whisper.cpp/examples/common.h

280 lines
8.3 KiB
C
Raw Normal View History

// Various helper functions and utilities
#pragma once
#include <string>
#include <map>
#include <vector>
#include <random>
#include <thread>
#include <ctime>
#include <fstream>
#define COMMON_SAMPLE_RATE 16000
//
// GPT CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_parallel = 1; // number of parallel streams
int32_t n_batch = 8; // batch size for prompt processing
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
bool ignore_eos = false; // ignore EOS token when generating text
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t repeat_last_n = 64;
float repeat_penalty = 1.00f;
2023-06-25 13:22:21 +02:00
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt = "";
std::string token_test = "";
bool interactive = false;
int32_t interactive_port = -1;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
std::string trim(const std::string & s);
std::string replace(
const std::string & s,
const std::string & from,
const std::string & to);
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
void add_special_token(const std::string & token);
};
// poor-man's JSON parsing
std::map<std::string, int32_t> json_parse(const std::string & fname);
2023-06-25 13:22:21 +02:00
std::string convert_to_utf8(const std::wstring & input);
std::wstring convert_to_wstring(const std::string & input);
void gpt_split_words(std::string str, std::vector<std::string>& words);
// split text into tokens
//
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
//
// Regex (Python):
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
//
// Regex (C++):
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
2023-06-25 13:22:21 +02:00
// test outputs of gpt_tokenize
//
// - compare with tokens generated by the huggingface tokenizer
// - test cases are chosen based on the model's main language (under 'prompt' directory)
// - if all sentences are tokenized identically, print 'All tests passed.'
// - otherwise, print sentence, huggingface tokens, ggml tokens
//
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens
// - from them, consider only the top tokens with cumulative probability > P
//
// TODO: not sure if this implementation is correct
// TODO: temperature is not implemented
//
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng);
2023-06-25 13:22:21 +02:00
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
const gpt_vocab & vocab,
const float * logits,
const int32_t * last_n_tokens_data,
size_t last_n_tokens_data_size,
int top_k,
double top_p,
double temp,
int repeat_last_n,
float repeat_penalty,
std::mt19937 & rng);
//
// Audio utils
//
// Read WAV audio file and store the PCM data into pcmf32
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
bool read_wav(
const std::string & fname,
std::vector<float> & pcmf32,
std::vector<std::vector<float>> & pcmf32s,
bool stereo);
// Write PCM data into WAV audio file
class wav_writer {
private:
std::ofstream file;
uint32_t dataSize = 0;
std::string wav_filename;
bool write_header(const uint32_t sample_rate,
const uint16_t bits_per_sample,
const uint16_t channels) {
file.write("RIFF", 4);
file.write("\0\0\0\0", 4); // Placeholder for file size
file.write("WAVE", 4);
file.write("fmt ", 4);
const uint32_t sub_chunk_size = 16;
const uint16_t audio_format = 1; // PCM format
const uint32_t byte_rate = sample_rate * channels * bits_per_sample / 8;
const uint16_t block_align = channels * bits_per_sample / 8;
file.write(reinterpret_cast<const char *>(&sub_chunk_size), 4);
file.write(reinterpret_cast<const char *>(&audio_format), 2);
file.write(reinterpret_cast<const char *>(&channels), 2);
file.write(reinterpret_cast<const char *>(&sample_rate), 4);
file.write(reinterpret_cast<const char *>(&byte_rate), 4);
file.write(reinterpret_cast<const char *>(&block_align), 2);
file.write(reinterpret_cast<const char *>(&bits_per_sample), 2);
file.write("data", 4);
file.write("\0\0\0\0", 4); // Placeholder for data size
return true;
}
// It is assumed that PCM data is normalized to a range from -1 to 1
bool write_audio(const float * data, size_t length) {
for (size_t i = 0; i < length; ++i) {
const int16_t intSample = data[i] * 32767;
file.write(reinterpret_cast<const char *>(&intSample), sizeof(int16_t));
dataSize += sizeof(int16_t);
}
if (file.is_open()) {
file.seekp(4, std::ios::beg);
uint32_t fileSize = 36 + dataSize;
file.write(reinterpret_cast<char *>(&fileSize), 4);
file.seekp(40, std::ios::beg);
file.write(reinterpret_cast<char *>(&dataSize), 4);
file.seekp(0, std::ios::end);
}
return true;
}
bool open_wav(const std::string & filename) {
if (filename != wav_filename) {
if (file.is_open()) {
file.close();
}
}
if (!file.is_open()) {
file.open(filename, std::ios::binary);
wav_filename = filename;
dataSize = 0;
}
return file.is_open();
}
public:
bool open(const std::string & filename,
const uint32_t sample_rate,
const uint16_t bits_per_sample,
const uint16_t channels) {
if (open_wav(filename)) {
write_header(sample_rate, bits_per_sample, channels);
} else {
return false;
}
return true;
}
bool close() {
file.close();
return true;
}
bool write(const float * data, size_t length) {
return write_audio(data, length);
}
~wav_writer() {
if (file.is_open()) {
file.close();
}
}
};
// Apply a high-pass frequency filter to PCM audio
// Suppresses frequencies below cutoff Hz
void high_pass_filter(
std::vector<float> & data,
float cutoff,
float sample_rate);
// Basic voice activity detection (VAD) using audio energy adaptive threshold
bool vad_simple(
std::vector<float> & pcmf32,
int sample_rate,
int last_ms,
float vad_thold,
float freq_thold,
bool verbose);
// compute similarity between two strings using Levenshtein distance
float similarity(const std::string & s0, const std::string & s1);
//
// SAM argument parsing
//
struct sam_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
std::string model = "models/sam-vit-b/ggml-model-f16.bin"; // model path
std::string fname_inp = "img.jpg";
std::string fname_out = "img.out";
};
bool sam_params_parse(int argc, char ** argv, sam_params & params);
void sam_print_usage(int argc, char ** argv, const sam_params & params);