shorewall_code/docs/traffic_shaping.xml
2006-12-19 21:18:17 +00:00

1066 lines
45 KiB
XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<article>
<!--$Id$-->
<articleinfo>
<title>Traffic Shaping/Control</title>
<authorgroup>
<author>
<firstname>Tom</firstname>
<surname>Eastep</surname>
</author>
<author>
<firstname>Arne</firstname>
<surname>Bernin</surname>
</author>
</authorgroup>
<pubdate><?dbtimestamp format="Y/m/d"?></pubdate>
<copyright>
<year>2001-2006</year>
<holder>Thomas M. Eastep</holder>
</copyright>
<copyright>
<year>2005</year>
<holder>Arne Bernin &amp; Thomas M. Eastep</holder>
</copyright>
<legalnotice>
<para>Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, with no Front-Cover, and with no Back-Cover
Texts. A copy of the license is included in the section entitled
<quote><ulink url="GnuCopyright.htm">GNU Free Documentation
License</ulink></quote>.</para>
</legalnotice>
</articleinfo>
<important>
<para>Traffic shaping is complex and the Shorewall community is not well
equiped to answer traffic shaping questions. So if you are the type of
person who needs "insert tab A into slot B" instructions for everything
that you do, then please don't try to implement traffic shaping using
Shorewall. You will just frustrate yourself and we won't be able to help
you.</para>
</important>
<warning>
<para>Said another way, reading just Shorewall documentation is not going
to give you enough background to use this material.</para>
<para>At a minimum, you will need to refer to at least the following
additional information:</para>
<itemizedlist>
<listitem>
<para>The LARTC HOWTO: <ulink
url="http://www.lartc.org">http://www.lartc.org</ulink></para>
</listitem>
<listitem>
<para>The HTB User's Guide: <ulink
url="http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm">http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm</ulink></para>
</listitem>
<listitem>
<para>Some of the documents listed at <ulink
url="http://www.netfilter.org/documentation/index.html#documentation-howto">http://www.netfilter.org/documentation/index.html#documentation-howto</ulink>.
The tutorial by Oskar Andreasson is particularly good.</para>
</listitem>
<listitem>
<para>The output of <command>man iptables</command></para>
</listitem>
</itemizedlist>
</warning>
<section>
<title>Introduction</title>
<para>Starting with Version 2.5.5, Shorewall has builtin support for
traffic shaping and control. Before this version, the support was quite
limited. You were able to use your own tcstart script (and you still are),
but besides the tcrules file it was not possible to define classes or
queueing discplines inside the Shorewall config files.</para>
<para>The support for traffic shaping and control still does not cover all
options available (and especially all algorithms that can be used to queue
traffic) in the Linux kernel but it should fit most needs. If you are
using your own script for traffic control and you still want to use it in
the future, you will find information on how to do this, <link
linkend="owntcstart"> later in this document</link>. But for this to work,
you will also need to enable traffic shaping in the kernel and Shorewall
as covered by the next sections.</para>
</section>
<section>
<title>Linux traffic shaping and control</title>
<para>This section gives a brief introduction of how controlling traffic
with the linux kernel works. Although this might be enough for configuring
it in the Shorewall configuration files, we strongly recommend that you
take a deeper look into the <ulink url="http://lartc.org/howto/">Linux
Advanced Routing and Shaping HOWTO</ulink>. At the time of writing this,
the current version is 1.0.0.</para>
<para>Since kernel 2.2 Linux has extensive support for controlling
traffic. You can define different algorithms that are used to queue the
traffic before it leaves an interface. The standard one is called pfifo
and is (as the name suggests) of the type First In First out. This means,
that it does not shape anything, if you have a connection that eats up all
your bandwidth, this qeueing algorithm will not stop it from doing
so.</para>
<para>For Shorewall traffic shaping we use two algorithms, one is called
HTB (Hierarchical Token Bucket) and SFQ (Stochastic Fairness Queuing). SFQ
is easy to explain: it just tries to track your connections (tcp or udp
streams) and balances the traffic between them. This normally works well.
HTB allows you to define a set of classes, and you can put the traffic you
want into these classes. You can define minimum and maximum bandwitdh
settings for those classes and order them hierachically (the less
priorized classes only get bandwitdth if the more important have what they
need). Shorewall builtin traffic shaping allows you to define these
classes (and their bandwidth limits), and it uses SFQ inside these classes
to make sure, that different data streams are handled equally.</para>
<para><emphasis role="bold">You can only shape outgoing traffic. The
reason for this is simple, the packets were already received by your
network card before you can decide what to do with them</emphasis>. So the
only choice would be to drop them which normally makes no sense (since you
received the packet already, it went through the possible bottleneck (the
incoming connection). The next possible bottleneck might come if the
packet leaves on another interface, so this will be the place where
queuing might occur. So, defining queues for incoming packets is not very
useful, you just want to have it forwarded to the outgoing interface as
fast as possible.</para>
<para>There is one exception, though. Limiting incoming traffic to a value
a bit slower than your actual line speed will avoid queueing on the other
end of that connection. This is mostly useful if you don't have access to
traffic control on the other side and if this other side has a faster
network connection than you do (the line speed between the systems is the
bottleneck, e.g. a DSL or Cable Modem connection to your provider's
router, the router itself is normally connected to a much faster
backbone). So, if you drop packets that are coming in too fast, the
underlying protocol might recognize this and slow down the connection. TCP
has a builtin mechanism for this, UDP has not (but the protocol over UDP
might recognize it , if there is any).</para>
<para>The reason why queing is bad in these cases is, that you might have
packets which need to be priorized over others, e.g. VoIP or ssh. For this
type of connections it is important that packets arrive in a certain
amount of time. For others like http downloads, it does not really matter
if it takes a few seconds more.</para>
<para>If you have a large queue on the other side and the router there
does not care about QoS or the QoS bits are not set properly, your
important packets will go into the same queue as your less timecritical
download packets which will result in a large delay.</para>
<para>You shape and control outgoing traffic by assigning the traffic to
<firstterm>classes</firstterm>. Each class is associated with exactly one
network interface and has a number of attributes:</para>
<orderedlist>
<listitem>
<para>PRIORITY - Used to give preference to one class over another
when selecting a packet to send. The priority is a numeric value with
1 being the highest priority, 2 being the next highest, and so
on.</para>
</listitem>
<listitem>
<para>RATE - The minimum bandwidth this class should get, when the
traffic load rises. Classes with a higher priority (lower PRIORITY
value) are served even if there are others that have a guaranteed
bandwith but have a lower priority (higher PRIORITY value).</para>
</listitem>
<listitem>
<para>CEIL - The maximum bandwidth the class is allowed to use when
the link is idle.</para>
</listitem>
<listitem>
<para>MARK - Netfilter has a facility for
<firstterm>marking</firstterm> packets. Packet marks have a numeric
value which is limited in Shorewall to the values 1-255. You assign
packet marks to different types of traffic using entries in the
<filename>/etc/shorewall/tcrules</filename> file.</para>
</listitem>
</orderedlist>
<para>One class for each interface must be designated as the
<firstterm>default class</firstterm>. This is the class to which unmarked
traffic (packets to which you have not assigned a mark value in
<filename>/etc/shorewall/tcrules</filename>) is assigned.</para>
<para>Netfilter also supports a mark value on each connection. You can
assign connection mark values in
<filename>/etc/shorewall/tcrules</filename>, you can copy the current
packet's mark to the connection mark (SAVE), or you can copy the
connection mark value to the current packet's mark (RESTORE).</para>
</section>
<section>
<title>Linux Kernel Configuration</title>
<para>You will need at least kernel 2.4.18 for this to work, please take a
look at the following screenshot for what settings you need to enable. For
builtin support, you need the HTB scheduler, the Ingress scheduler, the
PRIO pseudoscheduler and SFQ queue. The other scheduler or queue
algorithms are not needed.</para>
<para>You also need the u32 and fw classifiers from near the bottom of the
main Networking Options menu (not shown).</para>
<para>This screen shot shows how I've configured QoS in my 2.6.13
Kernel:<graphic align="center" fileref="images/QoS.png" /></para>
<para>Kernel configuration changed in 2.6.16 -- here's my
recommendation.</para>
<graphic align="center" fileref="images/traffic_shaping2.6.png" />
</section>
<section>
<title>Enable TC support in Shorewall</title>
<para>You need this support whether you use the builtin support or whether
you provide your own tcstart script.</para>
<para>To enable the builtin traffic shaping and control in Shorewall, you
have to do the following:</para>
<itemizedlist>
<listitem>
<para>Set <emphasis role="bold">TC_ENABLED</emphasis> to "Internal" in
/etc/shorewall/shorewall.conf. Setting TC_ENABLED=Yes causes Shorewall
to look for an external tcstart file (See <link linkend="tcstart">a
later section</link> for details).</para>
</listitem>
<listitem>
<para>Setting <emphasis role="bold">CLEAR_TC</emphasis> parameter in
/etc/shorewall/shorewall.conf to Yes will clear the traffic shaping
configuration during Shorewall [re]start and Shorewall stop. This is
normally what you want when using the builtin support (and also if you
use your own tcstart script)</para>
</listitem>
<listitem>
<para>The other steps that follow depend on whether you use your own
script or the builtin solution. They will be explained in the
following sections.</para>
</listitem>
</itemizedlist>
</section>
<section>
<title>Using builtin traffic shaping/control</title>
<para>Shorewall's builtin traffic shaping feature provides a thin layer on
top of the ingress qdesc, HTB and SFQ. That translation layer allows you
to:</para>
<itemizedlist>
<listitem>
<para>Define HTB classes using Shorewall-style column-oriented
configuration files.</para>
</listitem>
<listitem>
<para>Integrate the reloading of your traffic shaping configuration
with the reloading of your packet-filtering and marking
configuration.</para>
</listitem>
<listitem>
<para>Assign traffic to HTB classes by TOS value.</para>
</listitem>
<listitem>
<para>Assign outgoing TCP ACK packets to an HTB class.</para>
</listitem>
<listitem>
<para>Assign traffic to HTB classes based on packet mark value.</para>
</listitem>
</itemizedlist>
<warning>
<para>Shorewall's builtin traffic shaping feature is limited to ten (10)
devices.</para>
</warning>
<para>Those few features are really all that builtin traffic
shaping/control provides; consequently, you need to understand HTB and
Linux traffic shaping as well as Netfilter packet marking in order to use
the facility. Again, please see the links at top of this article.</para>
<para>For defining bandwidths (for either devices or classes) please use
kbit or kbps(for Kilobytes per second) and make sure there is <emphasis
role="bold">NO</emphasis> space between the number and the unit (it is
100kbit <emphasis role="bold">not</emphasis> 100 kbit). Using mbit, mbps
or a raw number (which means bytes) could be used, but note that only
integer numbers are supported (0.5 is <emphasis role="bold">not
valid</emphasis>).</para>
<para>To properly configure the settings for your devices you might need
to find out the real up- and downstream rates you have. This is especially
the case, if you are using a DSL connection or one of another type that do
not have a guaranteed bandwidth. Don't trust the values your provider
tells you for this; especially measuring the real download speed is
important! There are several online tools that help you find out; search
for "dsl speed test" on google (For Germany you can use <ulink
url="http://www.speedcheck.arcor.de/cgi-bin/speedcheck.cgi">arcor speed
check</ulink>). Be sure to choose a test located near you.</para>
<section>
<title>/etc/shorewall/tcdevices</title>
<para>This file allows you to define the incoming and outgoing bandwidth
for the devices you want traffic shaping to be enabled. That means, if
you want to use traffic shaping for a device, you have to define it
here.</para>
<para>Columns in the file are as follows:</para>
<itemizedlist>
<listitem>
<para>INTERFACE - Name of interface. Each interface may be listed
only once in this file. You may NOT specify the name of an alias
(e.g., eth0:0) here; see <ulink url="FAQ.htm#faq18">FAQ #18</ulink>.
You man NOT specify wildcards here, e.g. if you have multiple ppp
interfaces, you need to put them all in here! With Shorewall
versions prior to 3.0.8 and 3.2.0 Beta 8, the device named in this
column must exist at the time that Shorewall is started, restarted
or refreshed. Beginning with Shorewall 3.0.8 and 3.2.0 Beta 8,
Shorewall will determine if the device exists and will only
configure the device if it does exist. If it doesn't exist, the
following warning is issued:</para>
<para><emphasis role="bold">WARNING: Device &lt;device name&gt; not
found -- traffic-shaping configuration skipped</emphasis></para>
</listitem>
<listitem>
<para>IN-BANDWIDTH - The incoming Bandwidth of that interface.
Please note that you are not able to do traffic shaping on incoming
traffic, as the traffic is already received before you could do so.
This Column allows you to define the maximum traffic allowed for
this interface in total, if the rate is exceeded, the packets are
dropped. You want this mainly if you have a DSL or Cable Connection
to avoid queuing at your providers side. If you don't want any
traffic to be dropped set this to a value faster than your interface
maximum rate.</para>
<para>To determine the optimum value for this setting, we recommend
that you start by setting it significantly below your measured
download bandwidth (20% or so). While downloading, measure the
<emphasis>ping</emphasis> response time from the firewall to the
upstream router as you gradually increase the setting.The optimal
setting is at the point beyond which the <emphasis>ping</emphasis>
time increases sharply as you increase the setting.</para>
</listitem>
<listitem>
<para>OUT-BANDWIDTH - Specifiy the outgoing bandwidth of that
interface. This is the maximum speed your connection can handle. It
is also the speed you can refer as "full" if you define the tc
classes. Outgoing traffic above this rate will be dropped.</para>
</listitem>
</itemizedlist>
<example>
<title></title>
<para>Suppose you are using PPP over Ethernet (DSL) and ppp0 is the
interface for this. The device has an outgoing bandwidth of 500kbit
and an incoming bandwidth of 6000kbit</para>
<programlisting>#INTERFACE IN-BANDWITH OUT-BANDWIDTH
ppp0 6000kbit 500kbit</programlisting>
</example>
</section>
<section>
<title>/etc/shorewall/tcclasses</title>
<para>This file allows you to define the actual classes that are used to
split the outgoing traffic.</para>
<itemizedlist>
<listitem>
<para>INTERFACE - Name of interface. Must match the name of an
interface with an entry in
<filename>/etc/shorewall/tcdevices</filename>.</para>
</listitem>
<listitem>
<para>MARK - The mark value which is an integer in the range 1-255.
You define these marks in the tcrules file, marking the traffic you
want to go into the queueing classes defined in here. You can use
the same marks for different Interfaces.</para>
</listitem>
<listitem>
<para>RATE - The minimum bandwidth this class should get, when the
traffic load rises. Please note that first the classes which equal
or a lesser priority value are served even if there are others that
have a guaranteed bandwith but a lower priority. <emphasis
role="bold">If the sum of the RATEs for all classes assigned to an
INTERFACE exceed that interfaces's OUT-BANDWIDTH, then the
OUT-BANDWIDTH limit will not be honored.</emphasis></para>
</listitem>
<listitem>
<para>CEIL - The maximum bandwidth this class is allowed to use when
the link is idle. Useful if you have traffic which can get full
speed when more important services (e.g. interactive like ssh) are
not used. You can use the value "full" in here for setting the
maximum bandwidth to the defined output bandwidth of that
interface.</para>
</listitem>
<listitem>
<para>PRIORITY - you have to define a priority for the class.
packets in a class with a higher priority (=lesser value) are
handled before less priorized onces. You can just define the mark
value here also, if you are increasing the mark values with lesser
priority.</para>
</listitem>
<listitem>
<para>OPTIONS - A comma-separated list of options including the
following:</para>
<itemizedlist>
<listitem>
<para>default - this is the default class for that interface
where all traffic should go, that is not classified
otherwise.</para>
<note>
<para>defining default for exactly <emphasis
role="bold">one</emphasis> class per interface is
mandatory!</para>
</note>
</listitem>
<listitem>
<para>tos-&lt;tosname&gt; - this lets you define a filter for
the given &lt;tosname&gt; which lets you define a value of the
Type Of Service bits in the ip package which causes the package
to go in this class. Please note, that this filter overrides all
mark settings, so if you define a tos filter for a class all
traffic having that mark will go in it regardless of the mark on
the package. You can use the following for this option:
tos-minimize-delay (16) tos-maximize-throughput (8)
tos-maximize-reliability (4) tos-minimize-cost (2)
tos-normal-service (0)</para>
<note>
<para>Each of this options is only valid for <emphasis
role="bold">one</emphasis> class per interface.</para>
</note>
</listitem>
<listitem>
<para>tcp-ack - if defined causes an tc filter to be created
that puts all tcp ack packets on that interface that have an
size of &lt;=64 Bytes to go in this class. This is useful for
speeding up downloads. Please note that the size of the ack
packets is limited to 64 bytes as some applications (p2p for
example) use to make every package an ack package which would
cause them all into here. We want only packets WITHOUT payload
to match, so the size limit. Bigger packets just take their
normal way into the classes.</para>
<note>
<para>This option is only valid for <emphasis
role="bold">class</emphasis> per interface.</para>
</note>
</listitem>
</itemizedlist>
</listitem>
</itemizedlist>
</section>
<section>
<title>/etc/shorewall/tcrules</title>
<para>The fwmark classifier provides a convenient way to classify
packets for traffic shaping. The <quote>/etc/shorewall/tcrules</quote>
file is used for specifying these marks in a tabular fashion. For an
in-depth look at the packet marking facility in Netfilter/Shorewall,
please see <ulink url="PacketMarking.html">this article</ulink>.</para>
<para>Normally, packet marking occurs in the PREROUTING chain before any
address rewriting takes place. This makes it impossible to mark inbound
packets based on their destination address when SNAT or Masquerading are
being used. You can cause packet marking to occur in the FORWARD chain
by using the MARK_IN_FORWARD_CHAIN option in shorewall.conf.</para>
<para>Columns in the file are as follows:</para>
<itemizedlist>
<listitem>
<para>MARK or CLASSIFY - MARK specifies the mark value is to be
assigned in case of a match. This is an integer in the range 1-255.
This value may be optionally followed by <quote>:</quote> and either
<quote>F</quote>, <quote>P</quote> or "T" to designate that the
marking will occur in the FORWARD, PREROUTING or POSTROUTING chains
respectively. If this additional specification is omitted, the chain
used to mark packets will be determined as follows:</para>
<itemizedlist>
<listitem>
<para>If the SOURCE is
$FW[:&lt;<emphasis>address</emphasis>&gt;], then the rule is
inserted in the OUTPUT chain.</para>
</listitem>
<listitem>
<para>Otherwise, the chain is determined by the setting of the
MARK_IN_FORWARD_CHAIN option in shorewall.conf.</para>
</listitem>
</itemizedlist>
<note>
<para>The "T" qualifier was added in Shorewall version 3.3.6 and
is not available in earlier versions.</para>
</note>
<para>Normally, the mark is applied to the packet. If you follow the
mark value with ":" and "C", then the mark is applied to the
connection. "C" can be combined with "F", "P" or "T" to designate
that the connection should be marked in a particular chain (e.g.,
"CF", "CP", "CT").</para>
<para>There are additional special values available:</para>
<orderedlist numeration="loweralpha">
<listitem>
<para><emphasis
role="bold">RESTORE</emphasis>[/<emphasis>mask</emphasis>] --
restore the packet's mark from the connection's mark using the
supplied mask if any. Your kernel and iptables must include
CONNMARK support.</para>
<para>As above, may be followed by <emphasis
role="bold">:P</emphasis>, <emphasis role="bold">:F</emphasis>
or <emphasis role="bold">:T</emphasis>.</para>
</listitem>
<listitem>
<para><emphasis
role="bold">SAVE</emphasis>[/<emphasis>mask</emphasis>] -- save
the packet's mark to the connection's mark using the supplied
mask if any. Your kernel and iptables must include CONNMARK
support.</para>
<para>As above, may be followed by <emphasis
role="bold">:P</emphasis>, <emphasis role="bold">:F</emphasis>
or <emphasis role="bold">:T</emphasis>.</para>
</listitem>
<listitem>
<para><emphasis role="bold">CONTINUE</emphasis> Don't process
any more marking rules in the table.</para>
<para>As above, may be followed by <emphasis
role="bold">:P</emphasis>, <emphasis role="bold">:F</emphasis>
or <emphasis role="bold">:T</emphasis>.</para>
</listitem>
<listitem>
<para><emphasis role="bold">COMMENT</emphasis> (Added in
Shorewall version 3.3.3) -- the rest of the line will be
attached as a comment to the Netfilter rule(s) generated by the
following entries. The comment will appear delimited by "/* ...
*/" in the output of <command>shorewall show
mangle</command></para>
<para>To stop the comment from being attached to further rules,
simply include COMMENT on a line by itself.</para>
</listitem>
</orderedlist>
<para>To use CLASSIFY, your kernel and iptables must include
CLASSIFY target support. In that case, this column contains a
classification (classid) of the form &lt;major&gt;:&lt;minor&gt;
where &lt;major&gt; and &lt;minor&gt; are integers. Corresponds to
the 'class' specification in these traffic shaping modules:</para>
<simplelist>
<member>atm</member>
<member>cbq</member>
<member>dsmark</member>
<member>pfifo_fast</member>
<member>htb</member>
<member>prio</member>
</simplelist>
<para>With Shorewall versions prior to 3.2.3, classify rules are
always placed in the POSTROUTING chain. Beginning with Shorewall
3.2.3, classification occurs in the POSTROUTING chain <emphasis
role="bold">except</emphasis> when the SOURCE contains
$FW[:&lt;<emphasis>address</emphasis>&gt;] in which case, the
classify action takes place in the OUTPUT chain. When used with the
builtin traffic shaper, the &lt;major&gt; class is the device number
(the first entry in <filename>/etc/shorewall/tcdevices</filename> is
device 1, the second is device 2 and so on) and the &lt;minor&gt;
class is the MARK value of the class preceded by the number "1"
(MARK value 1 is &lt;minor&gt; class 11, MARK value 22 is
&lt;minor&gt; class 122, and so on).</para>
</listitem>
<listitem>
<para>SOURCE - Source of the packet. A comma-separated list of
interface names, IP addresses, MAC addresses and/or subnets for
packets being routed through a common path. List elements may also
consist of an interface name followed by ":" and an address (e.g.,
eth1:192.168.1.0/24). For example, all packets for connections
masqueraded to eth0 from other interfaces can be matched in a single
rule with several alternative SOURCE criteria. However, a connection
whose packets gets to eth0 in a different way, e.g., direct from the
firewall itself, needs a different rule.</para>
<para>Accordingly, use $FW in its own separate rule for packets
originating on the firewall. In such a rule, the MARK column may NOT
specify either ":P" or ":F" because marking for firewall-originated
packets always occurs in the OUTPUT chain.</para>
<para>MAC addresses must be prefixed with "~" and use "-" as a
separator.</para>
<para>Example: ~00-A0-C9-15-39-78</para>
</listitem>
<listitem>
<para>DEST - Destination of the packet. Comma separated list of IP
addresses and/or subnets. If your kernel and iptables include
iprange match support, IP address ranges are also allowed. List
elements may also consist of an interface name followed by ":" and
an address (e.g., eth1:192.168.1.0/24). If the MARK column
specificies a classification of the form &lt;major&gt;:&lt;minor&gt;
then this column may also contain an interface name.</para>
</listitem>
<listitem>
<para>PROTO - Protocol - Must be "tcp", "udp", "icmp", "ipp2p",
"ipp2p:udp", "ipp2p:all" a number, or "all". "ipp2p" requires ipp2p
match support in your kernel and iptables.</para>
</listitem>
<listitem>
<para>PORT(S) - Destination Ports. A comma-separated list of Port
names (from /etc/services), port numbers or port ranges; if the
protocol is "icmp", this column is interpreted as the destination
icmp-type(s).</para>
<para>If the protocol is ipp2p, this column is interpreted as an
ipp2p option without the leading "--" (example "bit" for
bit-torrent). If no PORT is given, "ipp2p" is assumed.</para>
<para>This column is ignored if PROTOCOL = all but must be entered
if any of the following field is supplied. In that case, it is
suggested that this field contain "-"</para>
</listitem>
<listitem>
<para>CLIENT PORT(S) - (Optional) Port(s) used by the client. If
omitted, any source port is acceptable. Specified as a
comma-separate list of port names, port numbers or port
ranges.</para>
</listitem>
<listitem>
<para>USER/GROUP (Added in Shorewall version 1.4.10) - (Optional)
This column may only be non-empty if the SOURCE is the firewall
itself. When this column is non-empty, the rule applies only if the
program generating the output is running under the effective user
and/or group. It may contain :</para>
<para>[!][&lt;user name or number&gt;]:[&lt;group name or
number&gt;][+&lt;program name&gt;]</para>
<para>The colon is optionnal when specifying only a user.</para>
<para>Examples:</para>
<programlisting>joe #program must be run by joe
:kids #program must be run by a member of the 'kids' group
!:kids #program must not be run by a member of the 'kids' group
+upnpd #program named upnpd (This feature was removed from Netfilter in kernel version 2.6.14).</programlisting>
</listitem>
<listitem>
<para>TEST - Defines a test on the existing packet or connection
mark. The rule will match only if the test returns true. Tests have
the format [!]&lt;value&gt;[/&lt;mask&gt;][:C]</para>
<para>Where:</para>
<simplelist>
<member>! Inverts the test (not equal)</member>
<member>&lt;value&gt; Value of the packet or connection
mark.</member>
<member>&lt;mask&gt; A mask to be applied to the mark before
testing</member>
<member>:C Designates a connection mark. If omitted, the packet
mark's value is tested.</member>
</simplelist>
</listitem>
<listitem>
<para>LENGTH (Optional, added in Shorewall version 3.2.0) Packet
Length - This field, if present, allows you to match the length of a
packet against a specific value or range of values. A range is
specified in the form &lt;min&gt;:&lt;max&gt; where either
&lt;min&gt; or &lt;max&gt; (but not both) may be omitted. If
&lt;min&gt; is omitted, then 0 is assumed; if &lt;max&gt; is
omitted, than any packet that is &lt;min&gt; or longer will
match.</para>
<para>You must have iptables length support for this to work. If you
let it empy or place an "-" here, no length match will be
done.</para>
<para>Examples: 1024, 64:1500, :100</para>
</listitem>
<listitem>
<para>TOS (Optional, added in Shorewall version 3.2.0 Beta 6) Type
of Service. Either a standard name, or a numeric value to
match.</para>
<blockquote>
<simplelist>
<member>Minimize-Delay (16)</member>
<member>Maximize-Throughput (8)</member>
<member>Maximize-Reliability (4)</member>
<member>Minimize-Cost (2)</member>
<member>Normal-Service (0)</member>
</simplelist>
</blockquote>
</listitem>
</itemizedlist>
<example>
<title></title>
<para>All packets arriving on eth1 should be marked with 1. All
packets arriving on eth2 and eth3 should be marked with 2. All packets
originating on the firewall itself should be marked with 3.</para>
<programlisting>#MARK SOURCE DESTINATION PROTOCOL PORT(S)
1 eth1 0.0.0.0/0 all
2 eth2 0.0.0.0/0 all
2 eth3 0.0.0.0/0 all
3 $FW 0.0.0.0/0 all</programlisting>
</example>
<example>
<title></title>
<para>All GRE (protocol 47) packets not originating on the firewall
and destined for 155.186.235.151 should be marked with 12.</para>
<programlisting>#MARK SOURCE DESTINATION PROTOCOL PORT(S)
12 0.0.0.0/0 155.182.235.151 47</programlisting>
</example>
<example>
<title></title>
<para>All SSH request packets originating in 192.168.1.0/24 and
destined for 155.186.235.151 should be marked with 22.</para>
<programlisting>#MARK SOURCE DESTINATION PROTOCOL PORT(S)
22 192.168.1.0/24 155.182.235.151 tcp 22</programlisting>
</example>
<example>
<title></title>
<para>All SSH packets packets going out of the first device in in
/etc/shorewall/tcdevices should be assigned to the class with mark
value 10.</para>
<programlisting>#MARK SOURCE DESTINATION PROTOCOL PORT(S) CLIENT
# PORT(S)
1:110 0.0.0.0/0 0.0.0.0/0 tcp 22
1:110 0.0.0.0/0 0.0.0.0/0 tcp - 22</programlisting>
</example>
<example>
<title></title>
<para>Mark all ICMP echo traffic with packet mark 1. Mark all peer to
peer traffic with packet mark 4.</para>
<para>This is a little more complex than otherwise expected. Since the
ipp2p module is unable to determine all packets in a connection are
P2P packets, we mark the entire connection as P2P if any of the
packets are determined to match. We assume packet/connection mark 0 to
means unclassified.</para>
<programlisting>#MARK SOURCE DESTINATION PROTOCOL PORT(S) CLIENT USER/ TEST
# PORT(S) GROUP
1 0.0.0.0/0 0.0.0.0/0 icmp echo-request
1 0.0.0.0/0 0.0.0.0/0 icmp echo-reply
RESTORE 0.0.0.0/0 0.0.0.0/0 all - - - 0
CONTINUE 0.0.0.0/0 0.0.0.0/0 all - - - !0
4 0.0.0.0/0 0.0.0.0/0 ipp2p:all
SAVE 0.0.0.0/0 0.0.0.0/0 all - - - !0</programlisting>
<para>The last four rules can be translated as:</para>
<blockquote>
<para>"If a packet hasn't been classifed (packet mark is 0), copy
the connection mark to the packet mark. If the packet mark is set,
we're done. If the packet is P2P, set the packet mark to 4. If the
packet mark has been set, save it to the connection mark."</para>
</blockquote>
</example>
</section>
<section>
<title>ppp devices</title>
<para>If you use ppp/pppoe/pppoa) to connect to your internet provider
and you use traffic shaping you need to restart shorewall traffic
shaping. The reason for this is, that if the ppp connection gets
restarted (and it usally does this at least daily), all
<quote>tc</quote> filters/qdiscs related to that interface are
deleted.</para>
<para>The easiest way to achieve this, is just to restart shorewall once
the link is up. To achieve this add a small executable script
to<quote>/etc/ppp/ip-up.d</quote>.</para>
<programlisting>#! /bin/sh
/sbin/shorewall refresh</programlisting>
</section>
<section>
<title>Real life examples</title>
<section>
<title>Configuration to replace Wondershaper</title>
<para>You are able to fully replace the wondershaper script by using
the buitin traffic control.You can find example configuration files at
<ulink
url="http://www1.shorewall.net/pub/shorewall/Samples/tc4shorewall/">"http://www1.shorewall.net/pub/shorewall/Samples/tc4shorewall/</ulink>.
Please note that they are just examples and need to be adjusted to
work for you. In this examples it is assumed that your interface for
you internet connection is ppp0 (for DSL) , if you use another
connection type, you have to change it. You also need to change the
settings in the tcdevices.wondershaper file to reflect your line
speed. The relevant lines of the config files follow here. Please note
that this is just an 1:1 replacement doing exactly what wondershaper
should do. You are free to change it...</para>
<section>
<title>tcdevices file</title>
<programlisting>#INTERFACE IN-BANDWITH OUT-BANDWIDTH
ppp0 5000kbit 500kbit</programlisting>
</section>
<section>
<title>tcclasses file</title>
<programlisting>#INTERFACE MARK RATE CEIL PRIORITY OPTIONS
ppp0 1 full full 1 tcp-ack,tos-minimize-delay
ppp0 2 9*full/10 9*full/10 2 default
ppp0 3 8*full/10 8*full/10 2</programlisting>
</section>
<section>
<title>tcrules file</title>
<programlisting>#MARK SOURCE DEST PROTO PORT(S) CLIENT USER
# PORT(S)
1:F 0.0.0.0/0 0.0.0.0/0 icmp echo-request
1:F 0.0.0.0/0 0.0.0.0/0 icmp echo-reply
# mark traffic which should have a lower priority with a 3:
# mldonkey
3 0.0.0.0/0 0.0.0.0/0 udp - 4666</programlisting>
<para>Wondershaper allows you to define a set of hosts and/or ports
you want to classify as low priority. To achieve this , you have to
add these hosts to tcrules and set the mark to 3 (true if you use
the example configuration files).</para>
</section>
<section>
<title>Setting hosts to low priority</title>
<para>lets assume the following settings from your old wondershaper
script (don't assume these example values are really useful, they
are only used for demonstrating ;-):</para>
<programlisting>
# low priority OUTGOING traffic - you can leave this blank if you want
# low priority source netmasks
NOPRIOHOSTSRC="192.168.1.128/25 192.168.3.28"
# low priority destination netmasks
NOPRIOHOSTDST=60.0.0.0/24
# low priority source ports
NOPRIOPORTSRC="6662 6663"
# low priority destination ports
NOPRIOPORTDST="6662 6663" </programlisting>
<para>This would result in the following additional settings to the
tcrules file:</para>
<programlisting>3 192.168.1.128/25 0.0.0.0/0 all
3 192.168.3.28 0.0.0.0/0 all
3 0.0.0.0/0 60.0.0.0/24 all
3 0.0.0.0/0 0.0.0.0/0 udp 6662,6663
3 0.0.0.0/0 0.0.0.0/0 udp - 6662,6663
3 0.0.0.0/0 0.0.0.0/0 tcp 6662,6663
3 0.0.0.0/0 0.0.0.0/0 tcp - 6662,6663</programlisting>
</section>
</section>
<section>
<title>A simple setup</title>
<para>This is a simple setup for people sharing an internet connection
and using different computers for this. It just basically shapes
between 2 hosts which have the ip addresses 192.168.2.23 and
192.168.2.42</para>
<section>
<title>tcdevices file</title>
<programlisting>#INTERFACE IN-BANDWITH OUT-BANDWIDTH
ppp0 6000kbit 700kbit</programlisting>
<para>We have 6mbit down and 700kbit upstream.</para>
</section>
<section>
<title>tcclasses file</title>
<programlisting>#INTERFACE MARK RATE CEIL PRIORITY OPTIONS
ppp0 1 10kbit 50kbit 1 tcp-ack
ppp0 2 300kbit full 2
ppp0 3 300kbit full 2
ppp0 4 90kbit 200kbit 3 default</programlisting>
<para>We add a class for tcp ack packets with highest priority, so
that downloads are fast. The following 2 classes share most of the
bandwidth between the 2 hosts, if the connection is idle, they may
use full speed. As the hosts should be treated equally they have the
same priority. The last class is for the remaining traffic.</para>
</section>
<section>
<title>tcrules file</title>
<programlisting>#MARK SOURCE DEST PROTO PORT(S) CLIENT USER
# PORT(S)
1:F 0.0.0.0/0 0.0.0.0/0 icmp echo-request
1:F 0.0.0.0/0 0.0.0.0/0 icmp echo-reply
2:F 192.168.2.23 0.0.0.0/0 all
3:F 192.168.2.42 0.0.0.0/0 all</programlisting>
<para>We mark icmp ping and replies so they will go into the fast
interactive class and set a mark for each host.</para>
</section>
</section>
</section>
</section>
<section>
<title id="tcstart">Using your own tc script</title>
<section id="owntcstart">
<title>Replacing builtin tcstart file</title>
<para>If you prefer your own tcstart file, just install it in
/etc/shorewall/tcstart.</para>
<para>In your tcstart script, when you want to run the <quote>tc</quote>
utility, use the run_tc function supplied by Shorewall if you want tc
errors to stop the firewall.</para>
<orderedlist>
<listitem>
<para>Set TC_ENABLED=Yes and CLEAR_TC=Yes</para>
</listitem>
<listitem>
<para>Supply an /etc/shorewall/tcstart script to configure your
traffic shaping rules.</para>
</listitem>
<listitem>
<para>Optionally supply an /etc/shorewall/tcclear script to stop
traffic shaping. That is usually unnecessary.</para>
</listitem>
<listitem>
<para>If your tcstart script uses the <quote>fwmark</quote>
classifier, you can mark packets using entries in
/etc/shorewall/tcrules.</para>
</listitem>
</orderedlist>
</section>
<section>
<title>Traffic control outside Shorewall</title>
<para>To start traffic shaping when you bring up your network
interfaces, you will have to arrange for your traffic shaping
configuration script to be run at that time. How you do that is
distribution dependent and will not be covered here. You then
should:</para>
<orderedlist>
<listitem>
<para>Set TC_ENABLED=No and CLEAR_TC=No</para>
</listitem>
<listitem>
<para>If your script uses the <quote>fwmark</quote> classifier, you
can mark packets using entries in /etc/shorewall/tcrules.</para>
</listitem>
</orderedlist>
</section>
</section>
</article>