). Un
paquet ARP <quote>gratuit</quote> est simplement une requête d'un
hôte demandant l'adresse MAC associée à sa propre adresse
IP.</para>
<para>En plus de garantir que cette adresse IP n'est pas
dupliquée, <quote>si l'hôte qui envoie la commande ARP
<quote>gratuit</quote> vient juste de changer son adresse
matérielle ..., ce paquet force tous les autres hôtes...qui ont
une entrée dans leur cache ARP pour l'ancienne adresse matérielle
à mettre leurs caches à jour</quote></para>
<para>Ce qui est exactement, bien sûr, ce que vous souhaitez faire
lorsque vous basculez un hôte qui était directement exposé sur
internet vers l'arrière de votre firewall Shorewall en utilisant
le proxy ARP (ou en faisant du NAT un-à-un pour la même raison).
Heureusement, les versions récentes du paquetage
<command>iputils</command> de <trademark>Redhat</trademark>
comprennent <command>arping</command>, dont l'option "-U" fait
cela:</para>
<para><programlisting><command>arping -U -I &lt;net if&gt; &lt;newly proxied IP&gt;</command><command>
arping -U -I eth0 66.58.99.83</command> # for example</programlisting>Stevens
continue en mentionnant que certains systèmes ne répondent pas
correctement à la commande ARP <quote>gratuit</quote>, mais une
recherche sur google pour <quote>arping -U</quote> semble
démontrer que cela fonctionne dans la plupart des cas.</para>
</listitem>
<listitem>
<para>Vous pouvez appeler votre <acronym>FAI</acronym> et lui
demander de purger l'entrée obsolète de son cache
<acronym>ARP</acronym>, mais la plupart ne voudront ou ne pourront
le faire.</para>
</listitem>
</orderedlist>
<para>Vous pouvez vérifier si le cache ARP de votre FAI est obsolète
en utilisant <command>ping</command> et <command>tcpdump</command>.
Supposez que vous pensez que la passerelle routeur a une entrée ARP
obsolète pour 192.0.2.177. Sur le firewall, lancez
<command>tcpdump</command> de cette façon:</para>
<para><programlisting><command>tcpdump -nei eth0 icmp</command></programlisting></para>
<para>Maintenant depuis 192.0.2.177, <command>ping</command>ez la
passerelle de votre FAI (que nous supposons être 192.0.2.254):</para>
<para><programlisting><command>ping 192.0.2.254</command></programlisting></para>
<para>Nous pouvons maintenant observer le résultat de
<command>tcpdump</command>:</para>
<para><programlisting>13:35:12.159321 <emphasis role="bold">0:4:e2:20:20:33</emphasis> 0:0:77:95:dd:19 ip 98:
192.0.2.177 &gt; 192.0.2.254: icmp: echo request (DF)
13:35:12.207615 0:0:77:95:dd:19 <emphasis role="bold">0:c0:a8:50:b2:57</emphasis> ip 98:
192.0.2.254 &gt; 192.0.2.177 : icmp: echo reply</programlisting>Remarquez
que l'adresse source <acronym>MAC</acronym> dans la requête echo est
différente de l'adresse <acronym>MAC</acronym> de destination dans la
réponse echo ! Dans ce cas, 0:4:e2:20:20:33 était l'adresse
<acronym>MAC</acronym> de l'interface réseau <filename
class="devicefile">eth0</filename> du firewall tandis que
0:c0:a8:50:b2:57 était l'adresse <acronym>MAC</acronym> de la carte
réseau de DMZ 1. En d'autre termes, le cache <acronym>ARP</acronym> de
la passerelle associe encore 192.0.2.177 avec la carte réseau de DMZ 1
plutôt qu'avec l'interface <filename class="devicefile"><filename
class="devicefile">eth0</filename></filename> du firewall.</para>
</section>
</section>
<section id="Rules">
<title>Règles</title>
<para><note>
<para>Shorewall dispose d'un mécanisme de <ulink
url="Macros.html">macros</ulink> comprenant des macros pour de
nombreuses applications standard. Dans cette section nous
n'utiliserons pas de macro. mais nous définirons les règles
directement.</para>
</note><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Avec les politiques définies plus tôt dans ce document, vos
systèmes locaux (Local 1-3) peuvent accéder à n'importe quel serveur sur
internet alors que la <acronym>DMZ</acronym> ne peut accéder à aucun
autre hôte, dont le firewall. A l'exception des règles
<acronym>NAT</acronym> qui entraînent la traduction d'adresses et
permettent aux requêtes de connexion traduites de passer à travers le
firewall, la façon d'autoriser des requêtes à travers votre firewall est
d'utiliser des règles ACCEPT.</para>
<note>
<para>Puisque les colonnes SOURCE PORT et ORIG. DEST. ne sont pas
utilisées dans cette section, elle ne seront pas affichées.</para>
</note>
<para>Vous souhaiter certainement autoriser le <command>ping</command>
entre vos zones:</para>
<programlisting>#ACTION SOURCE DEST PROTO DEST
# PORT(S)
ACCEPT net dmz icmp echo-request
ACCEPT net loc icmp echo-request
ACCEPT dmz loc icmp echo-request
ACCEPT loc dmz icmp echo-request</programlisting>
<para>Supposons que vous avez des serveurs mail et pop3 actifs sur le
système DMZ 2, et un serveur Web sur le système DMZ 1. Les règles dont
vous avez besoin sont:</para>
<programlisting>#ACTION SOURCE DEST PROTO DEST COMMENTS
# PORT(S)
ACCEPT net dmz:192.0.2.178 tcp smtp #Mail from
#Internet
ACCEPT net dmz:192.0.2.178 tcp pop3 #Pop3 from
#Internet
ACCEPT loc dmz:192.0.2.178 tcp smtp #Mail from local
#Network
ACCEPT loc dmz:192.0.2.178 tcp pop3 #Pop3 from local
#Network
ACCEPT $FW dmz:192.0.2.178 tcp smtp #Mail from the
#Firewall
ACCEPT dmz:192.0.2.178 net tcp smtp #Mail to the
#Internet
ACCEPT net dmz:192.0.2.177 tcp http #WWW from
#Internet
ACCEPT net dmz:192.0.2.177 tcp https #Secure WWW
#from Internet
ACCEPT loc dmz:192.0.2.177 tcp https #Secure WWW
#from local
#Network</programlisting>
<para>Si vous utilisez un serveur DNS public sur 192.0.2.177, vous devez
ajouter les règles suivantes:</para>
<programlisting>#ACTION SOURCE DEST PROTO DEST COMMENTS
# PORT(S)
ACCEPT net dmz:192.0.2.177 udp domain #UDP DNS from
#Internet
ACCEPT net dmz:192.0.2.177 tcp domain #TCP DNS from
#Internet
ACCEPT loc dmz:192.0.2.177 udp domain #UDP DNS from
#Local Network
ACCEPT loc dmz:192.0.2.177 tcp domain #TCP DNS from
#Local Network
ACCEPT $FW dmz:192.0.2.177 udp domain #UDP DNS from
#the Firewall
ACCEPT $FW dmz:192.0.2.177 tcp domain #TCP DNS from
#the Firewall
ACCEPT dmz:192.0.2.177 net udp domain #UDP DNS to
#the Internet
ACCEPT dmz:192.0.2.177 net tcp domain #TCPP DNS to
#the Internet</programlisting>
<para>Vous souhaiterez probablement communiquer depuis votre réseau
local avec votre firewall et les systèmes en <acronym>DMZ</acronym> --
Je recommande <acronym>SSH</acronym> qui, grâce à son utilitaire
<command>scp</command> peut aussi faire de la diffusion et de la mise à
jour de logiciels.</para>
<programlisting>#ACTION SOURCE DEST PROTO DEST COMMENTS
# PORT(S)
ACCEPT loc dmz tcp ssh #SSH to the DMZ
ACCEPT net $FW tcp ssh #SSH to the
#Firewall</programlisting>
</section>
<section id="OddsAndEnds">
<title>D'autres petites choses</title>
<para>La discussion précédente reflète ma préférence personnelle pour
l'utilisation d'un Proxy ARP associé à mes serveurs en DMZ et de
SNAT/NAT pour les systèmes locaux. Je préfère utiliser la NAT seulement
dans le cas ou un système qui fait partie d'un sous-réseau RFC 1918 à
besoin d'avoir sa propre adresse IP publique.</para>
<para><inlinegraphic fileref="images/BD21298_.gif" /></para>
<para>Si vous ne l'avez déjà fait, ce serait une bonne idée de parcourir
le fichier <ulink
url="Documentation.htm#Config"><filename>/etc/shorewall/shorewall.conf</filename></ulink>
juste pour voir si autre chose pourrait vous intéresser. Vous pouvez
aussi regarder les autres fichiers de configuration que vous n'avez pas
touchés pour avoir un aperçu des autres possibilités de
Shorewall.</para>
<para>Dans le cas ou vous auriez perdu le fil, vous trouverez ci-dessous
un jeu final des fichiers de configuration pour le réseau de notre
exemple. Seuls les fichiers de la configuration initiale qui ont été
modifiés sont présentés.</para>
<para><filename>/etc/shorewall/interfaces</filename> (Les "options" sont
très dépendantes des sites).</para>
<programlisting>#ZONE INTERFACE BROADCAST OPTIONS
net eth0 detect rfc1918,routefilter
loc eth1 detect
dmz eth2 detect</programlisting>
<para>La configuration décrite ici nécessite que votre réseau soit
démarré avant que Shorewall ne puisse se lancer. Ceci laisse un petit
intervalle de temps durant lequel vous n'avez pas la protection d'un
firewall.</para>
<para>Si vous remplacez le <quote>detect</quote> dans les entrées
ci-dessus par la valeurs des adresses de diffusion (broadcoast) réelles,
vous pouvez activer Shorewall avant de monter vos interfaces
réseau.</para>
<programlisting>#ZONE INTERFACE BROADCAST OPTIONS
net eth0 192.0.2.255 rfc1918
loc eth1 192.168.201.7
dmz eth2 192.168.202.7</programlisting>
<para><filename>/etc/shorewall/masq</filename> - Réseau Local</para>
<programlisting>#INTERFACE SUBNET ADDRESS
eth0 192.168.201.0/29 192.0.2.176</programlisting>
<para><filename>/etc/shorewall/proxyarp</filename> - DMZ</para>
<programlisting>#ADDRESS EXTERNAL INTERFACE HAVE ROUTE
192.0.2.177 eth2 eth0 No
192.0.2.178 eth2 eth0 No</programlisting>
<para><filename>/etc/shorewall/nat</filename>- Le système de ma
fille</para>
<programlisting>#EXTERNAL INTERFACE INTERNAL ALL INTERFACES LOCAL
192.0.2.179 eth0 192.168.201.4 No No</programlisting>
<para><filename>/etc/shorewall/rules</filename><programlisting>#ACTION SOURCE DEST PROTO DEST COMMENTS
# PORT(S)
ACCEPT net dmz icmp echo-request
ACCEPT net loc icmp echo-request
ACCEPT dmz loc icmp echo-request
ACCEPT loc dmz icmp echo-request
ACCEPT net loc:192.168.201.4 tcp www #Daughter's
#Server
ACCEPT net dmz:192.0.2.178 tcp smtp #Mail from
#Internet
ACCEPT net dmz:192.0.2.178 tcp pop3 #Pop3 from
#Internet
ACCEPT loc dmz:192.0.2.178 tcp smtp #Mail from local
#Network
ACCEPT loc dmz:192.0.2.178 tcp pop3 #Pop3 from local
#Network
ACCEPT $FW dmz:192.0.2.178 tcp smtp #Mail from the
#Firewall
ACCEPT dmz:192.0.2.178 net tcp smtp #Mail to the
#Internet
ACCEPT net dmz:192.0.2.177 tcp http #WWW from
#Internet
ACCEPT net dmz:192.0.2.177 tcp https #Secure WWW
#from Internet
ACCEPT loc dmz:192.0.2.177 tcp https #Secure WWW
#from local
#Network
ACCEPT net dmz:192.0.2.177 udp domain #UDP DNS from
#Internet
ACCEPT net dmz:192.0.2.177 tcp domain #TCP DNS from
#Internet
ACCEPT loc dmz:192.0.2.177 udp domain #UDP DNS from
#Local Network
ACCEPT loc dmz:192.0.2.177 tcp domain #TCP DNS from
#Local Network
ACCEPT $FW dmz:192.0.2.177 udp domain #UDP DNS from
#the Firewall
ACCEPT $FW dmz:192.0.2.177 tcp domain #TCP DNS from
#the Firewall
ACCEPT dmz:192.0.2.177 net udp domain #UDP DNS to
#the Internet
ACCEPT dmz:192.0.2.177 net tcp domain #TCPP DNS to
#the Internet
ACCEPT loc dmz tcp ssh #SSH to the DMZ
ACCEPT net $FW tcp ssh #SSH to the
#Firewall</programlisting></para>
</section>
</section>
<section id="DNS">
<title>DNS</title>
<para>Compte tenu des adresses RFC 1918 et des adresses publiques
utilisées dans cette configuration, la seule façon logique de faire est
d'avoir des serveurs <acronym>DNS</acronym> interne et externe séparés.
Vous pouvez combiner les deux dans un unique serveur BIND 9 utilisant les
vues (Views). Si vous n'êtes pas intéressé par les vues BIND 9, vous
pouvez allez à la section suivante.</para>
<para>Supposons que votre domaine est foobar.net. Vous voulez que les deux
systèmes en <acronym>DMZ</acronym> s'appellent www.foobar.net et
mail.foobar.net, et vous voulez que les trois systèmes locaux s'appellent
winken.foobar.net, blinken.foobar.net et nod.foobar.net. Vous voulez que
le firewall soit connu à l'extérieur sous le nom de firewall.foobar.net,
que son interface vers le réseau local soit nommée gateway.foobar.net et
que son interface vers la <acronym>DMZ</acronym> soit dmz.foobar.net.
Mettons le serveur DNS sur 192.0.2.177 qui sera aussi connu sous le nom de
ns1.foobar.net.</para>
<para>Le fichier <filename>/etc/named.conf</filename> devrait ressembler à
cela:</para>
<programlisting>
options {
directory "/var/named";
listen-on { 127.0.0.1 ; 192.0.2.177; };
transfer-format many-answers;
max-transfer-time-in 60;
allow-transfer {
// Servers allowed to request zone tranfers
&lt;secondary NS IP&gt;; };
};
logging {
channel xfer-log {
file "/var/log/named/bind-xfer.log";
print-category yes;
print-severity yes;
print-time yes;
severity info;
};
category xfer-in { xfer-log; };
category xfer-out { xfer-log; };
category notify { xfer-log; };
};
#
# This is the view presented to our internal systems
#
view "internal" {
#
# These are the clients that see this view
#
match-clients { 192.168.201.0/29;
192.168.202.0/29;
127.0.0.0/8;
192.0.2.176/32;
192.0.2.178/32;
192.0.2.179/32;
192.0.2.180/32; };
#
# If this server can't complete the request, it should use
# outside servers to do so
#
recursion yes;
zone "." in {
type hint;
file "int/root.cache";
};
zone "foobar.net" in {
type master;
notify no;
allow-update { none; };
file "int/db.foobar";
};
zone "0.0.127.in-addr.arpa" in {
type master;
notify no;
allow-update { none; };
file "int/db.127.0.0";
};
zone "201.168.192.in-addr.arpa" in {
type master;
notify no;
allow-update { none; };
file "int/db.192.168.201";
};
zone "202.168.192.in-addr.arpa" in {
type master;
notify no;
allow-update { none; };
file "int/db.192.168.202";
};
zone "176.2.0.192.in-addr.arpa" in {
type master;
notify no;
allow-update { none; };
file "db.192.0.2.176";
};
zone "177.2.0.192.in-addr.arpa" in {
type master;
notify no;
allow-update { none; };
file "db.192.0.2.177";
};
zone "178.2.0.192.in-addr.arpa" in {
type master;
notify no;
allow-update { none; };
file "db.192.0.2.178";
};
zone "179.2.0.192.in-addr.arpa" in {
type master;
notify no;
allow-update { none; };
file "db.206.124.146.179";
};
};
#
# This is the view that we present to the outside world
#
view "external" {
match-clients { any; };
#
# If we can't answer the query, we tell the client so
#
recursion no;
zone "foobar.net" in {
type master;
notify yes;
allow-update {none; };
file "ext/db.foobar";
};
zone "176.2.0.192.in-addr.arpa" in {
type master;
notify yes;
allow-update { none; };
file "db.192.0.2.176";
};
zone "177.2.0.192.in-addr.arpa" in {
type master;
notify yes;
allow-update { none; };
file "db.192.0.2.177";
};
zone "178.2.0.192.in-addr.arpa" in {
type master;
notify yes;
allow-update { none; };
file "db.192.0.2.178";
};
zone "179.2.0.192.in-addr.arpa" in {
type master;
notify yes;
allow-update { none; };
file "db.192.0.2.179";
};
};</programlisting>
<para>Voici les fichiers du répertoire <filename
class="directory">/var/named</filename> (ceux qui ne sont pas présentés
font en général partie de votre distribution BIND).</para>
<para><filename>db.192.0.2.176</filename> - Zone inverse (reverse) pour
l'interface externe du firewall</para>
<programlisting>; ############################################################
; Start of Authority (Inverse Address Arpa) for 192.0.2.176/32
; Filename: db.192.0.2.176
; ############################################################
@ 604800 IN SOA ns1.foobar.net. netadmin.foobar.net. (
2001102303 ; serial
10800 ; refresh (3 hour)
3600 ; retry (1 hour)
604800 ; expire (7 days)
86400 ) ; minimum (1 day)
;
; ############################################################
; Specify Name Servers for all Reverse Lookups (IN-ADDR.ARPA)
; ############################################################
@ 604800 IN NS ns1.foobar.net.
@ 604800 IN NS &lt;name of secondary ns&gt;.
;
; ############################################################
; Iverse Address Arpa Records (PTR's)
; ############################################################
176.2.0.192.in-addr.arpa. 86400 IN PTR firewall.foobar.net.</programlisting>
<para><filename>db.192.0.2.177</filename> - Zone inverse pour le serveur
www</para>
<programlisting>; ############################################################
; Start of Authority (Inverse Address Arpa) for 192.0.2.177/32
; Filename: db.192.0.2.177
; ############################################################
@ 604800 IN SOA ns1.foobar.net. netadmin.foobar.net. (
2001102303 ; serial
10800 ; refresh (3 hour)
3600 ; retry (1 hour)
604800 ; expire (7 days)
86400 ) ; minimum (1 day)
;
; ############################################################
; Specify Name Servers for all Reverse Lookups (IN-ADDR.ARPA)
; ############################################################
@ 604800 IN NS ns1.foobar.net.
@ 604800 IN NS &lt;name of secondary ns&gt;.
;
; ############################################################
; Iverse Address Arpa Records (PTR's)
; ############################################################
177.2.0.192.in-addr.arpa. 86400 IN PTR www.foobar.net.</programlisting>
<para><filename>db.192.0.2.178</filename> - Zone inverse du serveur
mail</para>
<programlisting>; ############################################################
; Start of Authority (Inverse Address Arpa) for 192.0.2.178/32
; Filename: db.192.0.2.178
; ############################################################
@ 604800 IN SOA ns1.foobar.net. netadmin.foobar.net. (
2001102303 ; serial
10800 ; refresh (3 hour)
3600 ; retry (1 hour)
604800 ; expire (7 days)
86400 ) ; minimum (1 day)
;
; ############################################################
; Specify Name Servers for all Reverse Lookups (IN-ADDR.ARPA)
; ############################################################
@ 604800 IN NS ns1.foobar.net.
@ 604800 IN NS &lt;name of secondary ns&gt;.
;
; ############################################################
; Iverse Address Arpa Records (PTR's)
; ############################################################
178.2.0.192.in-addr.arpa. 86400 IN PTR mail.foobar.net.</programlisting>
<para><filename>db.192.0.2.179</filename> - Zone inverse du serveur web
public de votre fille</para>
<programlisting>; ############################################################
; Start of Authority (Inverse Address Arpa) for 192.0.2.179/32
; Filename: db.192.0.2.179
; ############################################################
@ 604800 IN SOA ns1.foobar.net. netadmin.foobar.net. (
2001102303 ; serial
10800 ; refresh (3 hour)
3600 ; retry (1 hour)
604800 ; expire (7 days)
86400 ) ; minimum (1 day)
;
; ############################################################
; Specify Name Servers for all Reverse Lookups (IN-ADDR.ARPA)
; ############################################################
@ 604800 IN NS ns1.foobar.net.
@ 604800 IN NS &lt;name of secondary ns&gt;.
;
; ############################################################
; Iverse Address Arpa Records (PTR's)
; ############################################################
179.2.0.192.in-addr.arpa. 86400 IN PTR nod.foobar.net.</programlisting>
<para><filename>int/db.127.0.0</filename> - Zone inverse pour
localhost</para>
<programlisting>; ############################################################
; Start of Authority (Inverse Address Arpa) for 127.0.0.0/8
; Filename: db.127.0.0
; ############################################################
@ 604800 IN SOA ns1.foobar.net. netadmin.foobar.net. (
2001092901 ; serial
10800 ; refresh (3 hour)
3600 ; retry (1 hour)
604800 ; expire (7 days)
86400 ) ; minimum (1 day)
; ############################################################
; Specify Name Servers for all Reverse Lookups (IN-ADDR.ARPA)
; ############################################################
@ 604800 IN NS ns1.foobar.net.
; ############################################################
; Iverse Address Arpa Records (PTR's)
; ############################################################
1 86400 IN PTR localhost.foobar.net.</programlisting>
<para><filename>int/db.192.168.201</filename> - Zone inverse pour le
réseau local. Cela ne sera visible que depuis les clients internes</para>
<programlisting>; ############################################################
; Start of Authority (Inverse Address Arpa) for 192.168.201.0/29
; Filename: db.192.168.201
; ############################################################
@ 604800 IN SOA ns1.foobar.net netadmin.foobar.net. (
2002032501 ; serial
10800 ; refresh (3 hour)
3600 ; retry (1 hour)
604800 ; expire (7 days)
86400 ) ; minimum (1 day)
; ############################################################
; Specify Name Servers for all Reverse Lookups (IN-ADDR.ARPA)
; ############################################################
@ 604800 IN NS ns1.foobar.net.
; ############################################################
; Iverse Address Arpa Records (PTR's)
; ############################################################
1 86400 IN PTR gateway.foobar.net.
2 86400 IN PTR winken.foobar.net.
3 86400 IN PTR blinken.foobar.net.
4 86400 IN PTR nod.foobar.net.</programlisting>
<para><filename>int/db.192.168.202</filename> - Zone inverse de
l'interface DMZ du firewall</para>
<programlisting>; ############################################################
; Start of Authority (Inverse Address Arpa) for 192.168.202.0/29
; Filename: db.192.168.202
; ############################################################
@ 604800 IN SOA ns1.foobar.net netadmin.foobar.net. (
2002032501 ; serial
10800 ; refresh (3 hour)
3600 ; retry (1 hour)
604800 ; expire (7 days)
86400 ) ; minimum (1 day)
; ############################################################
; Specify Name Servers for all Reverse Lookups (IN-ADDR.ARPA)
; ############################################################
@ 604800 IN NS ns1.foobar.net.
; ############################################################
; Iverse Address Arpa Records (PTR's)
; ############################################################
1 86400 IN PTR dmz.foobar.net.</programlisting>
<para><filename>int/db.foobar </filename>- Forward zone pour les clients
internes.</para>
<programlisting>;##############################################################
; Start of Authority for foobar.net.
; Filename: db.foobar
;##############################################################
@ 604800 IN SOA ns1.foobar.net. netadmin.foobar.net. (
2002071501 ; serial
10800 ; refresh (3 hour)
3600 ; retry (1 hour)
604800 ; expire (7 days)
86400 ); minimum (1 day)
;############################################################
; foobar.net Nameserver Records (NS)
;############################################################
@ 604800 IN NS ns1.foobar.net.
;############################################################
; Foobar.net Office Records (ADDRESS)
;############################################################
localhost 86400 IN A 127.0.0.1
firewall 86400 IN A 192.0.2.176
www 86400 IN A 192.0.2.177
ns1 86400 IN A 192.0.2.177
mail 86400 IN A 192.0.2.178
gateway 86400 IN A 192.168.201.1
winken 86400 IN A 192.168.201.2
blinken 86400 IN A 192.168.201.3
nod 86400 IN A 192.168.201.4
dmz 86400 IN A 192.168.202.1</programlisting>
<para><filename>ext/db.foobar </filename>- Forward zone pour les clients
externes</para>
<programlisting>;##############################################################
; Start of Authority for foobar.net.
; Filename: db.foobar
;##############################################################
@ 86400 IN SOA ns1.foobar.net. netadmin.foobar.net. (
2002052901 ; serial
10800 ; refresh (3 hour)
3600 ; retry (1 hour)
604800 ; expire (7 days)
86400 ); minimum (1 day)
;############################################################
; Foobar.net Nameserver Records (NS)
;############################################################
@ 86400 IN NS ns1.foobar.net.
@ 86400 IN NS &lt;secondary NS&gt;.
;############################################################
; Foobar.net Foobar Wa Office Records (ADDRESS)
;############################################################
localhost 86400 IN A 127.0.0.1
;
; The firewall itself
;
firewall 86400 IN A 192.0.2.176
;
; The DMZ
;
ns1 86400 IN A 192.0.2.177
www 86400 IN A 192.0.2.177
mail 86400 IN A 192.0.2.178
;
; The Local Network
;
nod 86400 IN A 192.0.2.179
;############################################################
; Current Aliases for foobar.net (CNAME)
;############################################################
;############################################################
; foobar.net MX Records (MAIL EXCHANGER)
;############################################################
foobar.net. 86400 IN A 192.0.2.177
86400 IN MX 0 mail.foobar.net.
86400 IN MX 1 &lt;backup MX&gt;.</programlisting>
</section>
<section>
<title>Quelques Points à Garder en Mémoire</title>
<itemizedlist>
<listitem>
<para><emphasis role="bold">Vous ne pouvez pas tester votre firewall
depuis l'intérieur de votre réseau</emphasis>. Envoyer des requêtes à
l'adresse IP externe de votre firewall ne signifie pas qu'elle seront
associées à votre interface externe ou à la zone <quote>net</quote>.
Tout trafic généré par le réseau local sera associé à l'interface
locale et sera traité comme du trafic du réseau local ver le firewall
(loc-&gt;fw).</para>
</listitem>
<listitem>
<para><emphasis role="bold">Les adresses IP sont des propriétés des
systèmes, pas des interfaces</emphasis>. C'est une erreur de croire
que votre firewall est capable de faire suivre
(<emphasis>forward</emphasis>) des paquets simplement parce que vous
pouvez faire un <command>ping</command> sur l'adresse IP de toutes les
interfaces du firewall depuis le réseau local. La seule conclusion que
vous puissiez faire dans ce cas est que le lien entre le réseau local
et le firewall fonctionne et que vous avez probablement la bonne
adresse de passerelle par défaut sur votre système.</para>
</listitem>
<listitem>
<para><emphasis role="bold">Toutes les adresses IP configurées sur le
firewall sont dans la zone $FW (fw)</emphasis>. Si 192.168.1.254 est
l'adresse IP de votre interface interne, alors vous pouvez écrire
<quote><emphasis role="bold">$FW:192.168.1.254</emphasis></quote> dans
une régle mais vous ne devez pas écrire <quote><emphasis
role="bold">loc:192.168.1.254</emphasis></quote>. C'est aussi une
absurdité d'ajouter 192.168.1.254 à la zone <emphasis
role="bold">loc</emphasis> en utilisant une entrée dans
<filename>/etc/shorewall/hosts</filename>.</para>
</listitem>
<listitem>
<para><emphasis role="bold">Les paquets de retour (reply) ne suivent
PAS automatiquement le chemin inverse de la requête
d'origine</emphasis>. Tous les paquets sont routés en se référant à la
table de routage respective de chaque hôte à chaque étape du trajet.
Ce problème se produit en général lorsque on installe un firewall
Shorewall en parallèle à une passerelle existante et qu'on essaye
d'utiliser des règles <acronym>DNAT</acronym> dans Shorewall sans
changer la passerelle par défaut sur les systèmes recevant les
requêtes transférées (forwarded). Les requêtes passent dans le
firewall Shorewall où l'adresse de destination IP est réécrite, mais
la réponse revient par l'ancienne passerelle qui, elle, ne modifiera
pas le paquet.</para>
</listitem>
<listitem>
<para><emphasis role="bold">Shorewall lui-même n'a aucune notion du
dedans et du dehors</emphasis>. Ces concepts dépendent de la façon
dont Shorewall est configuré.</para>
</listitem>
</itemizedlist>
</section>
<section>
<title>Démarrer et Arrêter Votre Firewall</title>
<para><inlinegraphic fileref="images/BD21298_.gif" format="GIF" /></para>
<para>La <ulink url="Install.htm">procédure d'installation</ulink>
configure votre système pour lancer Shorewall dès le boot du système, mais
le lancement est désactivé, de façon à ce que votre système ne tente pas
de lancer Shorewall avant que la configuration ne soit terminée. Une fois
que vous en avez fini avec la configuration du firewall, vous devez éditer
/etc/shorewall/shorewall.conf et y mettre STARTUP_ENABLED=Yes.<important>
<para>Les utilisateurs des paquetages .deb doivent éditer <filename
class="directory">/etc/default/</filename><filename>shorewall</filename>
et mettre <varname>startup=1</varname>.</para>
</important></para>
<para>Le firewall est activé en utilisant la commande
<quote><command>shorewall start</command></quote> et arrêté avec la
commande <quote><command>shorewall stop</command></quote>. Lorsque le
firewall est arrêté, le routage est autorisé sur les hôtes qui possèdent
une entrée dans <filename class="directory"><ulink
url="Documentation.htm#Routestopped">/etc/shorewall/routestopped</ulink></filename>.
Un firewall qui tourne peut être relancé en utilisant la commande
<quote><command>shorewall restart</command></quote>. Si vous voulez
enlever toute trace de Shorewall sur votre configuration de Netfilter,
utilisez <quote><emphasis role="bold">shorewall
clear</emphasis></quote></para>
<para><inlinegraphic fileref="images/BD21298_.gif" format="GIF" /></para>
<para>Modifiez <filename
class="directory">/etc/shorewall/</filename><filename><ulink
url="Documentation.htm#Routestopped">routestopped</ulink></filename> pour
y configurer les hôtes auxquels vous voulez accéder lorsque le firewall
est arrêté. <warning>
<para>Si vous êtes connecté à votre firewall depuis internet,
n'essayez pas d'exécuter une commande <quote><command>shorewall
stop</command></quote> tant que vous n'avez pas ajouté une entrée dans
<filename><filename
class="directory">/etc/shorewall/</filename><filename>routestopped</filename></filename>
pour l'adresse IP à partir de laquelle vous êtes connecté . De la même
manière, je vous déconseille d'utiliser <quote><command>shorewall
restart</command></quote>; il est plus intéressant de créer <ulink
url="configuration_file_basics.htm#Configs">une configuration
alternative</ulink> et de la tester en utilisant la commande
<quote><ulink url="starting_and_stopping_shorewall.htm">shorewall
try</ulink></quote></para>
</warning></para>
</section>
</article>