2023-11-03 20:35:05 +01:00
# include "ggml-backend-impl.h"
# include "ggml-alloc.h"
# include "ggml-impl.h"
# include <assert.h>
# include <limits.h>
# include <stdarg.h>
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# define UNUSED GGML_UNUSED
# define MAX(a, b) ((a) > (b) ? (a) : (b))
// backend buffer
ggml_backend_buffer_t ggml_backend_buffer_init (
struct ggml_backend * backend ,
struct ggml_backend_buffer_i iface ,
ggml_backend_buffer_context_t context ,
size_t size ) {
ggml_backend_buffer_t buffer = malloc ( sizeof ( struct ggml_backend_buffer ) ) ;
GGML_ASSERT ( iface . get_base ! = NULL ) ;
( * buffer ) = ( struct ggml_backend_buffer ) {
/* .interface = */ iface ,
/* .backend = */ backend ,
/* .context = */ context ,
/* .size = */ size ,
} ;
return buffer ;
}
void ggml_backend_buffer_free ( ggml_backend_buffer_t buffer ) {
if ( buffer = = NULL ) {
return ;
}
if ( buffer - > iface . free_buffer ! = NULL ) {
buffer - > iface . free_buffer ( buffer ) ;
}
free ( buffer ) ;
}
size_t ggml_backend_buffer_get_alignment ( ggml_backend_buffer_t buffer ) {
return ggml_backend_get_alignment ( buffer - > backend ) ;
}
size_t ggml_backend_buffer_get_size ( ggml_backend_buffer_t buffer ) {
return buffer - > size ;
}
void * ggml_backend_buffer_get_base ( ggml_backend_buffer_t buffer ) {
void * base = buffer - > iface . get_base ( buffer ) ;
GGML_ASSERT ( base ! = NULL & & " backend buffer base cannot be NULL " ) ;
return base ;
}
size_t ggml_backend_buffer_get_alloc_size ( ggml_backend_buffer_t buffer , struct ggml_tensor * tensor ) {
// get_alloc_size is optional, defaults to ggml_nbytes
if ( buffer - > iface . get_alloc_size ) {
return buffer - > iface . get_alloc_size ( buffer , tensor ) ;
}
return ggml_nbytes ( tensor ) ;
}
void ggml_backend_buffer_init_tensor ( ggml_backend_buffer_t buffer , struct ggml_tensor * tensor ) {
// init_tensor is optional
if ( buffer - > iface . init_tensor ) {
buffer - > iface . init_tensor ( buffer , tensor ) ;
}
}
void ggml_backend_buffer_free_tensor ( ggml_backend_buffer_t buffer , struct ggml_tensor * tensor ) {
// free_tensor is optional
if ( buffer - > iface . free_tensor ) {
buffer - > iface . free_tensor ( buffer , tensor ) ;
}
}
// backend
ggml_backend_t ggml_get_backend ( const struct ggml_tensor * tensor ) {
return tensor - > buffer ? tensor - > buffer - > backend : NULL ;
}
const char * ggml_backend_name ( ggml_backend_t backend ) {
if ( backend = = NULL ) {
return " NULL " ;
}
return backend - > iface . get_name ( backend ) ;
}
void ggml_backend_free ( ggml_backend_t backend ) {
if ( backend = = NULL ) {
return ;
}
backend - > iface . free ( backend ) ;
}
ggml_backend_buffer_t ggml_backend_alloc_buffer ( ggml_backend_t backend , size_t size ) {
return backend - > iface . alloc_buffer ( backend , size ) ;
}
size_t ggml_backend_get_alignment ( ggml_backend_t backend ) {
return backend - > iface . get_alignment ( backend ) ;
}
void ggml_backend_tensor_set_async ( struct ggml_tensor * tensor , const void * data , size_t offset , size_t size ) {
ggml_get_backend ( tensor ) - > iface . set_tensor_async ( ggml_get_backend ( tensor ) , tensor , data , offset , size ) ;
}
void ggml_backend_tensor_get_async ( const struct ggml_tensor * tensor , void * data , size_t offset , size_t size ) {
ggml_get_backend ( tensor ) - > iface . get_tensor_async ( ggml_get_backend ( tensor ) , tensor , data , offset , size ) ;
}
void ggml_backend_tensor_set ( struct ggml_tensor * tensor , const void * data , size_t offset , size_t size ) {
ggml_backend_t backend = ggml_get_backend ( tensor ) ;
GGML_ASSERT ( tensor - > data ! = NULL & & " tensor not allocated " ) ;
GGML_ASSERT ( backend ! = NULL & & " tensor backend not set " ) ;
backend - > iface . set_tensor_async ( backend , tensor , data , offset , size ) ;
backend - > iface . synchronize ( backend ) ;
}
void ggml_backend_tensor_get ( const struct ggml_tensor * tensor , void * data , size_t offset , size_t size ) {
ggml_backend_t backend = ggml_get_backend ( tensor ) ;
GGML_ASSERT ( tensor - > data ! = NULL & & " tensor not allocated " ) ;
GGML_ASSERT ( backend ! = NULL & & " tensor backend not set " ) ;
backend - > iface . get_tensor_async ( backend , tensor , data , offset , size ) ;
backend - > iface . synchronize ( backend ) ;
}
void ggml_backend_synchronize ( ggml_backend_t backend ) {
backend - > iface . synchronize ( backend ) ;
}
ggml_backend_graph_plan_t ggml_backend_graph_plan_create ( ggml_backend_t backend , struct ggml_cgraph * cgraph ) {
return backend - > iface . graph_plan_create ( backend , cgraph ) ;
}
void ggml_backend_graph_plan_free ( ggml_backend_t backend , ggml_backend_graph_plan_t plan ) {
backend - > iface . graph_plan_free ( backend , plan ) ;
}
void ggml_backend_graph_plan_compute ( ggml_backend_t backend , ggml_backend_graph_plan_t plan ) {
backend - > iface . graph_plan_compute ( backend , plan ) ;
}
2024-01-03 14:39:43 +01:00
bool ggml_backend_graph_compute ( ggml_backend_t backend , struct ggml_cgraph * cgraph ) {
return backend - > iface . graph_compute ( backend , cgraph ) ;
2023-11-03 20:35:05 +01:00
}
bool ggml_backend_supports_op ( ggml_backend_t backend , const struct ggml_tensor * op ) {
return backend - > iface . supports_op ( backend , op ) ;
}
// backend copy
static bool ggml_are_same_layout ( const struct ggml_tensor * a , const struct ggml_tensor * b ) {
if ( a - > type ! = b - > type ) {
return false ;
}
for ( int i = 0 ; i < GGML_MAX_DIMS ; i + + ) {
if ( a - > ne [ i ] ! = b - > ne [ i ] ) {
return false ;
}
if ( a - > nb [ i ] ! = b - > nb [ i ] ) {
return false ;
}
}
return true ;
}
void ggml_backend_tensor_copy ( struct ggml_tensor * src , struct ggml_tensor * dst ) {
//printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
GGML_ASSERT ( ggml_are_same_layout ( src , dst ) & & " cannot copy tensors with different layouts " ) ;
// fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
if ( src = = dst ) {
return ;
}
// TODO: allow backends to support copy to/from same backend
if ( ggml_get_backend ( dst ) - > iface . cpy_tensor_from ! = NULL ) {
ggml_get_backend ( dst ) - > iface . cpy_tensor_from ( ggml_get_backend ( dst ) - > context , src , dst ) ;
} else if ( ggml_get_backend ( src ) - > iface . cpy_tensor_to ! = NULL ) {
ggml_get_backend ( src ) - > iface . cpy_tensor_to ( ggml_get_backend ( src ) - > context , src , dst ) ;
} else {
// shouldn't be hit when copying from/to CPU
# ifndef NDEBUG
fprintf ( stderr , " ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set \n " , ggml_backend_name ( src - > buffer - > backend ) , ggml_backend_name ( dst - > buffer - > backend ) ) ;
# endif
size_t nbytes = ggml_nbytes ( src ) ;
void * data = malloc ( nbytes ) ;
ggml_backend_tensor_get ( src , data , 0 , nbytes ) ;
ggml_backend_tensor_set ( dst , data , 0 , nbytes ) ;
free ( data ) ;
}
}
// backend CPU
struct ggml_backend_cpu_context {
int n_threads ;
void * work_data ;
size_t work_size ;
} ;
static const char * ggml_backend_cpu_name ( ggml_backend_t backend ) {
return " CPU " ;
UNUSED ( backend ) ;
}
static void ggml_backend_cpu_free ( ggml_backend_t backend ) {
struct ggml_backend_cpu_context * cpu_ctx = ( struct ggml_backend_cpu_context * ) backend - > context ;
free ( cpu_ctx - > work_data ) ;
free ( cpu_ctx ) ;
free ( backend ) ;
}
static void * ggml_backend_cpu_buffer_get_base ( ggml_backend_buffer_t buffer ) {
return ( void * ) buffer - > context ;
}
static void ggml_backend_cpu_buffer_free_buffer ( ggml_backend_buffer_t buffer ) {
free ( buffer - > context ) ;
UNUSED ( buffer ) ;
}
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer ,
/* .get_base = */ ggml_backend_cpu_buffer_get_base ,
/* .get_alloc_size = */ NULL , // defaults to ggml_nbytes
/* .init_tensor = */ NULL , // no initialization required
/* .free_tensor = */ NULL , // no cleanup required
} ;
// for buffers from ptr, free is not called
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
/* .free_buffer = */ NULL , // ptr is not owned by the buffer, so it does not need to be freed
/* .get_base = */ ggml_backend_cpu_buffer_get_base ,
/* .get_alloc_size = */ NULL , // defaults to ggml_nbytes
/* .init_tensor = */ NULL ,
/* .free_tensor = */ NULL ,
} ;
static const size_t TENSOR_ALIGNMENT = 64 ; // should be enough for AVX 512
static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer ( ggml_backend_t backend , size_t size ) {
size + = TENSOR_ALIGNMENT ; // malloc may return an address that is not aligned
void * data = malloc ( size ) ; // TODO: maybe use GGML_ALIGNED_MALLOC?
GGML_ASSERT ( data ! = NULL & & " failed to allocate buffer " ) ;
return ggml_backend_buffer_init ( backend , cpu_backend_buffer_i , data , size ) ;
}
static size_t ggml_backend_cpu_get_alignment ( ggml_backend_t backend ) {
return TENSOR_ALIGNMENT ;
UNUSED ( backend ) ;
}
static void ggml_backend_cpu_set_tensor_async ( ggml_backend_t backend , struct ggml_tensor * tensor , const void * data , size_t offset , size_t size ) {
GGML_ASSERT ( offset + size < = ggml_nbytes ( tensor ) & & " tensor write out of bounds " ) ;
GGML_ASSERT ( tensor - > data ! = NULL & & " tensor not allocated " ) ;
memcpy ( ( char * ) tensor - > data + offset , data , size ) ;
UNUSED ( backend ) ;
}
static void ggml_backend_cpu_get_tensor_async ( ggml_backend_t backend , const struct ggml_tensor * tensor , void * data , size_t offset , size_t size ) {
GGML_ASSERT ( offset + size < = ggml_nbytes ( tensor ) & & " tensor read out of bounds " ) ;
GGML_ASSERT ( tensor - > data ! = NULL & & " tensor not allocated " ) ;
memcpy ( data , ( const char * ) tensor - > data + offset , size ) ;
UNUSED ( backend ) ;
}
static void ggml_backend_cpu_synchronize ( ggml_backend_t backend ) {
UNUSED ( backend ) ;
}
static void ggml_backend_cpu_cpy_tensor_from ( ggml_backend_t backend , struct ggml_tensor * src , struct ggml_tensor * dst ) {
ggml_backend_tensor_get ( src , dst - > data , 0 , ggml_nbytes ( src ) ) ;
UNUSED ( backend ) ;
}
static void ggml_backend_cpu_cpy_tensor_to ( ggml_backend_t backend , struct ggml_tensor * src , struct ggml_tensor * dst ) {
ggml_backend_tensor_set ( dst , src - > data , 0 , ggml_nbytes ( src ) ) ;
UNUSED ( backend ) ;
}
struct ggml_backend_plan_cpu {
struct ggml_cplan cplan ;
struct ggml_cgraph cgraph ;
} ;
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create ( ggml_backend_t backend , struct ggml_cgraph * cgraph ) {
struct ggml_backend_cpu_context * cpu_ctx = ( struct ggml_backend_cpu_context * ) backend - > context ;
struct ggml_backend_plan_cpu * cpu_plan = malloc ( sizeof ( struct ggml_backend_plan_cpu ) ) ;
cpu_plan - > cplan = ggml_graph_plan ( cgraph , cpu_ctx - > n_threads ) ;
cpu_plan - > cgraph = * cgraph ;
if ( cpu_plan - > cplan . work_size > 0 ) {
cpu_plan - > cplan . work_data = malloc ( cpu_plan - > cplan . work_size ) ;
}
return cpu_plan ;
}
static void ggml_backend_cpu_graph_plan_free ( ggml_backend_t backend , ggml_backend_graph_plan_t plan ) {
struct ggml_backend_plan_cpu * cpu_plan = ( struct ggml_backend_plan_cpu * ) plan ;
free ( cpu_plan - > cplan . work_data ) ;
free ( cpu_plan ) ;
UNUSED ( backend ) ;
}
static void ggml_backend_cpu_graph_plan_compute ( ggml_backend_t backend , ggml_backend_graph_plan_t plan ) {
struct ggml_backend_plan_cpu * cpu_plan = ( struct ggml_backend_plan_cpu * ) plan ;
ggml_graph_compute ( & cpu_plan - > cgraph , & cpu_plan - > cplan ) ;
UNUSED ( backend ) ;
}
static void ggml_backend_cpu_graph_compute ( ggml_backend_t backend , struct ggml_cgraph * cgraph ) {
struct ggml_backend_cpu_context * cpu_ctx = ( struct ggml_backend_cpu_context * ) backend - > context ;
struct ggml_cplan cplan = ggml_graph_plan ( cgraph , cpu_ctx - > n_threads ) ;
if ( cpu_ctx - > work_size < cplan . work_size ) {
// TODO: may be faster to free and use malloc to avoid the copy
cpu_ctx - > work_data = realloc ( cpu_ctx - > work_data , cplan . work_size ) ;
cpu_ctx - > work_size = cplan . work_size ;
}
cplan . work_data = cpu_ctx - > work_data ;
ggml_graph_compute ( cgraph , & cplan ) ;
}
static bool ggml_backend_cpu_supports_op ( ggml_backend_t backend , const struct ggml_tensor * op ) {
return true ;
UNUSED ( backend ) ;
UNUSED ( op ) ;
}
static struct ggml_backend_i cpu_backend_i = {
/* .get_name = */ ggml_backend_cpu_name ,
/* .free = */ ggml_backend_cpu_free ,
/* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer ,
/* .get_alignment = */ ggml_backend_cpu_get_alignment ,
/* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async ,
/* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async ,
/* .synchronize = */ ggml_backend_cpu_synchronize ,
/* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from ,
/* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to ,
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create ,
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free ,
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute ,
/* .graph_compute = */ ggml_backend_cpu_graph_compute ,
/* .supports_op = */ ggml_backend_cpu_supports_op ,
} ;
ggml_backend_t ggml_backend_cpu_init ( void ) {
struct ggml_backend_cpu_context * ctx = malloc ( sizeof ( struct ggml_backend_cpu_context ) ) ;
ctx - > n_threads = GGML_DEFAULT_N_THREADS ;
ctx - > work_data = NULL ;
ctx - > work_size = 0 ;
ggml_backend_t cpu_backend = malloc ( sizeof ( struct ggml_backend ) ) ;
* cpu_backend = ( struct ggml_backend ) {
/* .interface = */ cpu_backend_i ,
/* .context = */ ctx
} ;
return cpu_backend ;
}
bool ggml_backend_is_cpu ( ggml_backend_t backend ) {
return backend - > iface . get_name = = ggml_backend_cpu_name ;
}
void ggml_backend_cpu_set_n_threads ( ggml_backend_t backend_cpu , int n_threads ) {
GGML_ASSERT ( ggml_backend_is_cpu ( backend_cpu ) ) ;
struct ggml_backend_cpu_context * ctx = ( struct ggml_backend_cpu_context * ) backend_cpu - > context ;
ctx - > n_threads = n_threads ;
}
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr ( ggml_backend_t backend_cpu , void * ptr , size_t size ) {
return ggml_backend_buffer_init ( backend_cpu , cpu_backend_buffer_i_from_ptr , ptr , size ) ;
}
// scheduler
# define GGML_MAX_BACKENDS 4
# define GGML_MAX_SPLITS 256
# define GGML_MAX_SPLIT_INPUTS 16
struct ggml_backend_sched_split {
ggml_tallocr_t tallocr ;
int i_start ;
int i_end ;
struct ggml_tensor * inputs [ GGML_MAX_SPLIT_INPUTS ] ;
int n_inputs ;
struct ggml_cgraph * graph ;
} ;
struct ggml_backend_sched {
int n_backends ;
ggml_backend_t backends [ GGML_MAX_BACKENDS ] ;
ggml_tallocr_t tallocs [ GGML_MAX_BACKENDS ] ;
ggml_gallocr_t galloc ;
struct ggml_hash_set hash_set ;
ggml_tallocr_t * node_talloc ; // [hash_set.size]
struct ggml_tensor * ( * node_copies ) [ GGML_MAX_BACKENDS ] ; // [hash_set.size][GGML_MAX_BACKENDS]
struct ggml_cgraph * graph ;
struct ggml_backend_sched_split splits [ GGML_MAX_SPLITS ] ;
int n_splits ;
struct ggml_context * ctx ;
// align context_buffer to GGML_MEM_ALIGN
# ifdef _MSC_VER
__declspec ( align ( GGML_MEM_ALIGN ) )
# else
__attribute__ ( ( aligned ( GGML_MEM_ALIGN ) ) )
# endif
char context_buffer [ GGML_MAX_SPLITS * GGML_MAX_SPLIT_INPUTS * sizeof ( struct ggml_tensor ) + GGML_MAX_SPLITS * sizeof ( struct ggml_cgraph ) ] ;
} ;
# define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
# define node_allocr(node) sched->node_talloc[hash_id(node)]
static bool ggml_is_view_op ( enum ggml_op op ) {
return op = = GGML_OP_VIEW | | op = = GGML_OP_RESHAPE | | op = = GGML_OP_PERMUTE | | op = = GGML_OP_TRANSPOSE ;
}
// returns the priority of the backend, lower is better
static int sched_backend_prio ( ggml_backend_sched_t sched , ggml_backend_t backend ) {
for ( int i = 0 ; i < sched - > n_backends ; i + + ) {
if ( sched - > backends [ i ] = = backend ) {
return i ;
}
}
return INT_MAX ;
}
static int sched_allocr_prio ( ggml_backend_sched_t sched , ggml_tallocr_t allocr ) {
for ( int i = 0 ; i < sched - > n_backends ; i + + ) {
if ( sched - > tallocs [ i ] = = allocr ) {
return i ;
}
}
return INT_MAX ;
}
// returns the backend that should be used for the node based on the current locations
char causes [ GGML_DEFAULT_GRAPH_SIZE * 4 + GGML_MAX_SPLITS * GGML_MAX_SPLIT_INPUTS ] [ 128 ] ; // debug, remove
static ggml_backend_t sched_backend_from_cur ( ggml_backend_sched_t sched , struct ggml_tensor * node ) {
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
// ie. kv cache updates
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
// dst
ggml_backend_t cur_backend = ggml_get_backend ( node ) ;
if ( cur_backend ! = NULL ) {
sprintf ( causes [ hash_id ( node ) ] , " 1.dst " ) ;
return cur_backend ;
}
// view_src
if ( node - > view_src ! = NULL & & ggml_get_backend ( node - > view_src ) ! = NULL ) {
sprintf ( causes [ hash_id ( node ) ] , " 1.vsrc " ) ;
return ggml_get_backend ( node - > view_src ) ;
}
// src
int cur_prio = INT_MAX ;
size_t cur_size = 0 ;
for ( int i = 0 ; i < GGML_MAX_SRC ; i + + ) {
const struct ggml_tensor * src = node - > src [ i ] ;
if ( src = = NULL ) {
break ;
}
ggml_backend_t src_backend = ggml_get_backend ( src ) ;
if ( src_backend ! = NULL ) {
int src_prio = sched_backend_prio ( sched , src_backend ) ;
size_t src_size = ggml_nbytes ( src ) ;
if ( src_prio < cur_prio & & src_size > = cur_size ) {
cur_prio = src_prio ;
cur_size = src_size ;
cur_backend = src_backend ;
sprintf ( causes [ hash_id ( node ) ] , " 1.src%d " , i ) ;
}
}
}
return cur_backend ;
}
static char * fmt_size ( size_t size ) {
static char buffer [ 128 ] ;
if ( size > = 1024 * 1024 ) {
sprintf ( buffer , " %zuM " , size / 1024 / 1024 ) ;
} else {
sprintf ( buffer , " %zuK " , size / 1024 ) ;
}
return buffer ;
}
static void sched_print_assignments ( ggml_backend_sched_t sched , struct ggml_cgraph * graph ) {
int cur_split = 0 ;
for ( int i = 0 ; i < graph - > n_nodes ; i + + ) {
if ( cur_split < sched - > n_splits & & i = = sched - > splits [ cur_split ] . i_start ) {
ggml_backend_t split_backend = ggml_tallocr_get_buffer ( sched - > splits [ cur_split ] . tallocr ) - > backend ;
fprintf ( stderr , " \n ## SPLIT #%d: %s # %d inputs: " , cur_split , ggml_backend_name ( split_backend ) , sched - > splits [ cur_split ] . n_inputs ) ;
for ( int j = 0 ; j < sched - > splits [ cur_split ] . n_inputs ; j + + ) {
fprintf ( stderr , " [%s (%5.5s)] " , sched - > splits [ cur_split ] . inputs [ j ] - > name , fmt_size ( ggml_nbytes ( sched - > splits [ cur_split ] . inputs [ j ] ) ) ) ;
}
fprintf ( stderr , " \n " ) ;
cur_split + + ;
}
struct ggml_tensor * node = graph - > nodes [ i ] ;
if ( ggml_is_view_op ( node - > op ) ) {
continue ;
}
ggml_tallocr_t node_allocr = node_allocr ( node ) ;
ggml_backend_t node_backend = node_allocr ? ggml_tallocr_get_buffer ( node_allocr ) - > backend : NULL ;
fprintf ( stderr , " node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]: " , i , ggml_op_name ( node - > op ) , node - > name , fmt_size ( ggml_nbytes ( node ) ) , node_allocr ? ggml_backend_name ( node_backend ) : " NULL " , causes [ hash_id ( node ) ] ) ;
for ( int j = 0 ; j < GGML_MAX_SRC ; j + + ) {
struct ggml_tensor * src = node - > src [ j ] ;
if ( src = = NULL ) {
break ;
}
ggml_tallocr_t src_allocr = node_allocr ( src ) ;
ggml_backend_t src_backend = src_allocr ? ggml_tallocr_get_buffer ( src_allocr ) - > backend : NULL ;
fprintf ( stderr , " %20.20s (%4.4s) [%4.4s %8.8s] " , src - > name , fmt_size ( ggml_nbytes ( src ) ) , src_backend ? ggml_backend_name ( src_backend ) : " NULL " , causes [ hash_id ( src ) ] ) ;
}
fprintf ( stderr , " \n " ) ;
}
}
// creates a copy of the tensor with the same memory layout
static struct ggml_tensor * ggml_dup_tensor_layout ( struct ggml_context * ctx , const struct ggml_tensor * tensor ) {
struct ggml_tensor * dup = ggml_dup_tensor ( ctx , tensor ) ;
for ( int i = 0 ; i < GGML_MAX_DIMS ; i + + ) {
dup - > nb [ i ] = tensor - > nb [ i ] ;
}
return dup ;
}
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
// TODO: merge passes
static void sched_split_graph ( ggml_backend_sched_t sched , struct ggml_cgraph * graph ) {
// reset state
size_t hash_size = sched - > hash_set . size ;
memset ( sched - > hash_set . keys , 0 , sizeof ( sched - > hash_set . keys [ 0 ] ) * hash_size ) ;
memset ( sched - > node_talloc , 0 , sizeof ( sched - > node_talloc [ 0 ] ) * hash_size ) ;
memset ( sched - > node_copies , 0 , sizeof ( sched - > node_copies [ 0 ] ) * hash_size ) ;
sched - > n_splits = 0 ;
struct ggml_init_params params = {
/*.mem_size = */ sizeof ( sched - > context_buffer ) ,
/*.mem_buffer = */ sched - > context_buffer ,
/*.no_alloc = */ true
} ;
if ( sched - > ctx ! = NULL ) {
ggml_free ( sched - > ctx ) ;
}
sched - > ctx = ggml_init ( params ) ;
// pass 1: assign backends to ops with allocated inputs
for ( int i = 0 ; i < graph - > n_leafs ; i + + ) {
struct ggml_tensor * leaf = graph - > leafs [ i ] ;
if ( node_allocr ( leaf ) ! = NULL ) {
// do not overwrite user assignments
continue ;
}
ggml_backend_t leaf_backend = ggml_get_backend ( leaf ) ;
if ( leaf_backend = = NULL & & leaf - > view_src ! = NULL ) {
leaf_backend = ggml_get_backend ( leaf - > view_src ) ;
}
if ( leaf_backend ! = NULL ) {
node_allocr ( leaf ) = ggml_backend_sched_get_tallocr ( sched , leaf_backend ) ;
}
}
for ( int i = 0 ; i < graph - > n_nodes ; i + + ) {
struct ggml_tensor * node = graph - > nodes [ i ] ;
if ( node_allocr ( node ) ! = NULL ) {
// do not overwrite user assignments
continue ;
}
ggml_backend_t node_backend = sched_backend_from_cur ( sched , node ) ;
if ( node_backend ! = NULL ) {
node_allocr ( node ) = ggml_backend_sched_get_tallocr ( sched , node_backend ) ;
}
}
//printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 2: assign backends to ops from current assignments
// TODO:
// - reuse sched_backend_from_cur
for ( int i = 0 ; i < graph - > n_nodes ; i + + ) {
struct ggml_tensor * node = graph - > nodes [ i ] ;
ggml_tallocr_t node_allocr = node_allocr ( node ) ;
if ( node_allocr = = NULL ) {
int cur_prio = INT_MAX ;
size_t cur_size = 0 ;
for ( int j = 0 ; j < GGML_MAX_SRC ; j + + ) {
struct ggml_tensor * src = node - > src [ j ] ;
if ( src = = NULL ) {
break ;
}
ggml_tallocr_t src_allocr = node_allocr ( src ) ;
if ( src_allocr ! = NULL ) {
int src_prio = sched_allocr_prio ( sched , src_allocr ) ;
size_t src_size = ggml_nbytes ( src ) ;
if ( src_prio < cur_prio & & src_size > = cur_size ) {
cur_prio = src_prio ;
cur_size = src_size ;
node_allocr = src_allocr ;
sprintf ( causes [ hash_id ( node ) ] , " 2.src%d " , j ) ;
}
}
}
if ( node_allocr ! = NULL ) {
node_allocr ( node ) = node_allocr ;
}
}
}
//printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 3: assign backends to remaining src from dst (should only be leafs)
for ( int i = 0 ; i < graph - > n_nodes ; i + + ) {
struct ggml_tensor * node = graph - > nodes [ i ] ;
ggml_tallocr_t node_allocr = node_allocr ( node ) ;
for ( int j = 0 ; j < GGML_MAX_SRC ; j + + ) {
struct ggml_tensor * src = node - > src [ j ] ;
if ( src = = NULL ) {
break ;
}
ggml_tallocr_t src_allocr = node_allocr ( src ) ;
if ( src_allocr = = NULL ) {
node_allocr ( src ) = node_allocr ;
}
}
}
//printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 4: split graph, find tensors that need to be copied
// TODO:
// - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
// find first backend
int cur_split = 0 ;
for ( int i = 0 ; i < graph - > n_nodes ; i + + ) {
struct ggml_tensor * node = graph - > nodes [ i ] ;
if ( node - > view_src = = NULL ) {
sched - > splits [ 0 ] . tallocr = node_allocr ( node ) ;
break ;
}
}
sched - > splits [ 0 ] . i_start = 0 ;
sched - > splits [ 0 ] . n_inputs = 0 ;
memset ( sched - > splits [ 0 ] . inputs , 0 , sizeof ( sched - > splits [ 0 ] . inputs ) ) ; //HACK
ggml_tallocr_t cur_allocr = sched - > splits [ 0 ] . tallocr ;
size_t cur_backend_id = sched_allocr_prio ( sched , cur_allocr ) ;
for ( int i = 0 ; i < graph - > n_nodes ; i + + ) {
struct ggml_tensor * node = graph - > nodes [ i ] ;
if ( ggml_is_view_op ( node - > op ) ) {
continue ;
}
ggml_tallocr_t node_allocr = node_allocr ( node ) ;
if ( node_allocr ! = cur_allocr ) {
sched - > splits [ cur_split ] . i_end = i ;
cur_split + + ;
GGML_ASSERT ( cur_split < GGML_MAX_SPLITS ) ;
sched - > splits [ cur_split ] . tallocr = node_allocr ;
sched - > splits [ cur_split ] . i_start = i ;
sched - > splits [ cur_split ] . n_inputs = 0 ;
memset ( sched - > splits [ cur_split ] . inputs , 0 , sizeof ( sched - > splits [ cur_split ] . inputs ) ) ; //HACK
cur_allocr = node_allocr ;
cur_backend_id = sched_allocr_prio ( sched , cur_allocr ) ;
}
// find inputs that are not on the same backend
for ( int j = 0 ; j < GGML_MAX_SRC ; j + + ) {
struct ggml_tensor * src = node - > src [ j ] ;
if ( src = = NULL ) {
break ;
}
ggml_tallocr_t src_allocr = node_allocr ( src ) ;
if ( src_allocr ! = node_allocr ) {
int n_inputs = sched - > splits [ cur_split ] . n_inputs + + ;
GGML_ASSERT ( n_inputs < GGML_MAX_SPLIT_INPUTS ) ;
sched - > splits [ cur_split ] . inputs [ n_inputs ] = ( struct ggml_tensor * ) src ;
// create copies
size_t id = hash_id ( src ) ;
if ( sched - > node_copies [ id ] [ cur_backend_id ] = = NULL ) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout ( sched - > ctx , src ) ;
sched - > node_copies [ id ] [ cur_backend_id ] = tensor_copy ;
node_allocr ( tensor_copy ) = cur_allocr ;
ggml_backend_t backend = ggml_tallocr_get_buffer ( cur_allocr ) - > backend ;
ggml_format_name ( tensor_copy , " %s#%s " , ggml_backend_name ( backend ) , src - > name ) ;
}
node - > src [ j ] = sched - > node_copies [ id ] [ cur_backend_id ] ;
}
}
}
sched - > splits [ cur_split ] . i_end = graph - > n_nodes ;
sched - > n_splits = cur_split + 1 ;
//fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
# if 1
// sanity check: all sources should have the same backend as the node
for ( int i = 0 ; i < graph - > n_nodes ; i + + ) {
struct ggml_tensor * node = graph - > nodes [ i ] ;
ggml_tallocr_t node_allocr = node_allocr ( node ) ;
if ( node_allocr = = NULL ) {
fprintf ( stderr , " !!!!!!! %s has no backend \n " , node - > name ) ;
}
for ( int j = 0 ; j < GGML_MAX_SRC ; j + + ) {
struct ggml_tensor * src = node - > src [ j ] ;
if ( src = = NULL ) {
break ;
}
ggml_tallocr_t src_allocr = node_allocr ( src ) ;
if ( src_allocr ! = node_allocr /* && src_backend != NULL */ ) { // ignore nulls for now
fprintf ( stderr , " !!!! %s has backend %s, src %d (%s) has backend %s \n " ,
node - > name , node_allocr ? ggml_backend_name ( ggml_tallocr_get_buffer ( node_allocr ) - > backend ) : " NULL " ,
j , src - > name , src_allocr ? ggml_backend_name ( ggml_tallocr_get_buffer ( src_allocr ) - > backend ) : " NULL " ) ;
}
}
}
# endif
// create copies of the graph for each split
// FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
struct ggml_cgraph * graph_copy = ggml_new_graph_custom ( sched - > ctx , graph - > n_nodes + sched - > n_splits * GGML_MAX_SPLIT_INPUTS , false ) ;
for ( int i = 0 ; i < sched - > n_splits ; i + + ) {
struct ggml_backend_sched_split * split = & sched - > splits [ i ] ;
split - > graph = ggml_graph_view ( sched - > ctx , graph , split - > i_start , split - > i_end ) ;
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for ( int j = 0 ; j < split - > n_inputs ; j + + ) {
struct ggml_tensor * input = split - > inputs [ j ] ;
struct ggml_tensor * input_cpy = sched - > node_copies [ hash_id ( input ) ] [ sched_allocr_prio ( sched , split - > tallocr ) ] ;
input_cpy - > src [ 0 ] = input ;
graph_copy - > nodes [ graph_copy - > n_nodes + + ] = input_cpy ;
}
for ( int j = split - > i_start ; j < split - > i_end ; j + + ) {
graph_copy - > nodes [ graph_copy - > n_nodes + + ] = graph - > nodes [ j ] ;
}
}
sched - > graph = graph_copy ;
}
static void sched_alloc_splits ( ggml_backend_sched_t sched ) {
ggml_gallocr_alloc_graph_n (
sched - > galloc ,
sched - > graph ,
sched - > hash_set ,
sched - > node_talloc ) ;
}
static void sched_compute_splits ( ggml_backend_sched_t sched ) {
uint64_t copy_us [ GGML_MAX_BACKENDS ] = { 0 } ;
uint64_t compute_us [ GGML_MAX_BACKENDS ] = { 0 } ;
struct ggml_backend_sched_split * splits = sched - > splits ;
for ( int i = 0 ; i < sched - > n_splits ; i + + ) {
struct ggml_backend_sched_split * split = & splits [ i ] ;
ggml_backend_t split_backend = ggml_tallocr_get_buffer ( split - > tallocr ) - > backend ;
int split_backend_id = sched_backend_prio ( sched , split_backend ) ;
// copy the input tensors to the split backend
uint64_t copy_start_us = ggml_time_us ( ) ;
for ( int j = 0 ; j < split - > n_inputs ; j + + ) {
struct ggml_tensor * input_cpy = sched - > node_copies [ hash_id ( split - > inputs [ j ] ) ] [ sched_backend_prio ( sched , split_backend ) ] ;
if ( split - > inputs [ j ] - > buffer = = NULL ) {
if ( split - > inputs [ j ] - > view_src = = NULL ) {
fprintf ( stderr , " input %s has no buffer and no view_src \n " , split - > inputs [ j ] - > name ) ;
exit ( 1 ) ;
}
struct ggml_tensor * view = split - > inputs [ j ] ;
view - > backend = view - > view_src - > backend ;
view - > buffer = view - > view_src - > buffer ;
view - > data = ( char * ) view - > view_src - > data + view - > view_offs ;
ggml_backend_buffer_init_tensor ( ggml_backend_sched_get_buffer ( sched , view - > buffer - > backend ) , view ) ;
}
if ( input_cpy - > buffer = = NULL ) {
fprintf ( stderr , " input_cpy %s has no buffer \n " , input_cpy - > name ) ;
exit ( 1 ) ;
}
GGML_ASSERT ( split - > inputs [ j ] - > buffer - > backend ! = input_cpy - > buffer - > backend ) ;
GGML_ASSERT ( input_cpy - > buffer - > backend = = split_backend ) ;
ggml_backend_tensor_copy ( split - > inputs [ j ] , input_cpy ) ;
}
// ggml_backend_synchronize(split_backend);
int64_t copy_end_us = ggml_time_us ( ) ;
copy_us [ split_backend_id ] + = copy_end_us - copy_start_us ;
#if 0
char split_filename [ GGML_MAX_NAME ] ;
snprintf ( split_filename , GGML_MAX_NAME , " split_%i_%s.dot " , i , ggml_backend_name ( split_backend ) ) ;
ggml_graph_dump_dot ( split - > graph , NULL , split_filename ) ;
# endif
uint64_t compute_start_us = ggml_time_us ( ) ;
ggml_backend_graph_compute ( split_backend , split - > graph ) ;
// ggml_backend_synchronize(split_backend);
uint64_t compute_end_us = ggml_time_us ( ) ;
compute_us [ split_backend_id ] + = compute_end_us - compute_start_us ;
}
#if 0
// per-backend timings
fprintf ( stderr , " sched_compute_splits times (%d splits): \n " , sched - > n_splits ) ;
for ( int i = 0 ; i < sched - > n_backends ; i + + ) {
if ( copy_us [ i ] > 0 | | compute_us [ i ] > 0 ) {
fprintf ( stderr , " \t %5.5s: %lu us copy, %lu us compute \n " , ggml_backend_name ( sched - > backends [ i ] ) , copy_us [ i ] , compute_us [ i ] ) ;
}
}
# endif
}
static void sched_reset ( ggml_backend_sched_t sched ) {
for ( int i = 0 ; i < sched - > n_backends ; i + + ) {
ggml_tallocr_reset ( sched - > tallocs [ i ] ) ;
}
}
ggml_backend_sched_t ggml_backend_sched_new ( ggml_backend_t * backends , int n_backends ) {
GGML_ASSERT ( n_backends < = GGML_MAX_BACKENDS ) ;
struct ggml_backend_sched * sched = malloc ( sizeof ( struct ggml_backend_sched ) ) ;
memset ( sched , 0 , sizeof ( struct ggml_backend_sched ) ) ;
fprintf ( stderr , " ggml_backend_sched size: %lu KB \n " , sizeof ( struct ggml_backend_sched ) / 1024 ) ;
sched - > n_backends = n_backends ;
for ( int i = 0 ; i < n_backends ; i + + ) {
sched - > backends [ i ] = backends [ i ] ;
}
sched - > galloc = ggml_gallocr_new ( ) ;
// init measure allocs for each backend
for ( int i = 0 ; i < n_backends ; i + + ) {
sched - > tallocs [ i ] = ggml_tallocr_new_measure_from_backend ( backends [ i ] ) ;
}
return sched ;
}
void ggml_backend_sched_free ( ggml_backend_sched_t sched ) {
if ( sched = = NULL ) {
return ;
}
for ( int i = 0 ; i < sched - > n_backends ; i + + ) {
ggml_tallocr_free ( sched - > tallocs [ i ] ) ;
}
ggml_gallocr_free ( sched - > galloc ) ;
free ( sched - > hash_set . keys ) ;
free ( sched - > node_talloc ) ;
free ( sched - > node_copies ) ;
free ( sched ) ;
}
void ggml_backend_sched_init_measure ( ggml_backend_sched_t sched , struct ggml_cgraph * measure_graph ) {
// initialize hash tables
size_t hash_size = measure_graph - > visited_hash_table . size + GGML_MAX_SPLITS * GGML_MAX_SPLIT_INPUTS ;
sched - > hash_set . size = hash_size ;
sched - > hash_set . keys = malloc ( sizeof ( sched - > hash_set . keys [ 0 ] ) * hash_size ) ;
sched - > node_talloc = malloc ( sizeof ( sched - > node_talloc [ 0 ] ) * hash_size ) ;
sched - > node_copies = malloc ( sizeof ( sched - > node_copies [ 0 ] ) * hash_size ) ;
sched_split_graph ( sched , measure_graph ) ;
sched_alloc_splits ( sched ) ;
// allocate buffers and reset allocators
for ( int i = 0 ; i < sched - > n_backends ; i + + ) {
size_t size = ggml_tallocr_max_size ( sched - > tallocs [ i ] ) ;
ggml_tallocr_free ( sched - > tallocs [ i ] ) ;
sched - > tallocs [ i ] = ggml_tallocr_new_from_backend ( sched - > backends [ i ] , size ) ;
}
sched_reset ( sched ) ;
}
void ggml_backend_sched_graph_compute ( ggml_backend_sched_t sched , struct ggml_cgraph * graph ) {
GGML_ASSERT ( sched - > hash_set . size > = graph - > visited_hash_table . size + GGML_MAX_SPLITS * GGML_MAX_SPLIT_INPUTS ) ;
sched_split_graph ( sched , graph ) ;
sched_alloc_splits ( sched ) ;
sched_compute_splits ( sched ) ;
sched_reset ( sched ) ;
}
ggml_tallocr_t ggml_backend_sched_get_tallocr ( ggml_backend_sched_t sched , ggml_backend_t backend ) {
int backend_index = sched_backend_prio ( sched , backend ) ;
return sched - > tallocs [ backend_index ] ;
}
ggml_backend_buffer_t ggml_backend_sched_get_buffer ( ggml_backend_sched_t sched , ggml_backend_t backend ) {
int backend_index = sched_backend_prio ( sched , backend ) ;
return ggml_tallocr_get_buffer ( sched - > tallocs [ backend_index ] ) ;
}
void ggml_backend_sched_set_node_backend ( ggml_backend_sched_t sched , struct ggml_tensor * node , ggml_backend_t backend ) {
int backend_index = sched_backend_prio ( sched , backend ) ;
GGML_ASSERT ( backend_index > = 0 & & backend_index < sched - > n_backends ) ;
node_allocr ( node ) = sched - > tallocs [ backend_index ] ;
}