2023-11-03 20:35:05 +01:00
|
|
|
#include "ggml-backend-impl.h"
|
|
|
|
#include "ggml-alloc.h"
|
|
|
|
#include "ggml-impl.h"
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <limits.h>
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
|
|
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
// backend buffer type
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
|
|
|
|
return buft->iface.get_name(buft);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
2023-12-07 21:27:19 +01:00
|
|
|
return buft->iface.alloc_buffer(buft, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
|
|
|
|
return buft->iface.get_alignment(buft);
|
|
|
|
}
|
|
|
|
|
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
|
|
|
|
// get_max_size is optional, defaults to SIZE_MAX
|
|
|
|
if (buft->iface.get_max_size) {
|
|
|
|
return buft->iface.get_max_size(buft);
|
|
|
|
}
|
|
|
|
return SIZE_MAX;
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
|
2023-12-07 21:27:19 +01:00
|
|
|
// get_alloc_size is optional, defaults to ggml_nbytes
|
|
|
|
if (buft->iface.get_alloc_size) {
|
2024-01-26 18:59:43 +01:00
|
|
|
size_t size = buft->iface.get_alloc_size(buft, tensor);
|
|
|
|
assert(size >= ggml_nbytes(tensor));
|
|
|
|
return size;
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
|
|
|
return ggml_nbytes(tensor);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
|
|
|
return buft->iface.supports_backend(buft, backend);
|
|
|
|
}
|
|
|
|
|
2023-12-22 16:53:39 +01:00
|
|
|
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
|
|
|
|
if (buft->iface.is_host) {
|
|
|
|
return buft->iface.is_host(buft);
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
// backend buffer
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
|
2023-12-07 21:27:19 +01:00
|
|
|
ggml_backend_buffer_type_t buft,
|
2023-11-03 20:35:05 +01:00
|
|
|
struct ggml_backend_buffer_i iface,
|
|
|
|
ggml_backend_buffer_context_t context,
|
|
|
|
size_t size) {
|
|
|
|
ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
|
|
|
|
|
|
|
|
(*buffer) = (struct ggml_backend_buffer) {
|
|
|
|
/* .interface = */ iface,
|
2023-12-07 21:27:19 +01:00
|
|
|
/* .buft = */ buft,
|
2023-11-03 20:35:05 +01:00
|
|
|
/* .context = */ context,
|
|
|
|
/* .size = */ size,
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
|
2023-11-03 20:35:05 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
|
|
|
|
return buffer->iface.get_name(buffer);
|
|
|
|
}
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
|
|
|
if (buffer == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (buffer->iface.free_buffer != NULL) {
|
|
|
|
buffer->iface.free_buffer(buffer);
|
|
|
|
}
|
|
|
|
free(buffer);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
|
|
|
|
return buffer->size;
|
|
|
|
}
|
|
|
|
|
|
|
|
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
|
|
void * base = buffer->iface.get_base(buffer);
|
|
|
|
|
|
|
|
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
|
|
|
|
|
|
|
|
return base;
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
2023-11-03 20:35:05 +01:00
|
|
|
// init_tensor is optional
|
|
|
|
if (buffer->iface.init_tensor) {
|
|
|
|
buffer->iface.init_tensor(buffer, tensor);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
|
2024-01-12 20:07:38 +01:00
|
|
|
return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
|
|
|
|
return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
2024-01-12 20:07:38 +01:00
|
|
|
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2023-12-22 16:53:39 +01:00
|
|
|
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
|
|
buffer->iface.clear(buffer, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
|
2024-01-12 20:07:38 +01:00
|
|
|
return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
|
2023-12-22 16:53:39 +01:00
|
|
|
}
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
|
|
|
|
buffer->usage = usage;
|
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
|
|
|
|
// FIXME: add a generic callback to the buffer interface
|
|
|
|
if (ggml_backend_buffer_is_multi_buffer(buffer)) {
|
|
|
|
ggml_backend_multi_buffer_set_usage(buffer, usage);
|
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
|
2023-12-07 21:27:19 +01:00
|
|
|
return buffer->buft;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
|
|
|
|
if (buffer->iface.reset) {
|
|
|
|
buffer->iface.reset(buffer);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
|
|
ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
|
|
|
|
if (dst_buf->iface.cpy_tensor) {
|
|
|
|
return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
// backend
|
|
|
|
|
2024-02-24 17:27:36 +01:00
|
|
|
ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
|
|
|
|
if (backend == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return backend->guid;
|
|
|
|
}
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
const char * ggml_backend_name(ggml_backend_t backend) {
|
|
|
|
if (backend == NULL) {
|
|
|
|
return "NULL";
|
|
|
|
}
|
|
|
|
return backend->iface.get_name(backend);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_free(ggml_backend_t backend) {
|
|
|
|
if (backend == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
backend->iface.free(backend);
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
|
|
|
|
return backend->iface.get_default_buffer_type(backend);
|
|
|
|
}
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
|
2023-12-07 21:27:19 +01:00
|
|
|
return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
size_t ggml_backend_get_alignment(ggml_backend_t backend) {
|
2023-12-07 21:27:19 +01:00
|
|
|
return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
size_t ggml_backend_get_max_size(ggml_backend_t backend) {
|
|
|
|
return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
if (backend->iface.set_tensor_async == NULL) {
|
|
|
|
ggml_backend_tensor_set(tensor, data, offset, size);
|
|
|
|
} else {
|
|
|
|
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
if (backend->iface.get_tensor_async == NULL) {
|
|
|
|
ggml_backend_tensor_get(tensor, data, offset, size);
|
|
|
|
} else {
|
|
|
|
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
2024-01-12 20:07:38 +01:00
|
|
|
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
|
|
|
|
|
|
|
GGML_ASSERT(buf != NULL && "tensor buffer not set");
|
2024-03-13 18:54:21 +01:00
|
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
2023-12-07 21:27:19 +01:00
|
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-02-13 22:44:25 +01:00
|
|
|
if (!size) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
buf->iface.set_tensor(buf, tensor, data, offset, size);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
2024-01-12 20:07:38 +01:00
|
|
|
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
GGML_ASSERT(buf != NULL && "tensor buffer not set");
|
2023-11-03 20:35:05 +01:00
|
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
2023-12-07 21:27:19 +01:00
|
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-02-13 22:44:25 +01:00
|
|
|
if (!size) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
buf->iface.get_tensor(buf, tensor, data, offset, size);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_synchronize(ggml_backend_t backend) {
|
2023-12-07 21:27:19 +01:00
|
|
|
if (backend->iface.synchronize == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
backend->iface.synchronize(backend);
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
2024-03-13 18:54:21 +01:00
|
|
|
GGML_ASSERT(backend->iface.graph_plan_create != NULL);
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
return backend->iface.graph_plan_create(backend, cgraph);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
2024-03-13 18:54:21 +01:00
|
|
|
GGML_ASSERT(backend->iface.graph_plan_free != NULL);
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
backend->iface.graph_plan_free(backend, plan);
|
|
|
|
}
|
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
2024-03-13 18:54:21 +01:00
|
|
|
GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
|
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
return backend->iface.graph_plan_compute(backend, plan);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
2024-03-13 18:54:21 +01:00
|
|
|
enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
|
|
|
|
ggml_backend_synchronize(backend);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2024-03-27 17:55:10 +01:00
|
|
|
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
2024-01-12 20:07:38 +01:00
|
|
|
return backend->iface.graph_compute(backend, cgraph);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
|
|
|
return backend->iface.supports_op(backend, op);
|
|
|
|
}
|
|
|
|
|
2024-03-27 17:55:10 +01:00
|
|
|
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
|
|
|
if (backend->iface.offload_op != NULL) {
|
|
|
|
return backend->iface.offload_op(backend, op);
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
// backend copy
|
|
|
|
|
|
|
|
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
|
|
|
if (a->type != b->type) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
|
|
|
if (a->ne[i] != b->ne[i]) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (a->nb[i] != b->nb[i]) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
|
|
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
|
|
|
|
|
|
|
|
if (src == dst) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
if (ggml_backend_buffer_is_host(src->buffer)) {
|
|
|
|
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
|
|
|
} else if (ggml_backend_buffer_is_host(dst->buffer)) {
|
|
|
|
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
|
|
|
} else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
|
|
|
|
#ifndef NDEBUG
|
|
|
|
fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
|
|
|
|
#endif
|
2023-11-03 20:35:05 +01:00
|
|
|
size_t nbytes = ggml_nbytes(src);
|
|
|
|
void * data = malloc(nbytes);
|
|
|
|
ggml_backend_tensor_get(src, data, 0, nbytes);
|
|
|
|
ggml_backend_tensor_set(dst, data, 0, nbytes);
|
|
|
|
free(data);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
2024-01-12 20:07:38 +01:00
|
|
|
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
|
|
|
|
|
|
|
|
if (src == dst) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
if (backend_dst->iface.cpy_tensor_async != NULL) {
|
|
|
|
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
|
|
|
|
return;
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
// an async copy would normally happen after all the queued operations on both backends are completed
|
|
|
|
// sync src, set_async dst
|
2024-01-12 20:07:38 +01:00
|
|
|
if (ggml_backend_buffer_is_host(src->buffer)) {
|
2024-03-13 18:54:21 +01:00
|
|
|
ggml_backend_synchronize(backend_src);
|
|
|
|
ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
|
|
|
|
} else {
|
|
|
|
ggml_backend_synchronize(backend_src);
|
2024-01-12 20:07:38 +01:00
|
|
|
ggml_backend_tensor_copy(src, dst);
|
2024-03-13 18:54:21 +01:00
|
|
|
ggml_backend_synchronize(backend_dst);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// events
|
|
|
|
|
|
|
|
ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
|
|
|
|
if (backend->iface.event_new == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return backend->iface.event_new(backend);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_event_free(ggml_backend_event_t event) {
|
|
|
|
if (event == NULL) {
|
|
|
|
return;
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
event->backend->iface.event_free(event);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_event_record(ggml_backend_event_t event) {
|
|
|
|
GGML_ASSERT(event->backend->iface.event_record != NULL);
|
|
|
|
|
|
|
|
event->backend->iface.event_record(event);
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
|
|
|
|
GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
|
|
|
|
|
|
|
|
event->backend->iface.event_synchronize(event);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
|
|
|
|
GGML_ASSERT(backend->iface.event_wait != NULL);
|
|
|
|
|
|
|
|
backend->iface.event_wait(backend, event);
|
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
// backend registry
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
#define GGML_REG_MAX_BACKENDS 16
|
2023-12-07 21:27:19 +01:00
|
|
|
|
|
|
|
struct ggml_backend_reg {
|
|
|
|
char name[128];
|
|
|
|
ggml_backend_init_fn init_fn;
|
|
|
|
ggml_backend_buffer_type_t default_buffer_type;
|
|
|
|
void * user_data;
|
2023-11-03 20:35:05 +01:00
|
|
|
};
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
|
2023-12-07 21:27:19 +01:00
|
|
|
static size_t ggml_backend_registry_count = 0;
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
|
2023-12-07 21:27:19 +01:00
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static void ggml_backend_registry_init(void) {
|
2023-12-07 21:27:19 +01:00
|
|
|
static bool initialized = false;
|
|
|
|
|
|
|
|
if (initialized) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
initialized = true;
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
|
|
|
|
|
|
|
|
// add forward decls here to avoid including the backend headers
|
2024-03-27 17:55:10 +01:00
|
|
|
#ifdef GGML_USE_CUDA
|
2024-01-16 12:16:33 +01:00
|
|
|
extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
|
2023-12-07 21:27:19 +01:00
|
|
|
ggml_backend_cuda_reg_devices();
|
|
|
|
#endif
|
|
|
|
|
ggml : add unified SYCL backend for Intel GPUs (llama/2690)
* first update for migration
* update init_cublas
* add debug functio, commit all help code
* step 1
* step 2
* step3 add fp16, slower 31->28
* add GGML_LIST_DEVICE function
* step 5 format device and print
* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue
* support main device is non-zero
* step7 add debug for code path, rm log
* step 8, rename all macro & func from cuda by sycl
* fix error of select non-zero device, format device list
* ren ggml-sycl.hpp -> ggml-sycl.h
* clear CMAKE to rm unused lib and options
* correct queue: rm dtct:get_queue
* add print tensor function to debug
* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481
* summary dpct definition in one header file to replace folder:dpct
* refactor device log
* mv dpct definition from folder dpct to ggml-sycl.h
* update readme, refactor build script
* fix build with sycl
* set nthread=1 when sycl, increase performance
* add run script, comment debug code
* add ls-sycl-device tool
* add ls-sycl-device, rm unused files
* rm rear space
* dos2unix
* Update README_sycl.md
* fix return type
* remove sycl version from include path
* restore rm code to fix hang issue
* add syc and link for sycl readme
* rm original sycl code before refactor
* fix code err
* add know issue for pvc hang issue
* enable SYCL_F16 support
* align pr4766
* check for sycl blas, better performance
* cleanup 1
* remove extra endif
* add build&run script, clean CMakefile, update guide by review comments
* rename macro to intel hardware
* editor config format
* format fixes
* format fixes
* editor format fix
* Remove unused headers
* skip build sycl tool for other code path
* replace tab by space
* fix blas matmul function
* fix mac build
* restore hip dependency
* fix conflict
* ren as review comments
* mv internal function to .cpp file
* export funciton print_sycl_devices(), mv class dpct definition to source file
* update CI/action for sycl code, fix CI error of repeat/dup
* fix action ID format issue
* rm unused strategy
* enable llama_f16 in ci
* fix conflict
* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml
* fix ci cases for unsupported data type
* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL
* revert hip cmake changes
* fix indent
* add prefix in func name
* revert no mmq
* rm cpu blas duplicate
* fix no_new_line
* fix src1->type==F16 bug.
* pass batch offset for F16 src1
* fix batch error
* fix wrong code
* revert sycl checking in test-sampling
* pass void as arguments of ggml_backend_sycl_print_sycl_devices
* remove extra blank line in test-sampling
* revert setting n_threads in sycl
* implement std::isinf for icpx with fast math.
* Update ci/run.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/sycl/run-llama2.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/sycl/run-llama2.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add copyright and MIT license declare
* update the cmd example
---------
Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 16:56:23 +01:00
|
|
|
#ifdef GGML_USE_SYCL
|
|
|
|
extern void ggml_backend_sycl_reg_devices(void);
|
|
|
|
ggml_backend_sycl_reg_devices();
|
|
|
|
#endif
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
#ifdef GGML_USE_METAL
|
2024-01-16 12:16:33 +01:00
|
|
|
extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
|
|
|
|
extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
2023-12-07 21:27:19 +01:00
|
|
|
ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
|
|
|
|
#endif
|
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
|
|
|
|
#ifdef GGML_USE_VULKAN
|
|
|
|
extern GGML_CALL int ggml_backend_vk_reg_devices(void);
|
|
|
|
ggml_backend_vk_reg_devices();
|
|
|
|
#endif
|
2024-01-29 21:50:50 +01:00
|
|
|
|
|
|
|
#ifdef GGML_USE_KOMPUTE
|
|
|
|
extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
|
|
|
|
ggml_backend_kompute_reg_devices();
|
|
|
|
#endif
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
|
2024-03-13 18:54:21 +01:00
|
|
|
GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
|
2023-12-07 21:27:19 +01:00
|
|
|
|
2023-12-29 10:30:47 +01:00
|
|
|
size_t id = ggml_backend_registry_count;
|
2023-12-07 21:27:19 +01:00
|
|
|
|
|
|
|
ggml_backend_registry[id] = (struct ggml_backend_reg) {
|
|
|
|
/* .name = */ {0},
|
|
|
|
/* .fn = */ init_fn,
|
|
|
|
/* .default_buffer_type = */ default_buffer_type,
|
|
|
|
/* .user_data = */ user_data,
|
|
|
|
};
|
|
|
|
|
|
|
|
snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
fprintf(stderr, "%s: registered backend %s\n", __func__, name);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
ggml_backend_registry_count++;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t ggml_backend_reg_get_count(void) {
|
|
|
|
ggml_backend_registry_init();
|
|
|
|
|
|
|
|
return ggml_backend_registry_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t ggml_backend_reg_find_by_name(const char * name) {
|
|
|
|
ggml_backend_registry_init();
|
|
|
|
|
|
|
|
for (size_t i = 0; i < ggml_backend_registry_count; i++) {
|
|
|
|
// TODO: case insensitive in a portable way
|
|
|
|
if (strcmp(ggml_backend_registry[i].name, name) == 0) {
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
}
|
2023-12-29 10:30:47 +01:00
|
|
|
|
|
|
|
// not found
|
2023-12-07 21:27:19 +01:00
|
|
|
return SIZE_MAX;
|
|
|
|
}
|
|
|
|
|
|
|
|
// init from backend:params string
|
|
|
|
ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
|
|
|
|
ggml_backend_registry_init();
|
|
|
|
|
|
|
|
const char * params = strchr(backend_str, ':');
|
|
|
|
char backend_name[128];
|
|
|
|
if (params == NULL) {
|
2023-12-29 10:30:47 +01:00
|
|
|
snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
|
2023-12-07 21:27:19 +01:00
|
|
|
params = "";
|
|
|
|
} else {
|
2023-12-29 10:30:47 +01:00
|
|
|
snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
|
2023-12-07 21:27:19 +01:00
|
|
|
params++;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
|
2023-12-29 10:30:47 +01:00
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
if (backend_i == SIZE_MAX) {
|
|
|
|
fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ggml_backend_reg_init_backend(backend_i, params);
|
|
|
|
}
|
|
|
|
|
|
|
|
const char * ggml_backend_reg_get_name(size_t i) {
|
|
|
|
ggml_backend_registry_init();
|
|
|
|
|
|
|
|
GGML_ASSERT(i < ggml_backend_registry_count);
|
|
|
|
return ggml_backend_registry[i].name;
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
|
|
|
|
ggml_backend_registry_init();
|
|
|
|
|
|
|
|
GGML_ASSERT(i < ggml_backend_registry_count);
|
|
|
|
return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
|
|
|
|
ggml_backend_registry_init();
|
|
|
|
|
|
|
|
GGML_ASSERT(i < ggml_backend_registry_count);
|
|
|
|
return ggml_backend_registry[i].default_buffer_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
|
|
|
|
ggml_backend_registry_init();
|
|
|
|
|
|
|
|
GGML_ASSERT(i < ggml_backend_registry_count);
|
|
|
|
return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
// backend CPU
|
|
|
|
|
2024-02-12 08:27:57 +01:00
|
|
|
static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
|
2024-02-11 13:37:58 +01:00
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
|
2024-01-12 20:07:38 +01:00
|
|
|
return "CPU";
|
|
|
|
|
|
|
|
GGML_UNUSED(buffer);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
2024-02-11 13:37:58 +01:00
|
|
|
uintptr_t data = (uintptr_t)buffer->context;
|
|
|
|
|
|
|
|
// align the buffer
|
|
|
|
if (data % TENSOR_ALIGNMENT != 0) {
|
|
|
|
data = GGML_PAD(data, TENSOR_ALIGNMENT);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (void *)data;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
2023-11-03 20:35:05 +01:00
|
|
|
free(buffer->context);
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
2023-12-07 21:27:19 +01:00
|
|
|
memcpy((char *)tensor->data + offset, data, size);
|
|
|
|
|
|
|
|
GGML_UNUSED(buffer);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
2023-12-07 21:27:19 +01:00
|
|
|
memcpy(data, (const char *)tensor->data + offset, size);
|
|
|
|
|
|
|
|
GGML_UNUSED(buffer);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
2024-01-12 20:07:38 +01:00
|
|
|
if (ggml_backend_buffer_is_host(src->buffer)) {
|
|
|
|
memcpy(dst->data, src->data, ggml_nbytes(src));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
2023-12-07 21:27:19 +01:00
|
|
|
|
|
|
|
GGML_UNUSED(buffer);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
2023-12-22 16:53:39 +01:00
|
|
|
memset(buffer->context, value, buffer->size);
|
|
|
|
}
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .get_name = */ ggml_backend_cpu_buffer_name,
|
2023-12-07 21:27:19 +01:00
|
|
|
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
|
|
|
|
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
|
|
|
/* .init_tensor = */ NULL, // no initialization required
|
|
|
|
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
|
|
|
|
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
|
2023-12-22 16:53:39 +01:00
|
|
|
/* .clear = */ ggml_backend_cpu_buffer_clear,
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .reset = */ NULL,
|
2023-11-03 20:35:05 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
// for buffers from ptr, free is not called
|
|
|
|
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .get_name = */ ggml_backend_cpu_buffer_name,
|
2023-12-07 21:27:19 +01:00
|
|
|
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
|
|
|
|
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
|
|
|
/* .init_tensor = */ NULL, // no initialization required
|
|
|
|
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
|
|
|
|
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
|
2023-12-22 16:53:39 +01:00
|
|
|
/* .clear = */ ggml_backend_cpu_buffer_clear,
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .reset = */ NULL,
|
2023-11-03 20:35:05 +01:00
|
|
|
};
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
2024-01-12 20:07:38 +01:00
|
|
|
return "CPU";
|
|
|
|
|
|
|
|
GGML_UNUSED(buft);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
2023-11-03 20:35:05 +01:00
|
|
|
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
|
2024-02-11 13:37:58 +01:00
|
|
|
void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
|
|
|
|
if (data == NULL) {
|
|
|
|
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
|
|
|
|
return NULL;
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
2023-11-03 20:35:05 +01:00
|
|
|
return TENSOR_ALIGNMENT;
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
GGML_UNUSED(buft);
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
2023-12-07 21:27:19 +01:00
|
|
|
return ggml_backend_is_cpu(backend);
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
GGML_UNUSED(buft);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
2023-12-22 16:53:39 +01:00
|
|
|
return true;
|
|
|
|
|
|
|
|
GGML_UNUSED(buft);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
|
2023-12-22 16:53:39 +01:00
|
|
|
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
|
2023-12-07 21:27:19 +01:00
|
|
|
/* .iface = */ {
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
|
2023-12-07 21:27:19 +01:00
|
|
|
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
|
|
|
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
2023-12-07 21:27:19 +01:00
|
|
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
|
|
|
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
2023-12-22 16:53:39 +01:00
|
|
|
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
2023-12-07 21:27:19 +01:00
|
|
|
},
|
|
|
|
/* .context = */ NULL,
|
|
|
|
};
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2023-12-22 16:53:39 +01:00
|
|
|
return &ggml_backend_cpu_buffer_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef GGML_USE_CPU_HBM
|
|
|
|
|
|
|
|
// buffer type HBM
|
|
|
|
|
|
|
|
#include <hbwmalloc.h>
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
2024-01-12 20:07:38 +01:00
|
|
|
return "CPU_HBM";
|
|
|
|
|
|
|
|
GGML_UNUSED(buft);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
|
2024-01-12 20:07:38 +01:00
|
|
|
return "CPU_HBM";
|
|
|
|
|
|
|
|
GGML_UNUSED(buf);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
2023-12-22 16:53:39 +01:00
|
|
|
hbw_free(buffer->context);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
2023-12-22 16:53:39 +01:00
|
|
|
//void * ptr = hbw_malloc(size);
|
|
|
|
void * ptr;
|
|
|
|
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
|
|
|
|
if (result != 0) {
|
|
|
|
fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
|
|
|
buffer->buft = buft;
|
2024-01-12 20:07:38 +01:00
|
|
|
buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
|
2023-12-22 16:53:39 +01:00
|
|
|
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
|
|
|
|
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
|
2023-12-22 16:53:39 +01:00
|
|
|
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
|
|
|
|
/* .iface = */ {
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
|
2023-12-22 16:53:39 +01:00
|
|
|
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
|
|
|
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
2023-12-22 16:53:39 +01:00
|
|
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
|
|
|
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
|
|
|
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
|
|
|
},
|
|
|
|
/* .context = */ NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
return &ggml_backend_cpu_buffer_type_hbm;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2023-12-22 16:53:39 +01:00
|
|
|
#endif
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
struct ggml_backend_cpu_context {
|
|
|
|
int n_threads;
|
|
|
|
void * work_data;
|
|
|
|
size_t work_size;
|
2024-02-09 10:42:27 +01:00
|
|
|
|
|
|
|
ggml_abort_callback abort_callback;
|
|
|
|
void * abort_callback_data;
|
2023-12-07 21:27:19 +01:00
|
|
|
};
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
|
2023-12-07 21:27:19 +01:00
|
|
|
return "CPU";
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
GGML_UNUSED(backend);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
|
2023-12-07 21:27:19 +01:00
|
|
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
|
|
|
free(cpu_ctx->work_data);
|
|
|
|
free(cpu_ctx);
|
|
|
|
free(backend);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
|
2023-12-07 21:27:19 +01:00
|
|
|
return ggml_backend_cpu_buffer_type();
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
GGML_UNUSED(backend);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
struct ggml_backend_plan_cpu {
|
|
|
|
struct ggml_cplan cplan;
|
|
|
|
struct ggml_cgraph cgraph;
|
|
|
|
};
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
|
2023-11-03 20:35:05 +01:00
|
|
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
|
|
|
|
|
|
|
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
|
|
|
|
|
|
|
|
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
2023-12-22 16:53:39 +01:00
|
|
|
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
|
2023-11-03 20:35:05 +01:00
|
|
|
|
|
|
|
if (cpu_plan->cplan.work_size > 0) {
|
|
|
|
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
|
2024-03-27 17:55:10 +01:00
|
|
|
if (cpu_plan->cplan.work_data == NULL) {
|
|
|
|
free(cpu_plan);
|
|
|
|
return NULL;
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-02-09 10:42:27 +01:00
|
|
|
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
|
|
|
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
return cpu_plan;
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
2023-11-03 20:35:05 +01:00
|
|
|
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
|
|
|
|
|
|
|
free(cpu_plan->cplan.work_data);
|
|
|
|
free(cpu_plan);
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
GGML_UNUSED(backend);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
2023-11-03 20:35:05 +01:00
|
|
|
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
GGML_UNUSED(backend);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
2023-11-03 20:35:05 +01:00
|
|
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
|
|
|
|
|
|
|
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
|
|
|
|
|
|
|
if (cpu_ctx->work_size < cplan.work_size) {
|
2024-03-13 18:54:21 +01:00
|
|
|
free(cpu_ctx->work_data);
|
|
|
|
cpu_ctx->work_data = malloc(cplan.work_size);
|
|
|
|
if (cpu_ctx->work_data == NULL) {
|
|
|
|
cpu_ctx->work_size = 0;
|
|
|
|
return GGML_STATUS_ALLOC_FAILED;
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
cpu_ctx->work_size = cplan.work_size;
|
|
|
|
}
|
|
|
|
cplan.work_data = cpu_ctx->work_data;
|
|
|
|
|
2024-02-09 10:42:27 +01:00
|
|
|
cplan.abort_callback = cpu_ctx->abort_callback;
|
|
|
|
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
return ggml_graph_compute(cgraph, &cplan);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
2023-12-29 10:30:47 +01:00
|
|
|
switch (op->op) {
|
2024-01-17 17:54:56 +01:00
|
|
|
case GGML_OP_CPY:
|
2024-04-21 15:47:57 +02:00
|
|
|
return
|
|
|
|
op->type != GGML_TYPE_IQ2_XXS &&
|
|
|
|
op->type != GGML_TYPE_IQ2_XS &&
|
|
|
|
op->type != GGML_TYPE_IQ1_S &&
|
|
|
|
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
|
2023-12-29 10:30:47 +01:00
|
|
|
case GGML_OP_MUL_MAT:
|
|
|
|
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
|
|
|
|
default:
|
|
|
|
return true;
|
|
|
|
}
|
2023-12-07 21:27:19 +01:00
|
|
|
|
|
|
|
GGML_UNUSED(backend);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct ggml_backend_i cpu_backend_i = {
|
2023-12-07 21:27:19 +01:00
|
|
|
/* .get_name = */ ggml_backend_cpu_name,
|
|
|
|
/* .free = */ ggml_backend_cpu_free,
|
|
|
|
/* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
|
|
|
|
/* .set_tensor_async = */ NULL,
|
|
|
|
/* .get_tensor_async = */ NULL,
|
2024-01-12 20:07:38 +01:00
|
|
|
/* .cpy_tensor_async = */ NULL,
|
2023-12-07 21:27:19 +01:00
|
|
|
/* .synchronize = */ NULL,
|
|
|
|
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
|
|
|
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
|
|
|
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
|
|
|
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
|
|
|
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
2024-03-27 17:55:10 +01:00
|
|
|
/* .offload_op = */ NULL,
|
2024-03-13 18:54:21 +01:00
|
|
|
/* .event_new = */ NULL,
|
|
|
|
/* .event_free = */ NULL,
|
|
|
|
/* .event_record = */ NULL,
|
|
|
|
/* .event_wait = */ NULL,
|
|
|
|
/* .event_synchronize = */ NULL,
|
2023-11-03 20:35:05 +01:00
|
|
|
};
|
|
|
|
|
2024-02-24 17:27:36 +01:00
|
|
|
static ggml_guid_t ggml_backend_cpu_guid(void) {
|
|
|
|
static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
|
|
|
|
return &guid;
|
|
|
|
}
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
ggml_backend_t ggml_backend_cpu_init(void) {
|
|
|
|
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
|
2024-02-11 13:37:58 +01:00
|
|
|
if (ctx == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-02-09 10:42:27 +01:00
|
|
|
ctx->n_threads = GGML_DEFAULT_N_THREADS;
|
|
|
|
ctx->work_data = NULL;
|
|
|
|
ctx->work_size = 0;
|
|
|
|
ctx->abort_callback = NULL;
|
|
|
|
ctx->abort_callback_data = NULL;
|
2023-11-03 20:35:05 +01:00
|
|
|
|
|
|
|
ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
|
2024-02-11 13:37:58 +01:00
|
|
|
if (cpu_backend == NULL) {
|
|
|
|
free(ctx);
|
|
|
|
return NULL;
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
|
|
|
*cpu_backend = (struct ggml_backend) {
|
2024-02-24 17:27:36 +01:00
|
|
|
/* .guid = */ ggml_backend_cpu_guid(),
|
2023-11-03 20:35:05 +01:00
|
|
|
/* .interface = */ cpu_backend_i,
|
|
|
|
/* .context = */ ctx
|
|
|
|
};
|
|
|
|
return cpu_backend;
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
|
2024-02-24 17:27:36 +01:00
|
|
|
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
|
|
|
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
|
|
|
|
|
|
|
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
|
|
|
ctx->n_threads = n_threads;
|
|
|
|
}
|
|
|
|
|
2024-02-09 10:42:27 +01:00
|
|
|
void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
|
|
|
|
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
|
|
|
|
|
|
|
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
|
|
|
ctx->abort_callback = abort_callback;
|
|
|
|
ctx->abort_callback_data = abort_callback_data;
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
|
2024-02-12 08:27:57 +01:00
|
|
|
GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
|
2023-12-07 21:27:19 +01:00
|
|
|
return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
|
|
|
|
}
|
|
|
|
|
2024-01-16 12:16:33 +01:00
|
|
|
GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
|
2023-12-07 21:27:19 +01:00
|
|
|
return ggml_backend_cpu_init();
|
|
|
|
|
|
|
|
GGML_UNUSED(params);
|
|
|
|
GGML_UNUSED(user_data);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
// multi-buffer buffer
|
|
|
|
|
|
|
|
struct ggml_backend_multi_buffer_context {
|
|
|
|
ggml_backend_buffer_t * buffers;
|
|
|
|
size_t n_buffers;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
|
|
|
|
|
|
|
|
GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
|
|
|
|
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
|
|
|
|
|
|
|
|
return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
|
|
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
|
|
|
|
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
|
|
|
ggml_backend_buffer_free(ctx->buffers[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
free(ctx->buffers);
|
|
|
|
free(ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
|
|
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
|
|
|
|
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
|
|
|
ggml_backend_buffer_clear(ctx->buffers[i], value);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
|
|
|
|
static struct ggml_backend_buffer_i multi_backend_buffer_i = {
|
|
|
|
/* .get_name = */ ggml_backend_multi_buffer_get_name,
|
|
|
|
/* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
|
|
|
|
/* .get_base = */ NULL,
|
|
|
|
/* .init_tensor = */ NULL,
|
|
|
|
/* .set_tensor = */ NULL,
|
|
|
|
/* .get_tensor = */ NULL,
|
|
|
|
/* .cpy_tensor = */ NULL,
|
|
|
|
/* .clear = */ ggml_backend_multi_buffer_clear,
|
|
|
|
/* .reset = */ NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
return multi_backend_buffer_i;
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
|
|
|
|
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
|
|
|
|
ctx->n_buffers = n_buffers;
|
|
|
|
ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
GGML_ASSERT(ctx->buffers != NULL);
|
|
|
|
|
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code
* Fix matmul kernel, continue implementation
* Continue implementation
* Vulkan memory management
* Vulkan development
* Matmul call
* Add aligned malloc and free for VMA
* Continue implementation
* First matmul success
* GEMM Kernel optimization
* 1D Blocktiling
* 2D Blocktiling
* Write coalescing
* Continue vulkan implementation and optimization
* First FP16 attempt, disabled for now
* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel
* Enable device extensions properly, restore fp16 matmul op
* Fix mulmat_f16
* Output FP32 in fp16 matmul shader
* Fix f16_to_f32 kernel
* dequant_q4_0 kernel
* Add VMA library
* Avoid requesting dedicated memory, VMA can decide that by itself
* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly
* add cmake commands
* Add 2d write operation, profiling code
* Fix 2d write
* Fix queue selection for AMD RADV
* Fix trailing whitespace in vk_mem_alloc.h
* Add WIP warp tile mat mul shaders
* Disable glslc optimization
* Disable glslc optimization for CMake
* Optimize warptile matmul shader, replace blocktile with it
* Add split-k optimization for small matrix multiplication
Use semaphores for synchronization instead of fences or waitidle
Rework async write/read for synchronization
* Fix validation errors, improve compatibility with AMD GPUs
* Rework command buffer handling
* Variable matmul kernel using specialization constants
* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints
* Reuse semaphores
* Handle stage flags during command buffer submission properly
* Increase matmul test runs for consistent results
* Fix F32 matmul
* Add vectorized loading and zeropadding for matrix multiplication
* Use pinned memory for f16 preprocessing
* Don't force aligned matmul
* Don't free before queue done
* Replace VMA library with native Vulkan buffer management
* Basic offloading support with mul_f32 and dmmv for q4_0
* Run glslc commands in parallel
* Unroll loops in dmmv shader
* Reduce usage of waitIdle
* Reuse pinned allocation for f16 conversion
* Handle devices with only a single queue
* Fix trailing whitespace in CMakeLists.txt
* Allow parallel execution of kernels, parallelize third and fourth dimension calls
* Add fallback for devices only supporting one DescriptorSet per DescriptorPool
* Move to graph function similar to CUDA implementation
* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function
* Add F32 dmmv shaders
* Batch submissions
* Add .spv to gitignore
* Split off matrix vector multiplication for separate optimization
* Use single command buffer for matrix vector multiplication ops
* Reduce overhead of mul_f32 calls by using a single command buffer
* Add submission batching to mul_f32
* Fix tests
* Add missing barrier
* Add further missing barrier
* Add further ops
* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions
* Remove unnecessary cblas link
* Fix descriptor set pre-allocation assert
* Add runtime shader compilation, start transferring shaders to this approach
* Transfer remaining shaders to header and compile on runtime
* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16
* Add support for q4_1, q5_0, q5_1 and q8_0
* Remove unnecessary scalar layout extension
* Parse graph early to pre-record command buffers
* Add q6_k support
* Add multi-submit for command buffers
* Fix q6_k dequant shader for AMD
* Fix q6_k for GPUs without fp16 support
* Simplify q6_k fp16 fix
* Minor fixes
* Fix wg_denom of m-mulmat shaders
* Add Python-based Vulkan shader generator
* Replace shaderc dependency with precompiled shaders
Fix python script to generate shaders
* Clean up code
* Fix shader generator script Windows compatibility
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Close file before deletion
* Fix vulkan shader fp32 name
* Add q2_k and q3_k support
Add validation check to compare shader results to cpu results
* Add q4_k support
* Add q5_k support
* Bake SPIR-V bytecode into the library instead of loading shaders from file
* Switch to signal semaphores for flexibility
Prepare broadcasting support for mul mat
* Finish broadcasting mul mat support for GQA
* Clean up unused functions
Add repeat op
* Add further ops, not yet enabled. Improve semaphore code
* Reduce number of used semaphores by utilizing timelines more properly
* Remove queue information
* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations
* Add Vulkan to llama-bench
* Remove cblas dependency
* Fix matmul k-split bug
* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader
* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug
* Fix issues with float16 overflows in shaders
* Fix issues with older Vulkan headers on Ubuntu 22.04
* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers
* Implement further ops, rework op_f32 calls, fix bugs
* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code
* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders
* Merge upstream changes, fix conflicts, adapt soft_max op
* Fix Python and shader header format
* Free model gpu buffers on exit
* Use single queue per device to simplify code
* Add matmul shader support for running multiple calculations in parallel
* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible
* Fix missing event cast
* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity
* Fix warning about empty C function parameters
* Fix compiler warnings
* Properly implement Vulkan backend buffer handling
* Fix oversized host staging buffers
* Simplify barrier synchronization calls
* Fix gcc warnings
* Implement max_size for backend buffer types to limit the size of a single allocation
* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size
* refactor multi buf
* Disable unsupported ops to fix tests
* Check for maintenance4 support before using it
* Handle devices with only a single queue
* Fix single queue logic
* propagate buffer usage in multi buffers
* Implement rope_neox op
* Cleanup header and other files
* Simplify gpu_extras by removing events and putting staging memcpys into contexts
* Move queue into context
Add not-yet-enabled async backend ops
* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization
* Add get_max_size to SYCL backend.
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix trailing whitespace
---------
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 18:03:59 +01:00
|
|
|
size_t total_size = 0;
|
|
|
|
for (size_t i = 0; i < n_buffers; i++) {
|
|
|
|
ctx->buffers[i] = buffers[i];
|
|
|
|
total_size += ggml_backend_buffer_get_size(buffers[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
|
|
|
|
return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
|
|
|
|
GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
|
|
|
|
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
|
|
|
|
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
|
|
|
ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
// creates a copy of the tensor with the same memory layout
|
|
|
|
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
|
|
|
|
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
|
|
|
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
|
|
|
dup->nb[i] = tensor->nb[i];
|
|
|
|
}
|
|
|
|
return dup;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool ggml_is_view_op(enum ggml_op op) {
|
|
|
|
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
|
|
|
|
}
|
2023-12-07 21:27:19 +01:00
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
// scheduler
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
#ifndef GGML_SCHED_MAX_BACKENDS
|
|
|
|
#define GGML_SCHED_MAX_BACKENDS 16
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef GGML_SCHED_MAX_SPLITS
|
2024-03-27 17:55:10 +01:00
|
|
|
#define GGML_SCHED_MAX_SPLITS 2048
|
2024-03-13 18:54:21 +01:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
|
2024-03-27 17:55:10 +01:00
|
|
|
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
|
2024-03-13 18:54:21 +01:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef GGML_SCHED_MAX_COPIES
|
|
|
|
#define GGML_SCHED_MAX_COPIES 4
|
|
|
|
#endif
|
2023-11-03 20:35:05 +01:00
|
|
|
|
|
|
|
struct ggml_backend_sched_split {
|
2024-02-11 13:37:58 +01:00
|
|
|
int backend_id;
|
2023-11-03 20:35:05 +01:00
|
|
|
int i_start;
|
|
|
|
int i_end;
|
2024-03-13 18:54:21 +01:00
|
|
|
struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
|
2023-11-03 20:35:05 +01:00
|
|
|
int n_inputs;
|
2024-01-12 20:07:38 +01:00
|
|
|
// graph view of this split
|
2023-12-07 21:27:19 +01:00
|
|
|
struct ggml_cgraph graph;
|
2023-11-03 20:35:05 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
struct ggml_backend_sched {
|
2024-01-12 20:07:38 +01:00
|
|
|
bool is_reset; // true if the scheduler has been reset since the last graph split
|
2024-03-13 18:54:21 +01:00
|
|
|
bool is_alloc;
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
int n_backends;
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
|
|
|
|
ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
|
2023-11-03 20:35:05 +01:00
|
|
|
ggml_gallocr_t galloc;
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
// hash keys of the nodes in the graph
|
2023-11-03 20:35:05 +01:00
|
|
|
struct ggml_hash_set hash_set;
|
2024-02-11 13:37:58 +01:00
|
|
|
// hash values
|
|
|
|
int * tensor_backend_id;
|
2024-03-13 18:54:21 +01:00
|
|
|
struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
|
2024-02-11 13:37:58 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
int * node_backend_ids; // [graph_size]
|
|
|
|
int * leaf_backend_ids; // [graph_size]
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
// copy of the graph with modified inputs
|
2023-11-03 20:35:05 +01:00
|
|
|
struct ggml_cgraph * graph;
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
// graph splits
|
2024-03-27 17:55:10 +01:00
|
|
|
struct ggml_backend_sched_split * splits;
|
2023-11-03 20:35:05 +01:00
|
|
|
int n_splits;
|
2024-03-27 17:55:10 +01:00
|
|
|
int splits_capacity;
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
// pipeline parallelism support
|
|
|
|
int n_copies;
|
|
|
|
int cur_copy;
|
|
|
|
ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
|
|
|
|
struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
|
|
|
|
int n_graph_inputs;
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
struct ggml_context * ctx;
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
ggml_backend_sched_eval_callback callback_eval;
|
|
|
|
void * callback_eval_user_data;
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
// align context_buffer to GGML_MEM_ALIGN
|
2024-03-13 18:54:21 +01:00
|
|
|
#ifdef _MSC_VER
|
2023-11-03 20:35:05 +01:00
|
|
|
__declspec(align(GGML_MEM_ALIGN))
|
2024-03-13 18:54:21 +01:00
|
|
|
#else
|
2023-11-03 20:35:05 +01:00
|
|
|
__attribute__((aligned(GGML_MEM_ALIGN)))
|
2024-03-13 18:54:21 +01:00
|
|
|
#endif
|
|
|
|
char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
|
2023-11-03 20:35:05 +01:00
|
|
|
};
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
#define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
|
|
|
|
#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
// returns the priority of the backend, lower id is higher priority
|
|
|
|
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
2023-11-03 20:35:05 +01:00
|
|
|
for (int i = 0; i < sched->n_backends; i++) {
|
|
|
|
if (sched->backends[i] == backend) {
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
}
|
2024-02-11 13:37:58 +01:00
|
|
|
return -1;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
|
|
|
|
ggml_backend_buffer_t buffer = tensor->buffer;
|
2023-12-07 21:27:19 +01:00
|
|
|
if (buffer == NULL) {
|
2024-02-11 13:37:58 +01:00
|
|
|
return -1;
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
// find highest prio backend that supports the buffer type
|
|
|
|
for (int i = 0; i < sched->n_backends; i++) {
|
|
|
|
if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
|
2024-02-11 13:37:58 +01:00
|
|
|
return i;
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
|
|
|
|
fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
|
|
|
|
__func__, ggml_backend_buffer_name(buffer), tensor->name);
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
|
|
|
|
return -1;
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
2024-03-13 18:54:21 +01:00
|
|
|
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
|
2023-12-07 21:27:19 +01:00
|
|
|
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
|
|
|
|
#define GET_CAUSE(node) causes[hash_id(node)]
|
|
|
|
#else
|
|
|
|
#define SET_CAUSE(node, ...)
|
|
|
|
#define GET_CAUSE(node) ""
|
|
|
|
#endif
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
// returns the backend that should be used for the node based on the current locations
|
2024-02-11 13:37:58 +01:00
|
|
|
static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
|
|
|
|
// TODO: use supports_op to check if the backend supports the op
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
// assign pre-allocated nodes to their backend
|
2024-03-27 17:55:10 +01:00
|
|
|
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
|
|
|
|
if (cur_backend_id != -1) {
|
2024-03-13 18:54:21 +01:00
|
|
|
SET_CAUSE(tensor, "1.dst");
|
2024-03-27 17:55:10 +01:00
|
|
|
return cur_backend_id;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
// view_src
|
2024-02-11 13:37:58 +01:00
|
|
|
if (tensor->view_src != NULL) {
|
2024-03-27 17:55:10 +01:00
|
|
|
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
|
|
|
|
if (cur_backend_id != -1) {
|
2024-03-13 18:54:21 +01:00
|
|
|
SET_CAUSE(tensor, "1.vsrc");
|
2024-03-27 17:55:10 +01:00
|
|
|
return cur_backend_id;
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
|
2024-03-27 17:55:10 +01:00
|
|
|
// graph input
|
2024-03-13 18:54:21 +01:00
|
|
|
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
|
2024-03-27 17:55:10 +01:00
|
|
|
cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
|
2024-03-13 18:54:21 +01:00
|
|
|
SET_CAUSE(tensor, "1.inp");
|
2024-03-27 17:55:10 +01:00
|
|
|
return cur_backend_id;
|
2024-03-13 18:54:21 +01:00
|
|
|
}
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
// assign nodes that use weights to the backend of the weights
|
2024-03-27 17:55:10 +01:00
|
|
|
// operations with weights are preferably run on the same backend as the weights
|
2023-11-03 20:35:05 +01:00
|
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
2024-02-11 13:37:58 +01:00
|
|
|
const struct ggml_tensor * src = tensor->src[i];
|
2023-11-03 20:35:05 +01:00
|
|
|
if (src == NULL) {
|
2024-02-19 14:33:51 +01:00
|
|
|
continue;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
2024-03-27 17:55:10 +01:00
|
|
|
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
|
|
|
|
// check if a backend with higher prio wants to offload the op
|
|
|
|
if (src_backend_id == sched->n_backends - 1) {
|
|
|
|
for (int b = 0; b < src_backend_id; b++) {
|
|
|
|
if (ggml_backend_offload_op(sched->backends[b], tensor)) {
|
|
|
|
SET_CAUSE(tensor, "1.off");
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
SET_CAUSE(tensor, "1.wgt%d", i);
|
2024-03-27 17:55:10 +01:00
|
|
|
return src_backend_id;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
return -1;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static char * fmt_size(size_t size) {
|
|
|
|
static char buffer[128];
|
|
|
|
if (size >= 1024*1024) {
|
2024-04-25 16:24:07 +02:00
|
|
|
snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
|
2023-11-03 20:35:05 +01:00
|
|
|
} else {
|
2024-04-25 16:24:07 +02:00
|
|
|
snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
return buffer;
|
|
|
|
}
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
2023-11-03 20:35:05 +01:00
|
|
|
int cur_split = 0;
|
|
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
|
|
|
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
|
2024-02-11 13:37:58 +01:00
|
|
|
ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
|
2023-12-07 21:27:19 +01:00
|
|
|
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
|
|
|
|
sched->splits[cur_split].n_inputs);
|
2023-11-03 20:35:05 +01:00
|
|
|
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
|
2023-12-07 21:27:19 +01:00
|
|
|
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
|
|
|
|
fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
cur_split++;
|
|
|
|
}
|
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
|
|
|
if (ggml_is_view_op(node->op)) {
|
|
|
|
continue;
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
|
2024-01-12 20:07:38 +01:00
|
|
|
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
|
2024-02-11 13:37:58 +01:00
|
|
|
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
|
2023-11-03 20:35:05 +01:00
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
|
|
struct ggml_tensor * src = node->src[j];
|
|
|
|
if (src == NULL) {
|
2024-02-19 14:33:51 +01:00
|
|
|
continue;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
|
2024-01-12 20:07:38 +01:00
|
|
|
fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
|
2023-12-07 21:27:19 +01:00
|
|
|
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
//#define DEBUG_PASS1
|
|
|
|
//#define DEBUG_PASS2
|
|
|
|
//#define DEBUG_PASS3
|
|
|
|
//#define DEBUG_PASS4
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
|
2024-02-11 13:37:58 +01:00
|
|
|
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
2024-01-12 20:07:38 +01:00
|
|
|
// reset splits
|
2023-11-03 20:35:05 +01:00
|
|
|
sched->n_splits = 0;
|
2024-03-13 18:54:21 +01:00
|
|
|
sched->n_graph_inputs = 0;
|
2024-01-12 20:07:38 +01:00
|
|
|
sched->is_reset = false;
|
2023-11-03 20:35:05 +01:00
|
|
|
|
|
|
|
struct ggml_init_params params = {
|
2023-12-07 21:27:19 +01:00
|
|
|
/* .mem_size = */ sizeof(sched->context_buffer),
|
|
|
|
/* .mem_buffer = */ sched->context_buffer,
|
|
|
|
/* .no_alloc = */ true
|
2023-11-03 20:35:05 +01:00
|
|
|
};
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
ggml_free(sched->ctx);
|
2023-11-03 20:35:05 +01:00
|
|
|
|
|
|
|
sched->ctx = ggml_init(params);
|
2024-01-12 20:07:38 +01:00
|
|
|
if (sched->ctx == NULL) {
|
|
|
|
fprintf(stderr, "%s: failed to initialize context\n", __func__);
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
// pass 1: assign backends to ops with pre-allocated inputs
|
2023-11-03 20:35:05 +01:00
|
|
|
for (int i = 0; i < graph->n_leafs; i++) {
|
|
|
|
struct ggml_tensor * leaf = graph->leafs[i];
|
2024-03-27 17:55:10 +01:00
|
|
|
int * leaf_backend_id = &tensor_backend_id(leaf);
|
|
|
|
if (*leaf_backend_id != -1) {
|
2023-11-03 20:35:05 +01:00
|
|
|
// do not overwrite user assignments
|
|
|
|
continue;
|
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
2024-03-27 17:55:10 +01:00
|
|
|
int * node_backend_id = &tensor_backend_id(node);
|
|
|
|
if (*node_backend_id != -1) {
|
2023-11-03 20:35:05 +01:00
|
|
|
// do not overwrite user assignments
|
|
|
|
continue;
|
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
|
2024-01-12 20:07:38 +01:00
|
|
|
// src
|
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
|
|
struct ggml_tensor * src = node->src[j];
|
|
|
|
if (src == NULL) {
|
2024-02-19 14:33:51 +01:00
|
|
|
continue;
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
int * src_backend_id = &tensor_backend_id(src);
|
|
|
|
if (*src_backend_id == -1) {
|
|
|
|
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
#ifdef DEBUG_PASS1
|
2024-03-13 18:54:21 +01:00
|
|
|
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
2024-01-12 20:07:38 +01:00
|
|
|
#endif
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
// pass 2: expand current backend assignments
|
|
|
|
// assign the same backend to adjacent nodes
|
|
|
|
// expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
|
|
|
|
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
|
|
|
|
// pass 2.2 expand gpu down
|
2024-01-12 20:07:38 +01:00
|
|
|
{
|
2024-02-11 13:37:58 +01:00
|
|
|
int cur_backend_id = -1;
|
2024-03-13 18:54:21 +01:00
|
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
2024-01-12 20:07:38 +01:00
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
|
|
|
if (ggml_is_view_op(node->op)) {
|
|
|
|
continue;
|
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
int * node_backend_id = &tensor_backend_id(node);
|
|
|
|
if (*node_backend_id != -1) {
|
|
|
|
if (*node_backend_id == sched->n_backends - 1) {
|
2024-01-12 20:07:38 +01:00
|
|
|
// skip cpu (lowest prio backend)
|
2024-02-11 13:37:58 +01:00
|
|
|
cur_backend_id = -1;
|
2024-01-12 20:07:38 +01:00
|
|
|
} else {
|
2024-03-27 17:55:10 +01:00
|
|
|
cur_backend_id = *node_backend_id;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
} else {
|
2024-03-27 17:55:10 +01:00
|
|
|
*node_backend_id = cur_backend_id;
|
2024-03-13 18:54:21 +01:00
|
|
|
SET_CAUSE(node, "2.2");
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
// pass 2.1 expand gpu up
|
2024-01-12 20:07:38 +01:00
|
|
|
{
|
2024-02-11 13:37:58 +01:00
|
|
|
int cur_backend_id = -1;
|
2024-03-13 18:54:21 +01:00
|
|
|
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
2024-01-12 20:07:38 +01:00
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
|
|
|
if (ggml_is_view_op(node->op)) {
|
|
|
|
continue;
|
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
int * node_backend_id = &tensor_backend_id(node);
|
|
|
|
if (*node_backend_id != -1) {
|
|
|
|
if (*node_backend_id == sched->n_backends - 1) {
|
2024-01-12 20:07:38 +01:00
|
|
|
// skip cpu (lowest prio backend)
|
2024-02-11 13:37:58 +01:00
|
|
|
cur_backend_id = -1;
|
2024-01-12 20:07:38 +01:00
|
|
|
} else {
|
2024-03-27 17:55:10 +01:00
|
|
|
cur_backend_id = *node_backend_id;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
} else {
|
2024-03-27 17:55:10 +01:00
|
|
|
*node_backend_id = cur_backend_id;
|
2024-03-13 18:54:21 +01:00
|
|
|
SET_CAUSE(node, "2.1");
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
// pass 2.4 expand rest down
|
2024-01-12 20:07:38 +01:00
|
|
|
{
|
2024-02-11 13:37:58 +01:00
|
|
|
int cur_backend_id = -1;
|
2024-03-13 18:54:21 +01:00
|
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
2024-01-12 20:07:38 +01:00
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
|
|
|
if (ggml_is_view_op(node->op)) {
|
|
|
|
continue;
|
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
int * node_backend_id = &tensor_backend_id(node);
|
|
|
|
if (*node_backend_id != -1) {
|
|
|
|
cur_backend_id = *node_backend_id;
|
2024-01-12 20:07:38 +01:00
|
|
|
} else {
|
2024-03-27 17:55:10 +01:00
|
|
|
*node_backend_id = cur_backend_id;
|
2024-03-13 18:54:21 +01:00
|
|
|
SET_CAUSE(node, "2.4");
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
// pass 2.3 expand rest up
|
2024-01-12 20:38:34 +01:00
|
|
|
{
|
2024-02-11 13:37:58 +01:00
|
|
|
int cur_backend_id = -1;
|
2024-03-13 18:54:21 +01:00
|
|
|
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
2024-01-12 20:38:34 +01:00
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
|
|
|
if (ggml_is_view_op(node->op)) {
|
|
|
|
continue;
|
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
int * node_backend_id = &tensor_backend_id(node);
|
|
|
|
if (*node_backend_id != -1) {
|
|
|
|
cur_backend_id = *node_backend_id;
|
2024-01-12 20:38:34 +01:00
|
|
|
} else {
|
2024-03-27 17:55:10 +01:00
|
|
|
*node_backend_id = cur_backend_id;
|
2024-03-13 18:54:21 +01:00
|
|
|
SET_CAUSE(node, "2.3");
|
2024-01-12 20:38:34 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
#ifdef DEBUG_PASS2
|
2024-03-13 18:54:21 +01:00
|
|
|
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
2024-01-12 20:07:38 +01:00
|
|
|
#endif
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
// pass 3: assign backends to remaining src from dst and view_src
|
2023-11-03 20:35:05 +01:00
|
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
2024-03-27 17:55:10 +01:00
|
|
|
int * cur_backend_id = &tensor_backend_id(node);
|
|
|
|
if (node->view_src != NULL && *cur_backend_id == -1) {
|
|
|
|
*cur_backend_id = tensor_backend_id(node->view_src);
|
2024-01-12 20:07:38 +01:00
|
|
|
SET_CAUSE(node, "3.vsrc");
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
|
|
struct ggml_tensor * src = node->src[j];
|
|
|
|
if (src == NULL) {
|
2024-02-19 14:33:51 +01:00
|
|
|
continue;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
int * src_backend_id = &tensor_backend_id(src);
|
|
|
|
if (*src_backend_id == -1) {
|
2024-01-12 20:07:38 +01:00
|
|
|
if (src->view_src != NULL) {
|
|
|
|
// views are always on the same backend as the source
|
2024-03-27 17:55:10 +01:00
|
|
|
*src_backend_id = tensor_backend_id(src->view_src);
|
2024-01-12 20:07:38 +01:00
|
|
|
SET_CAUSE(src, "3.vsrc");
|
|
|
|
} else {
|
2024-03-27 17:55:10 +01:00
|
|
|
*src_backend_id = *cur_backend_id;
|
2024-01-12 20:07:38 +01:00
|
|
|
SET_CAUSE(src, "3.cur");
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
#ifdef DEBUG_PASS3
|
2024-03-13 18:54:21 +01:00
|
|
|
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
2024-01-12 20:07:38 +01:00
|
|
|
#endif
|
2023-11-03 20:35:05 +01:00
|
|
|
|
|
|
|
// pass 4: split graph, find tensors that need to be copied
|
2024-01-12 20:07:38 +01:00
|
|
|
{
|
2024-03-27 17:55:10 +01:00
|
|
|
int i_split = 0;
|
|
|
|
struct ggml_backend_sched_split * split = &sched->splits[0];
|
2024-01-12 20:07:38 +01:00
|
|
|
// find the backend of the first split, skipping view ops
|
|
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
|
|
|
if (!ggml_is_view_op(node->op)) {
|
2024-03-27 17:55:10 +01:00
|
|
|
split->backend_id = tensor_backend_id(node);
|
2024-01-12 20:07:38 +01:00
|
|
|
break;
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
split->i_start = 0;
|
|
|
|
split->n_inputs = 0;
|
|
|
|
memset(split->inputs, 0, sizeof(split->inputs)); //HACK
|
|
|
|
int cur_backend_id = split->backend_id;
|
2024-01-12 20:07:38 +01:00
|
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
|
|
|
|
|
|
|
if (ggml_is_view_op(node->op)) {
|
|
|
|
continue;
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-03-27 17:55:10 +01:00
|
|
|
const int node_backend_id = tensor_backend_id(node);
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2024-03-27 17:55:10 +01:00
|
|
|
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
|
2024-01-12 20:38:34 +01:00
|
|
|
|
2024-03-27 17:55:10 +01:00
|
|
|
// check if we should start a new split based on the sources of the current node
|
|
|
|
bool need_new_split = false;
|
|
|
|
if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
|
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
|
|
struct ggml_tensor * src = node->src[j];
|
|
|
|
if (src == NULL) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// check if a weight is on a different backend
|
|
|
|
// by starting a new split, the memory of the previously offloaded weights can be reused
|
|
|
|
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
|
|
|
int src_backend_id = tensor_backend_id(src);
|
|
|
|
if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
|
|
|
|
need_new_split = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// check if the split has too many inputs
|
|
|
|
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
|
|
|
|
const size_t id = hash_id(src);
|
|
|
|
int src_backend_id = sched->tensor_backend_id[id];
|
|
|
|
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
|
|
|
|
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
|
|
|
|
need_new_split = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (node_backend_id != cur_backend_id || need_new_split) {
|
|
|
|
split->i_end = i;
|
|
|
|
i_split++;
|
|
|
|
if (i_split >= sched->splits_capacity) {
|
|
|
|
sched->splits_capacity *= 2;
|
|
|
|
sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
|
|
|
|
GGML_ASSERT(sched->splits != NULL);
|
|
|
|
}
|
|
|
|
GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
|
|
|
|
split = &sched->splits[i_split];
|
|
|
|
split->backend_id = node_backend_id;
|
|
|
|
split->i_start = i;
|
|
|
|
split->n_inputs = 0;
|
|
|
|
cur_backend_id = node_backend_id;
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
// find inputs that are not on the same backend
|
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
|
|
struct ggml_tensor * src = node->src[j];
|
|
|
|
if (src == NULL) {
|
2024-02-19 14:33:51 +01:00
|
|
|
continue;
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
|
2024-03-27 17:55:10 +01:00
|
|
|
const int src_backend_id = tensor_backend_id(src);
|
2024-02-11 13:37:58 +01:00
|
|
|
assert(src_backend_id != -1); // all inputs should be assigned by now
|
2024-03-13 18:54:21 +01:00
|
|
|
|
2024-03-27 17:55:10 +01:00
|
|
|
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
|
2024-03-13 18:54:21 +01:00
|
|
|
size_t id = hash_id(src);
|
|
|
|
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
|
|
|
|
ggml_backend_t backend = sched->backends[src_backend_id];
|
|
|
|
for (int c = 0; c < sched->n_copies; c++) {
|
|
|
|
struct ggml_tensor * tensor_copy;
|
|
|
|
if (c == sched->cur_copy) {
|
|
|
|
tensor_copy = src; // use the original tensor as the current copy
|
|
|
|
} else {
|
|
|
|
tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
|
|
|
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
|
|
|
|
}
|
|
|
|
if (sched->n_copies > 1) {
|
|
|
|
ggml_set_input(tensor_copy);
|
|
|
|
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
|
|
|
}
|
|
|
|
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
|
|
|
|
SET_CAUSE(tensor_copy, "4.cpy");
|
|
|
|
}
|
|
|
|
int n_graph_inputs = sched->n_graph_inputs++;
|
|
|
|
GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
|
|
|
|
sched->graph_inputs[n_graph_inputs] = src;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-03-27 17:55:10 +01:00
|
|
|
if (src_backend_id != node_backend_id) {
|
2024-01-20 16:05:49 +01:00
|
|
|
// create a copy of the input in the split's backend
|
2024-03-27 17:55:10 +01:00
|
|
|
const size_t id = hash_id(src);
|
2024-03-13 18:54:21 +01:00
|
|
|
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
|
2024-02-11 13:37:58 +01:00
|
|
|
ggml_backend_t backend = sched->backends[cur_backend_id];
|
2024-03-13 18:54:21 +01:00
|
|
|
for (int c = 0; c < sched->n_copies; c++) {
|
|
|
|
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
|
|
|
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
|
|
|
|
if (sched->n_copies > 1) {
|
|
|
|
ggml_set_input(tensor_copy);
|
|
|
|
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
|
|
|
}
|
|
|
|
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
|
|
|
|
SET_CAUSE(tensor_copy, "4.cpy");
|
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
int n_inputs = split->n_inputs++;
|
2024-03-13 18:54:21 +01:00
|
|
|
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
|
2024-03-27 17:55:10 +01:00
|
|
|
split->inputs[n_inputs] = src;
|
2024-01-20 16:05:49 +01:00
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-03-27 17:55:10 +01:00
|
|
|
split->i_end = graph->n_nodes;
|
|
|
|
sched->n_splits = i_split + 1;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
#ifdef DEBUG_PASS4
|
2024-03-13 18:54:21 +01:00
|
|
|
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
2024-01-12 20:07:38 +01:00
|
|
|
#endif
|
2023-11-03 20:35:05 +01:00
|
|
|
|
|
|
|
// create copies of the graph for each split
|
2024-03-13 18:54:21 +01:00
|
|
|
// TODO: avoid this copy
|
2024-03-27 17:55:10 +01:00
|
|
|
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
|
2023-11-03 20:35:05 +01:00
|
|
|
for (int i = 0; i < sched->n_splits; i++) {
|
|
|
|
struct ggml_backend_sched_split * split = &sched->splits[i];
|
2023-12-07 21:27:19 +01:00
|
|
|
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
2023-11-03 20:35:05 +01:00
|
|
|
for (int j = 0; j < split->n_inputs; j++) {
|
2024-03-27 17:55:10 +01:00
|
|
|
assert(graph_copy->size > (graph_copy->n_nodes + 1));
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
struct ggml_tensor * input = split->inputs[j];
|
2024-03-27 17:55:10 +01:00
|
|
|
const size_t input_id = hash_id(input);
|
|
|
|
struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
|
2024-02-11 13:37:58 +01:00
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
// add a dependency to the input source so that it is not freed before the copy is done
|
2024-02-11 13:37:58 +01:00
|
|
|
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
|
2024-03-13 18:54:21 +01:00
|
|
|
input_dep->src[0] = input;
|
2024-03-27 17:55:10 +01:00
|
|
|
sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
|
2024-02-11 13:37:58 +01:00
|
|
|
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
|
|
|
|
|
|
|
|
// add a dependency to the input copy so that it is allocated at the start of the split
|
|
|
|
sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
|
2023-11-03 20:35:05 +01:00
|
|
|
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int j = split->i_start; j < split->i_end; j++) {
|
2024-03-27 17:55:10 +01:00
|
|
|
assert(graph_copy->size > graph_copy->n_nodes);
|
2024-02-11 13:37:58 +01:00
|
|
|
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
|
2023-11-03 20:35:05 +01:00
|
|
|
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
|
|
|
|
}
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
|
|
|
|
if (sched->n_copies > 1) {
|
|
|
|
// add input copies as leafs so that they are allocated first
|
|
|
|
for (int i = 0; i < sched->n_graph_inputs; i++) {
|
|
|
|
struct ggml_tensor * input = sched->graph_inputs[i];
|
|
|
|
size_t id = hash_id(input);
|
|
|
|
int backend_id = tensor_backend_id(input);
|
|
|
|
for (int c = 0; c < sched->n_copies; c++) {
|
|
|
|
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
|
|
|
|
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
|
|
|
|
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < sched->n_splits; i++) {
|
|
|
|
struct ggml_backend_sched_split * split = &sched->splits[i];
|
|
|
|
int backend_id = split->backend_id;
|
|
|
|
for (int j = 0; j < split->n_inputs; j++) {
|
|
|
|
struct ggml_tensor * input = split->inputs[j];
|
|
|
|
size_t id = hash_id(input);
|
|
|
|
for (int c = 0; c < sched->n_copies; c++) {
|
|
|
|
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
|
|
|
|
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
|
|
|
|
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// add leafs from the original graph
|
|
|
|
for (int i = 0; i < graph->n_leafs; i++) {
|
|
|
|
struct ggml_tensor * leaf = graph->leafs[i];
|
|
|
|
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
|
|
|
|
graph_copy->leafs[graph_copy->n_leafs++] = leaf;
|
|
|
|
}
|
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
sched->graph = graph_copy;
|
|
|
|
}
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
2024-03-13 18:54:21 +01:00
|
|
|
// allocate graph
|
2024-02-11 13:37:58 +01:00
|
|
|
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
|
2024-03-13 18:54:21 +01:00
|
|
|
// the re-allocation may cause the split inputs to be moved to a different address
|
|
|
|
ggml_backend_sched_synchronize(sched);
|
2024-02-11 13:37:58 +01:00
|
|
|
#ifndef NDEBUG
|
2024-03-13 18:54:21 +01:00
|
|
|
fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
|
2024-02-11 13:37:58 +01:00
|
|
|
#endif
|
2024-03-13 18:54:21 +01:00
|
|
|
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
|
2024-02-11 13:37:58 +01:00
|
|
|
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
|
2024-03-13 18:54:21 +01:00
|
|
|
fprintf(stderr, "%s: failed to allocate graph\n", __func__);
|
2024-02-11 13:37:58 +01:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
2024-02-12 08:27:57 +01:00
|
|
|
|
|
|
|
return true;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
|
2023-11-03 20:35:05 +01:00
|
|
|
struct ggml_backend_sched_split * splits = sched->splits;
|
|
|
|
|
|
|
|
for (int i = 0; i < sched->n_splits; i++) {
|
|
|
|
struct ggml_backend_sched_split * split = &splits[i];
|
2024-02-11 13:37:58 +01:00
|
|
|
int split_backend_id = split->backend_id;
|
|
|
|
ggml_backend_t split_backend = sched->backends[split_backend_id];
|
2023-11-03 20:35:05 +01:00
|
|
|
|
|
|
|
// copy the input tensors to the split backend
|
|
|
|
for (int j = 0; j < split->n_inputs; j++) {
|
2024-03-13 18:54:21 +01:00
|
|
|
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
|
2023-12-07 21:27:19 +01:00
|
|
|
struct ggml_tensor * input = split->inputs[j];
|
2024-03-13 18:54:21 +01:00
|
|
|
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
|
|
|
|
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
|
|
|
|
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
|
|
|
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
|
|
|
|
} else {
|
|
|
|
ggml_backend_synchronize(split_backend);
|
|
|
|
}
|
|
|
|
ggml_backend_tensor_copy(input, input_cpy);
|
|
|
|
} else {
|
2024-03-27 17:55:10 +01:00
|
|
|
// wait for the split backend to finish using the input before overwriting it
|
2024-03-13 18:54:21 +01:00
|
|
|
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
|
|
|
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
|
|
|
|
} else {
|
|
|
|
ggml_backend_synchronize(split_backend);
|
|
|
|
}
|
|
|
|
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-01-17 17:39:41 +01:00
|
|
|
if (!sched->callback_eval) {
|
2024-03-13 18:54:21 +01:00
|
|
|
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
|
2024-03-04 10:05:42 +01:00
|
|
|
if (ec != GGML_STATUS_SUCCESS) {
|
|
|
|
return ec;
|
2024-02-11 13:37:58 +01:00
|
|
|
}
|
2024-01-17 17:39:41 +01:00
|
|
|
} else {
|
|
|
|
// similar to ggml_backend_compare_graph_backend
|
|
|
|
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
|
|
|
|
struct ggml_tensor * t = split->graph.nodes[j0];
|
|
|
|
|
|
|
|
// check if the user needs data from this node
|
|
|
|
bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
|
|
|
|
|
|
|
|
int j1 = j0;
|
|
|
|
|
|
|
|
// determine the range [j0, j1] of nodes that can be computed together
|
|
|
|
while (!need && j1 < split->graph.n_nodes - 1) {
|
|
|
|
t = split->graph.nodes[++j1];
|
|
|
|
need = sched->callback_eval(t, true, sched->callback_eval_user_data);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
|
2024-03-04 10:05:42 +01:00
|
|
|
if (ec != GGML_STATUS_SUCCESS) {
|
|
|
|
return ec;
|
2024-02-11 13:37:58 +01:00
|
|
|
}
|
2024-01-17 17:39:41 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
// TODO: pass backend to the callback, then the user can decide if they want to synchronize
|
|
|
|
ggml_backend_synchronize(split_backend);
|
|
|
|
|
2024-01-17 17:39:41 +01:00
|
|
|
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
j0 = j1;
|
|
|
|
}
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
// record the event of this copy
|
|
|
|
if (split->n_inputs > 0) {
|
|
|
|
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
|
|
|
ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
|
|
|
|
sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
return GGML_STATUS_SUCCESS;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
ggml_backend_sched_t ggml_backend_sched_new(
|
|
|
|
ggml_backend_t * backends,
|
|
|
|
ggml_backend_buffer_type_t * bufts,
|
|
|
|
int n_backends,
|
|
|
|
size_t graph_size,
|
|
|
|
bool parallel) {
|
2024-01-12 20:07:38 +01:00
|
|
|
GGML_ASSERT(n_backends > 0);
|
2024-03-13 18:54:21 +01:00
|
|
|
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
|
|
|
|
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-04-22 16:05:06 +02:00
|
|
|
struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
|
2024-01-12 20:07:38 +01:00
|
|
|
|
|
|
|
// initialize hash table
|
2024-03-27 17:55:10 +01:00
|
|
|
sched->hash_set = ggml_hash_set_new(graph_size);
|
2024-04-22 16:05:06 +02:00
|
|
|
sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
|
|
|
|
sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
|
2024-03-27 17:55:10 +01:00
|
|
|
|
|
|
|
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
|
2024-04-22 16:05:06 +02:00
|
|
|
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
|
|
|
|
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
|
2023-11-03 20:35:05 +01:00
|
|
|
|
|
|
|
sched->n_backends = n_backends;
|
2024-03-13 18:54:21 +01:00
|
|
|
|
|
|
|
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
|
|
|
|
|
2024-03-27 17:55:10 +01:00
|
|
|
const int initial_splits_capacity = 16;
|
2024-04-22 16:05:06 +02:00
|
|
|
sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
|
2024-03-27 17:55:10 +01:00
|
|
|
sched->splits_capacity = initial_splits_capacity;
|
2024-03-13 18:54:21 +01:00
|
|
|
|
|
|
|
for (int b = 0; b < n_backends; b++) {
|
|
|
|
sched->backends[b] = backends[b];
|
|
|
|
sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
|
|
|
|
GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
|
|
|
|
if (sched->n_copies > 1) {
|
|
|
|
for (int c = 0; c < sched->n_copies; c++) {
|
|
|
|
sched->events[b][c] = ggml_backend_event_new(backends[b]);
|
|
|
|
}
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
ggml_backend_sched_reset(sched);
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2023-11-03 20:35:05 +01:00
|
|
|
return sched;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
|
|
|
if (sched == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
for (int b = 0; b < sched->n_backends; b++) {
|
|
|
|
for (int c = 0; c < sched->n_copies; c++) {
|
|
|
|
ggml_backend_event_free(sched->events[b][c]);
|
|
|
|
}
|
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
ggml_gallocr_free(sched->galloc);
|
2024-01-12 20:07:38 +01:00
|
|
|
ggml_free(sched->ctx);
|
2024-03-27 17:55:10 +01:00
|
|
|
free(sched->splits);
|
2023-11-03 20:35:05 +01:00
|
|
|
free(sched->hash_set.keys);
|
2024-02-11 13:37:58 +01:00
|
|
|
free(sched->tensor_backend_id);
|
|
|
|
free(sched->tensor_copies);
|
|
|
|
free(sched->node_backend_ids);
|
2024-03-13 18:54:21 +01:00
|
|
|
free(sched->leaf_backend_ids);
|
2023-11-03 20:35:05 +01:00
|
|
|
free(sched);
|
|
|
|
}
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
|
|
|
// reset state for the next run
|
2024-04-26 20:08:30 +02:00
|
|
|
if (!sched->is_reset) {
|
|
|
|
size_t hash_size = sched->hash_set.size;
|
|
|
|
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
|
|
|
|
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
|
|
|
|
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-04-26 20:08:30 +02:00
|
|
|
sched->is_reset = true;
|
|
|
|
}
|
2024-03-13 18:54:21 +01:00
|
|
|
sched->is_alloc = false;
|
2024-02-11 13:37:58 +01:00
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
2024-03-27 17:55:10 +01:00
|
|
|
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
ggml_backend_sched_split_graph(sched, measure_graph);
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
// TODO: extract this to a separate function
|
|
|
|
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
|
2024-02-11 13:37:58 +01:00
|
|
|
return false;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
ggml_backend_sched_reset(sched);
|
2024-03-13 18:54:21 +01:00
|
|
|
ggml_backend_sched_synchronize(sched);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
2024-03-27 17:55:10 +01:00
|
|
|
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
|
2024-03-13 18:54:21 +01:00
|
|
|
|
|
|
|
ggml_backend_sched_split_graph(sched, graph);
|
|
|
|
|
|
|
|
if (!ggml_backend_sched_alloc_splits(sched)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
sched->is_alloc = true;
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
return true;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
2024-03-13 18:54:21 +01:00
|
|
|
enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
|
|
|
|
ggml_backend_sched_synchronize(sched);
|
|
|
|
return err;
|
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
|
|
|
if (!sched->is_reset && !sched->is_alloc) {
|
2024-02-11 13:37:58 +01:00
|
|
|
ggml_backend_sched_reset(sched);
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
2023-11-03 20:35:05 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
if (!sched->is_alloc) {
|
|
|
|
if (!ggml_backend_sched_alloc_graph(sched, graph)) {
|
|
|
|
return GGML_STATUS_ALLOC_FAILED;
|
|
|
|
}
|
2024-02-11 13:37:58 +01:00
|
|
|
}
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2024-03-04 10:05:42 +01:00
|
|
|
return ggml_backend_sched_compute_splits(sched);
|
2024-02-11 13:37:58 +01:00
|
|
|
}
|
2024-01-17 17:39:41 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
|
|
|
|
for (int i = 0; i < sched->n_backends; i++) {
|
|
|
|
ggml_backend_synchronize(sched->backends[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-01-17 17:39:41 +01:00
|
|
|
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
|
|
|
|
sched->callback_eval = callback;
|
|
|
|
sched->callback_eval_user_data = user_data;
|
|
|
|
}
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
|
|
|
|
return sched->n_splits;
|
|
|
|
}
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
|
|
|
|
return sched->n_copies;
|
|
|
|
}
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
|
|
|
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
2024-01-12 20:07:38 +01:00
|
|
|
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
2024-03-13 18:54:21 +01:00
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
|
2024-02-11 13:37:58 +01:00
|
|
|
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
2023-11-03 20:35:05 +01:00
|
|
|
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
2024-02-11 13:37:58 +01:00
|
|
|
tensor_backend_id(node) = backend_index;
|
2023-11-03 20:35:05 +01:00
|
|
|
}
|
2023-12-07 21:27:19 +01:00
|
|
|
|
2024-03-13 18:54:21 +01:00
|
|
|
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
2024-02-11 13:37:58 +01:00
|
|
|
int backend_index = tensor_backend_id(node);
|
|
|
|
if (backend_index == -1) {
|
2024-01-12 20:07:38 +01:00
|
|
|
return NULL;
|
|
|
|
}
|
2024-02-11 13:37:58 +01:00
|
|
|
return sched->backends[backend_index];
|
2024-01-12 20:07:38 +01:00
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
// utils
|
2024-01-12 20:07:38 +01:00
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
|
|
|
GGML_ASSERT(tensor->buffer == NULL);
|
|
|
|
GGML_ASSERT(tensor->view_src != NULL);
|
|
|
|
GGML_ASSERT(tensor->view_src->buffer != NULL);
|
|
|
|
GGML_ASSERT(tensor->view_src->data != NULL);
|
|
|
|
|
|
|
|
tensor->buffer = buffer;
|
|
|
|
tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
|
|
|
|
tensor->backend = tensor->view_src->backend;
|
|
|
|
ggml_backend_buffer_init_tensor(buffer, tensor);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
|
|
|
|
GGML_ASSERT(tensor->buffer == NULL);
|
|
|
|
GGML_ASSERT(tensor->data == NULL);
|
|
|
|
GGML_ASSERT(tensor->view_src == NULL);
|
|
|
|
GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
|
|
|
|
GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
|
|
|
|
(char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
|
|
|
|
|
|
|
|
tensor->buffer = buffer;
|
|
|
|
tensor->data = addr;
|
|
|
|
ggml_backend_buffer_init_tensor(buffer, tensor);
|
|
|
|
}
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
|
2023-12-07 21:27:19 +01:00
|
|
|
struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
|
|
|
|
|
|
|
|
GGML_ASSERT(src != NULL);
|
|
|
|
GGML_ASSERT(src->data && "graph must be allocated");
|
|
|
|
|
|
|
|
size_t id = ggml_hash_insert(hash_set, src);
|
|
|
|
if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
|
|
|
|
return node_copies[ggml_hash_find(hash_set, src)];
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
|
|
|
|
if (src->view_src != NULL) {
|
2024-02-11 13:37:58 +01:00
|
|
|
dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
|
2023-12-07 21:27:19 +01:00
|
|
|
dst->view_offs = src->view_offs;
|
|
|
|
}
|
|
|
|
dst->op = src->op;
|
|
|
|
memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
|
|
|
|
ggml_set_name(dst, src->name);
|
|
|
|
|
|
|
|
// copy src
|
|
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
|
|
|
struct ggml_tensor * s = src->src[i];
|
|
|
|
if (s == NULL) {
|
2024-02-19 14:33:51 +01:00
|
|
|
continue;
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
2024-02-11 13:37:58 +01:00
|
|
|
dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
node_copies[id] = dst;
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
2024-02-11 13:37:58 +01:00
|
|
|
static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
|
2023-12-07 21:27:19 +01:00
|
|
|
size_t id = ggml_hash_find(hash_set, src);
|
|
|
|
if (node_init[id]) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
node_init[id] = true;
|
|
|
|
|
|
|
|
struct ggml_tensor * dst = node_copies[id];
|
|
|
|
if (dst->view_src != NULL) {
|
2024-02-11 13:37:58 +01:00
|
|
|
graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
|
2023-12-07 21:27:19 +01:00
|
|
|
ggml_backend_view_init(dst->view_src->buffer, dst);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
ggml_backend_tensor_copy(src, dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
// init src
|
|
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
|
|
|
struct ggml_tensor * s = src->src[i];
|
|
|
|
if (s == NULL) {
|
2024-02-19 14:33:51 +01:00
|
|
|
continue;
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
2024-02-11 13:37:58 +01:00
|
|
|
graph_copy_init_tensor(hash_set, node_copies, node_init, s);
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
|
|
|
struct ggml_hash_set hash_set = {
|
|
|
|
/* .size = */ graph->visited_hash_table.size,
|
2024-04-22 16:05:06 +02:00
|
|
|
/* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
|
2023-12-07 21:27:19 +01:00
|
|
|
};
|
2024-04-22 16:05:06 +02:00
|
|
|
struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
|
|
|
|
bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
|
2023-12-07 21:27:19 +01:00
|
|
|
|
|
|
|
struct ggml_init_params params = {
|
|
|
|
/* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
|
|
|
|
/* .mem_buffer = */ NULL,
|
|
|
|
/* .no_alloc = */ true
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ggml_context * ctx_allocated = ggml_init(params);
|
|
|
|
struct ggml_context * ctx_unallocated = ggml_init(params);
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
if (ctx_allocated == NULL || ctx_unallocated == NULL) {
|
|
|
|
fprintf(stderr, "failed to allocate context for graph copy\n");
|
|
|
|
free(hash_set.keys);
|
|
|
|
free(node_copies);
|
|
|
|
free(node_init);
|
|
|
|
ggml_free(ctx_allocated);
|
|
|
|
ggml_free(ctx_unallocated);
|
|
|
|
return (struct ggml_backend_graph_copy) {
|
|
|
|
/* .buffer = */ NULL,
|
|
|
|
/* .ctx_allocated = */ NULL,
|
|
|
|
/* .ctx_unallocated = */ NULL,
|
|
|
|
/* .graph = */ NULL,
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
// dup nodes
|
|
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
2024-02-11 13:37:58 +01:00
|
|
|
graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// allocate nodes
|
|
|
|
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
|
2024-01-12 20:07:38 +01:00
|
|
|
if (buffer == NULL) {
|
|
|
|
fprintf(stderr, "failed to allocate buffer for graph copy\n");
|
|
|
|
free(hash_set.keys);
|
|
|
|
free(node_copies);
|
|
|
|
free(node_init);
|
|
|
|
ggml_free(ctx_allocated);
|
|
|
|
ggml_free(ctx_unallocated);
|
|
|
|
return (struct ggml_backend_graph_copy) {
|
|
|
|
/* .buffer = */ NULL,
|
|
|
|
/* .ctx_allocated = */ NULL,
|
|
|
|
/* .ctx_unallocated = */ NULL,
|
|
|
|
/* .graph = */ NULL,
|
|
|
|
};
|
|
|
|
}
|
2023-12-07 21:27:19 +01:00
|
|
|
|
|
|
|
//printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
|
|
|
|
|
|
|
|
// copy data and init views
|
|
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
2024-02-11 13:37:58 +01:00
|
|
|
graph_copy_init_tensor(hash_set, node_copies, node_init, node);
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// build graph copy
|
|
|
|
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
|
|
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
|
|
|
struct ggml_tensor * node = graph->nodes[i];
|
|
|
|
struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
|
|
|
|
graph_copy->nodes[i] = node_copy;
|
|
|
|
}
|
|
|
|
graph_copy->n_nodes = graph->n_nodes;
|
|
|
|
|
|
|
|
free(hash_set.keys);
|
|
|
|
free(node_copies);
|
|
|
|
free(node_init);
|
|
|
|
|
|
|
|
return (struct ggml_backend_graph_copy) {
|
|
|
|
/* .buffer = */ buffer,
|
|
|
|
/* .ctx_allocated = */ ctx_allocated,
|
|
|
|
/* .ctx_unallocated = */ ctx_unallocated,
|
|
|
|
/* .graph = */ graph_copy,
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
|
|
|
|
ggml_backend_buffer_free(copy.buffer);
|
|
|
|
ggml_free(copy.ctx_allocated);
|
|
|
|
ggml_free(copy.ctx_unallocated);
|
|
|
|
}
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
|
2023-12-07 21:27:19 +01:00
|
|
|
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
|
2024-01-12 20:07:38 +01:00
|
|
|
if (copy.buffer == NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:27:19 +01:00
|
|
|
struct ggml_cgraph * g1 = graph;
|
|
|
|
struct ggml_cgraph * g2 = copy.graph;
|
|
|
|
|
|
|
|
assert(g1->n_nodes == g2->n_nodes);
|
|
|
|
|
|
|
|
for (int i = 0; i < g1->n_nodes; i++) {
|
|
|
|
//printf("eval %d/%d\n", i, g1->n_nodes);
|
|
|
|
struct ggml_tensor * t1 = g1->nodes[i];
|
|
|
|
struct ggml_tensor * t2 = g2->nodes[i];
|
|
|
|
|
|
|
|
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
|
|
|
|
|
|
|
|
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
|
|
|
|
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
|
|
|
|
|
|
|
|
ggml_backend_graph_compute(backend1, &g1v);
|
|
|
|
ggml_backend_graph_compute(backend2, &g2v);
|
|
|
|
|
|
|
|
if (ggml_is_view_op(t1->op)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// compare results, calculate rms etc
|
|
|
|
if (!callback(i, t1, t2, user_data)) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_backend_graph_copy_free(copy);
|
2024-01-12 20:07:38 +01:00
|
|
|
|
|
|
|
return true;
|
2023-12-07 21:27:19 +01:00
|
|
|
}
|