1
0
mirror of https://github.com/ggerganov/whisper.cpp.git synced 2025-01-21 21:38:41 +01:00
whisper.cpp/ggml-metal.m

2741 lines
142 KiB
Mathematica
Raw Normal View History

2023-06-25 14:40:30 +02:00
#import "ggml-metal.h"
#import "ggml-backend-impl.h"
2023-06-25 14:40:30 +02:00
#import "ggml.h"
#import <Foundation/Foundation.h>
#import <Metal/Metal.h>
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
2023-06-25 14:40:30 +02:00
#ifdef GGML_METAL_NDEBUG
#define GGML_METAL_LOG_INFO(...)
#define GGML_METAL_LOG_WARN(...)
#define GGML_METAL_LOG_ERROR(...)
2023-06-25 14:40:30 +02:00
#else
#define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
2023-06-25 14:40:30 +02:00
#endif
#define UNUSED(x) (void)(x)
#define GGML_MAX_CONCUR (2*GGML_DEFAULT_GRAPH_SIZE)
2023-06-25 14:40:30 +02:00
struct ggml_metal_buffer {
const char * name;
void * data;
size_t size;
id<MTLBuffer> metal;
};
struct ggml_metal_context {
int n_cb;
2023-06-25 14:40:30 +02:00
id<MTLDevice> device;
id<MTLCommandQueue> queue;
id<MTLLibrary> library;
id<MTLCommandBuffer> command_buffers [GGML_METAL_MAX_COMMAND_BUFFERS];
id<MTLComputeCommandEncoder> command_encoders[GGML_METAL_MAX_COMMAND_BUFFERS];
dispatch_queue_t d_queue;
2023-06-25 14:40:30 +02:00
int n_buffers;
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
int concur_list[GGML_MAX_CONCUR];
int concur_list_len;
2023-06-25 14:40:30 +02:00
// custom kernels
#define GGML_METAL_DECL_KERNEL(name) \
id<MTLFunction> function_##name; \
id<MTLComputePipelineState> pipeline_##name
GGML_METAL_DECL_KERNEL(add);
GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(mul);
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
GGML_METAL_DECL_KERNEL(div);
GGML_METAL_DECL_KERNEL(div_row);
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(scale);
GGML_METAL_DECL_KERNEL(scale_4);
GGML_METAL_DECL_KERNEL(tanh);
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(relu);
GGML_METAL_DECL_KERNEL(gelu);
GGML_METAL_DECL_KERNEL(gelu_quick);
GGML_METAL_DECL_KERNEL(silu);
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(soft_max);
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
GGML_METAL_DECL_KERNEL(soft_max_4);
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(diag_mask_inf);
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
GGML_METAL_DECL_KERNEL(diag_mask_inf_8);
GGML_METAL_DECL_KERNEL(get_rows_f32);
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(get_rows_f16);
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
GGML_METAL_DECL_KERNEL(get_rows_q5_0);
GGML_METAL_DECL_KERNEL(get_rows_q5_1);
GGML_METAL_DECL_KERNEL(get_rows_q8_0);
GGML_METAL_DECL_KERNEL(get_rows_q2_K);
GGML_METAL_DECL_KERNEL(get_rows_q3_K);
GGML_METAL_DECL_KERNEL(get_rows_q4_K);
GGML_METAL_DECL_KERNEL(get_rows_q5_K);
GGML_METAL_DECL_KERNEL(get_rows_q6_K);
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(group_norm);
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f16);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q5_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q5_1_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q6_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_id_f32_f32);
//GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f16);
GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f32);
//GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f32_1row);
//GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f32_l4);
GGML_METAL_DECL_KERNEL(mul_mv_id_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_id_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mv_id_q5_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_id_q5_1_f32);
GGML_METAL_DECL_KERNEL(mul_mv_id_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_id_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_id_q3_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_id_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_id_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_id_q6_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q5_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q5_1_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_q5_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_q5_1_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_q3_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_id_q6_K_f32);
GGML_METAL_DECL_KERNEL(rope_f32);
GGML_METAL_DECL_KERNEL(rope_f16);
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(alibi_f32);
GGML_METAL_DECL_KERNEL(im2col_f16);
GGML_METAL_DECL_KERNEL(upscale_f32);
GGML_METAL_DECL_KERNEL(pad_f32);
GGML_METAL_DECL_KERNEL(argsort_f32_i32_asc);
GGML_METAL_DECL_KERNEL(argsort_f32_i32_desc);
GGML_METAL_DECL_KERNEL(leaky_relu_f32);
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
GGML_METAL_DECL_KERNEL(cpy_f32_q8_0);
GGML_METAL_DECL_KERNEL(cpy_f32_q4_0);
GGML_METAL_DECL_KERNEL(cpy_f32_q4_1);
//GGML_METAL_DECL_KERNEL(cpy_f32_q5_0);
//GGML_METAL_DECL_KERNEL(cpy_f32_q5_1);
2023-06-25 14:40:30 +02:00
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
GGML_METAL_DECL_KERNEL(cpy_f16_f32);
GGML_METAL_DECL_KERNEL(concat);
GGML_METAL_DECL_KERNEL(sqr);
GGML_METAL_DECL_KERNEL(sum_rows);
2023-06-25 14:40:30 +02:00
#undef GGML_METAL_DECL_KERNEL
};
// MSL code
// TODO: move the contents here when ready
// for now it is easier to work in a separate file
2023-11-12 15:36:20 +01:00
//static NSString * const msl_library_source = @"see metal.metal";
2023-06-25 14:40:30 +02:00
// Here to assist with NSBundle Path Hack
@interface GGMLMetalClass : NSObject
@end
@implementation GGMLMetalClass
@end
static void ggml_metal_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
fprintf(stderr, "%s", msg);
UNUSED(level);
UNUSED(user_data);
}
ggml_log_callback ggml_metal_log_callback = ggml_metal_default_log_callback;
void * ggml_metal_log_user_data = NULL;
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
ggml_metal_log_callback = log_callback;
ggml_metal_log_user_data = user_data;
}
2023-11-12 15:36:20 +01:00
GGML_ATTRIBUTE_FORMAT(2, 3)
static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
if (ggml_metal_log_callback != NULL) {
va_list args;
va_start(args, format);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data);
} else {
char* buffer2 = malloc(len+1);
va_end(args);
va_start(args, format);
vsnprintf(buffer2, len+1, format, args);
buffer2[len] = 0;
ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data);
free(buffer2);
}
va_end(args);
}
}
struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_LOG_INFO("%s: allocating\n", __func__);
id<MTLDevice> device;
NSString * s;
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
#if TARGET_OS_OSX
// Show all the Metal device instances in the system
NSArray * devices = MTLCopyAllDevices();
for (device in devices) {
s = [device name];
GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [s UTF8String]);
}
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
#endif
2023-06-25 14:40:30 +02:00
// Pick and show default Metal device
device = MTLCreateSystemDefaultDevice();
s = [device name];
GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [s UTF8String]);
2023-06-25 14:40:30 +02:00
// Configure context
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
ctx->device = device;
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
2023-06-25 14:40:30 +02:00
ctx->queue = [ctx->device newCommandQueue];
ctx->n_buffers = 0;
ctx->concur_list_len = 0;
2023-06-25 14:40:30 +02:00
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
2023-06-25 14:40:30 +02:00
// load library
2023-06-25 14:40:30 +02:00
{
NSBundle * bundle = nil;
#ifdef SWIFT_PACKAGE
bundle = SWIFTPM_MODULE_BUNDLE;
2023-06-25 14:40:30 +02:00
#else
bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
#endif
2023-06-25 14:40:30 +02:00
NSError * error = nil;
NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"];
if (libPath != nil) {
NSURL * libURL = [NSURL fileURLWithPath:libPath];
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]);
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
} else {
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
NSString * sourcePath;
NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, ggmlMetalPathResources ? [ggmlMetalPathResources UTF8String] : "nil");
if (ggmlMetalPathResources) {
sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
} else {
sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
}
if (sourcePath == nil) {
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
sourcePath = @"ggml-metal.metal";
}
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
if (error) {
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
}
2023-06-25 14:40:30 +02:00
MTLCompileOptions* options = nil;
#ifdef GGML_QKK_64
options = [MTLCompileOptions new];
options.preprocessorMacros = @{ @"QK_K" : @(64) };
#endif
ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
}
2023-06-25 14:40:30 +02:00
if (error) {
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
2023-06-25 14:40:30 +02:00
}
}
#if TARGET_OS_OSX
// print MTL GPU family:
GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]);
// determine max supported GPU family
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
if ([ctx->device supportsFamily:i]) {
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
break;
}
}
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
if (ctx->device.maxTransferRate != 0) {
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6);
} else {
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
}
#endif
2023-06-25 14:40:30 +02:00
// load kernels
{
NSError * error = nil;
/*
GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
(int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \
(int) ctx->pipeline_##name.threadExecutionWidth); \
*/
2023-06-25 14:40:30 +02:00
#define GGML_METAL_ADD_KERNEL(name) \
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
if (error) { \
GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
return NULL; \
}
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(add);
GGML_METAL_ADD_KERNEL(add_row);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(mul);
GGML_METAL_ADD_KERNEL(mul_row);
GGML_METAL_ADD_KERNEL(div);
GGML_METAL_ADD_KERNEL(div_row);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(scale);
GGML_METAL_ADD_KERNEL(scale_4);
GGML_METAL_ADD_KERNEL(tanh);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(relu);
GGML_METAL_ADD_KERNEL(gelu);
GGML_METAL_ADD_KERNEL(gelu_quick);
GGML_METAL_ADD_KERNEL(silu);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(soft_max);
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
GGML_METAL_ADD_KERNEL(soft_max_4);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(diag_mask_inf);
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
GGML_METAL_ADD_KERNEL(diag_mask_inf_8);
GGML_METAL_ADD_KERNEL(get_rows_f32);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(get_rows_f16);
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
GGML_METAL_ADD_KERNEL(get_rows_q5_0);
GGML_METAL_ADD_KERNEL(get_rows_q5_1);
GGML_METAL_ADD_KERNEL(get_rows_q8_0);
GGML_METAL_ADD_KERNEL(get_rows_q2_K);
GGML_METAL_ADD_KERNEL(get_rows_q3_K);
GGML_METAL_ADD_KERNEL(get_rows_q4_K);
GGML_METAL_ADD_KERNEL(get_rows_q5_K);
GGML_METAL_ADD_KERNEL(get_rows_q6_K);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(group_norm);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f16);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q5_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q5_1_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q6_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_id_f32_f32);
//GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f16);
GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f32);
//GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f32_1row);
//GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f32_l4);
GGML_METAL_ADD_KERNEL(mul_mv_id_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_id_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mv_id_q5_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_id_q5_1_f32);
GGML_METAL_ADD_KERNEL(mul_mv_id_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_id_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_id_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_id_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_id_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_id_q6_K_f32);
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q5_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q5_1_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_q5_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_q5_1_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_id_q6_K_f32);
}
GGML_METAL_ADD_KERNEL(rope_f32);
GGML_METAL_ADD_KERNEL(rope_f16);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(alibi_f32);
GGML_METAL_ADD_KERNEL(im2col_f16);
GGML_METAL_ADD_KERNEL(upscale_f32);
GGML_METAL_ADD_KERNEL(pad_f32);
GGML_METAL_ADD_KERNEL(argsort_f32_i32_asc);
GGML_METAL_ADD_KERNEL(argsort_f32_i32_desc);
GGML_METAL_ADD_KERNEL(leaky_relu_f32);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
GGML_METAL_ADD_KERNEL(cpy_f32_q8_0);
GGML_METAL_ADD_KERNEL(cpy_f32_q4_0);
GGML_METAL_ADD_KERNEL(cpy_f32_q4_1);
//GGML_METAL_ADD_KERNEL(cpy_f32_q5_0);
//GGML_METAL_ADD_KERNEL(cpy_f32_q5_1);
2023-06-25 14:40:30 +02:00
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
GGML_METAL_ADD_KERNEL(cpy_f16_f32);
GGML_METAL_ADD_KERNEL(concat);
GGML_METAL_ADD_KERNEL(sqr);
GGML_METAL_ADD_KERNEL(sum_rows);
2023-06-25 14:40:30 +02:00
#undef GGML_METAL_ADD_KERNEL
}
return ctx;
}
void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_LOG_INFO("%s: deallocating\n", __func__);
#define GGML_METAL_DEL_KERNEL(name) \
[ctx->function_##name release]; \
[ctx->pipeline_##name release];
GGML_METAL_DEL_KERNEL(add);
GGML_METAL_DEL_KERNEL(add_row);
GGML_METAL_DEL_KERNEL(mul);
GGML_METAL_DEL_KERNEL(mul_row);
GGML_METAL_DEL_KERNEL(div);
GGML_METAL_DEL_KERNEL(div_row);
GGML_METAL_DEL_KERNEL(scale);
GGML_METAL_DEL_KERNEL(scale_4);
GGML_METAL_DEL_KERNEL(tanh);
GGML_METAL_DEL_KERNEL(relu);
GGML_METAL_DEL_KERNEL(gelu);
GGML_METAL_DEL_KERNEL(gelu_quick);
GGML_METAL_DEL_KERNEL(silu);
GGML_METAL_DEL_KERNEL(soft_max);
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
GGML_METAL_DEL_KERNEL(soft_max_4);
GGML_METAL_DEL_KERNEL(diag_mask_inf);
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
GGML_METAL_DEL_KERNEL(diag_mask_inf_8);
GGML_METAL_DEL_KERNEL(get_rows_f32);
GGML_METAL_DEL_KERNEL(get_rows_f16);
GGML_METAL_DEL_KERNEL(get_rows_q4_0);
GGML_METAL_DEL_KERNEL(get_rows_q4_1);
GGML_METAL_DEL_KERNEL(get_rows_q5_0);
GGML_METAL_DEL_KERNEL(get_rows_q5_1);
GGML_METAL_DEL_KERNEL(get_rows_q8_0);
GGML_METAL_DEL_KERNEL(get_rows_q2_K);
GGML_METAL_DEL_KERNEL(get_rows_q3_K);
GGML_METAL_DEL_KERNEL(get_rows_q4_K);
GGML_METAL_DEL_KERNEL(get_rows_q5_K);
GGML_METAL_DEL_KERNEL(get_rows_q6_K);
GGML_METAL_DEL_KERNEL(rms_norm);
GGML_METAL_DEL_KERNEL(group_norm);
GGML_METAL_DEL_KERNEL(norm);
GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f16);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q5_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q5_1_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q4_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q5_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q6_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_id_f32_f32);
//GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f16);
GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f32);
//GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f32_1row);
//GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f32_l4);
GGML_METAL_DEL_KERNEL(mul_mv_id_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_id_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mv_id_q5_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_id_q5_1_f32);
GGML_METAL_DEL_KERNEL(mul_mv_id_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_id_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_id_q3_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_id_q4_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_id_q5_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_id_q6_K_f32);
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q5_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q5_1_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_q5_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_q5_1_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_q3_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_q4_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_q5_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_id_q6_K_f32);
}
GGML_METAL_DEL_KERNEL(rope_f32);
GGML_METAL_DEL_KERNEL(rope_f16);
GGML_METAL_DEL_KERNEL(alibi_f32);
GGML_METAL_DEL_KERNEL(im2col_f16);
GGML_METAL_DEL_KERNEL(upscale_f32);
GGML_METAL_DEL_KERNEL(pad_f32);
GGML_METAL_DEL_KERNEL(argsort_f32_i32_asc);
GGML_METAL_DEL_KERNEL(argsort_f32_i32_desc);
GGML_METAL_DEL_KERNEL(leaky_relu_f32);
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
GGML_METAL_DEL_KERNEL(cpy_f32_q8_0);
GGML_METAL_DEL_KERNEL(cpy_f32_q4_0);
GGML_METAL_DEL_KERNEL(cpy_f32_q4_1);
//GGML_METAL_DEL_KERNEL(cpy_f32_q5_0);
//GGML_METAL_DEL_KERNEL(cpy_f32_q5_1);
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
GGML_METAL_DEL_KERNEL(cpy_f16_f32);
GGML_METAL_DEL_KERNEL(concat);
GGML_METAL_DEL_KERNEL(sqr);
GGML_METAL_DEL_KERNEL(sum_rows);
#undef GGML_METAL_DEL_KERNEL
for (int i = 0; i < ctx->n_buffers; ++i) {
[ctx->buffers[i].metal release];
}
[ctx->library release];
[ctx->queue release];
[ctx->device release];
dispatch_release(ctx->d_queue);
2023-06-25 14:40:30 +02:00
free(ctx);
}
void * ggml_metal_host_malloc(size_t n) {
void * data = NULL;
const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
if (result != 0) {
GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
return NULL;
}
return data;
}
void ggml_metal_host_free(void * data) {
free(data);
}
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
}
int ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
return ctx->concur_list_len;
}
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
return ctx->concur_list;
}
// temporarily defined here for compatibility between ggml-backend and the old API
struct ggml_backend_metal_buffer {
void * data;
size_t size;
id<MTLBuffer> metal;
};
struct ggml_backend_metal_buffer_context {
void * all_data;
size_t all_size;
bool owned;
// multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
int n_buffers;
struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
};
2023-06-25 14:40:30 +02:00
// finds the Metal buffer that contains the tensor data on the GPU device
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
// Metal buffer based on the host memory pointer
//
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
//GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
2023-06-25 14:40:30 +02:00
const int64_t tsize = ggml_nbytes(t);
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
// compatibility with ggml-backend
if (buffer && buffer->buft == ggml_backend_metal_buffer_type()) {
struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context;
// find the view that contains the tensor fully
for (int i = 0; i < buf_ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data;
//GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size);
if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) {
*offs = (size_t) ioffs;
//GGML_METAL_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs);
return buf_ctx->buffers[i].metal;
}
}
GGML_METAL_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
return nil;
}
2023-06-25 14:40:30 +02:00
// find the view that contains the tensor fully
for (int i = 0; i < ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
//GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name);
2023-06-25 14:40:30 +02:00
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
*offs = (size_t) ioffs;
//GGML_METAL_LOG_INFO("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
2023-06-25 14:40:30 +02:00
return ctx->buffers[i].metal;
}
}
GGML_METAL_LOG_ERROR("%s: error: buffer is nil\n", __func__);
2023-06-25 14:40:30 +02:00
return nil;
}
bool ggml_metal_add_buffer(
struct ggml_metal_context * ctx,
const char * name,
void * data,
size_t size,
size_t max_size) {
if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
GGML_METAL_LOG_ERROR("%s: error: too many buffers\n", __func__);
2023-06-25 14:40:30 +02:00
return false;
}
if (data) {
// verify that the buffer does not overlap with any of the existing buffers
for (int i = 0; i < ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
GGML_METAL_LOG_ERROR("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
2023-06-25 14:40:30 +02:00
return false;
}
}
const size_t size_page = sysconf(_SC_PAGESIZE);
2023-06-25 14:40:30 +02:00
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
}
// the buffer fits into the max buffer size allowed by the device
if (size_aligned <= ctx->device.maxBufferLength) {
ctx->buffers[ctx->n_buffers].name = name;
ctx->buffers[ctx->n_buffers].data = data;
ctx->buffers[ctx->n_buffers].size = size;
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
2023-06-25 14:40:30 +02:00
return false;
}
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB", __func__, name, size_aligned / 1024.0 / 1024.0);
2023-06-25 14:40:30 +02:00
++ctx->n_buffers;
} else {
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
// one of the views
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
const size_t size_view = ctx->device.maxBufferLength;
for (size_t i = 0; i < size; i += size_step) {
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
ctx->buffers[ctx->n_buffers].name = name;
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
2023-06-25 14:40:30 +02:00
return false;
}
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
2023-06-25 14:40:30 +02:00
if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n");
2023-06-25 14:40:30 +02:00
}
++ctx->n_buffers;
}
}
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
#if TARGET_OS_OSX
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
2023-06-25 14:40:30 +02:00
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
2023-11-12 15:36:20 +01:00
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
2023-06-25 14:40:30 +02:00
} else {
GGML_METAL_LOG_INFO("\n");
2023-06-25 14:40:30 +02:00
}
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
#else
GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
#endif
2023-06-25 14:40:30 +02:00
}
return true;
}
void ggml_metal_set_tensor(
struct ggml_metal_context * ctx,
struct ggml_tensor * t) {
size_t offs;
id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
}
void ggml_metal_get_tensor(
struct ggml_metal_context * ctx,
struct ggml_tensor * t) {
size_t offs;
id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
}
void ggml_metal_graph_find_concurrency(
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf, bool check_mem) {
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
int nodes_unused[GGML_MAX_CONCUR];
for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; }
for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; }
ctx->concur_list_len = 0;
int n_left = gf->n_nodes;
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
while (n_left > 0) {
// number of nodes at a layer (that can be issued concurrently)
int concurrency = 0;
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
if (nodes_unused[i]) {
// if the requirements for gf->nodes[i] are satisfied
int exe_flag = 1;
// scan all srcs
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
if (src_cur) {
// if is leaf nodes it's satisfied.
// TODO: ggml_is_leaf()
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {
continue;
}
// otherwise this src should be the output from previous nodes.
int is_found = 0;
// scan 2*search_depth back because we inserted barrier.
//for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) {
if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) {
is_found = 1;
break;
}
}
if (is_found == 0) {
exe_flag = 0;
break;
}
}
}
if (exe_flag && check_mem) {
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
int64_t data_start = (int64_t) gf->nodes[i]->data;
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
for (int j = n_start; j < i; j++) {
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
&& gf->nodes[j]->op != GGML_OP_VIEW \
&& gf->nodes[j]->op != GGML_OP_TRANSPOSE \
&& gf->nodes[j]->op != GGML_OP_PERMUTE) {
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
continue;
}
exe_flag = 0;
}
}
}
if (exe_flag) {
ctx->concur_list[level_pos + concurrency] = i;
nodes_unused[i] = 0;
concurrency++;
ctx->concur_list_len++;
}
}
}
n_left -= concurrency;
// adding a barrier different layer
ctx->concur_list[level_pos + concurrency] = -1;
ctx->concur_list_len++;
// jump all sorted nodes at nodes_bak
while (!nodes_unused[n_start]) {
n_start++;
}
level_pos += concurrency + 1;
}
if (ctx->concur_list_len > GGML_MAX_CONCUR) {
GGML_METAL_LOG_WARN("%s: too many elements for metal ctx->concur_list!\n", __func__);
}
}
static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
return true;
default:
return false;
}
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
case GGML_OP_CONCAT:
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SUM_ROWS:
case GGML_OP_SOFT_MAX:
case GGML_OP_RMS_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_NORM:
case GGML_OP_ALIBI:
case GGML_OP_ROPE:
case GGML_OP_IM2COL:
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU:
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
return true;
case GGML_OP_CPY:
case GGML_OP_DUP:
case GGML_OP_CONT:
{
switch (op->src[0]->type) {
case GGML_TYPE_F32:
switch (op->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
return true;
default:
return false;
}
case GGML_TYPE_F16:
switch (op->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return true;
default:
return false;
}
default:
return false;
};
}
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_GET_ROWS:
{
return op->ne[3] == 1;
}
default:
return false;
}
}
2023-06-25 14:40:30 +02:00
void ggml_metal_graph_compute(
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) {
@autoreleasepool {
// if there is ctx->concur_list, dispatch concurrently
// else fallback to serial dispatch
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR;
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
2023-06-25 14:40:30 +02:00
// create multiple command buffers and enqueue them
// then, we encode the graph into the command buffers in parallel
const int n_cb = ctx->n_cb;
2023-06-25 14:40:30 +02:00
for (int i = 0; i < n_cb; ++i) {
ctx->command_buffers[i] = [ctx->queue commandBuffer];
2023-06-25 14:40:30 +02:00
// enqueue the command buffers in order to specify their execution order
[ctx->command_buffers[i] enqueue];
2023-06-25 14:40:30 +02:00
ctx->command_encoders[i] = [ctx->command_buffers[i] computeCommandEncoderWithDescriptor: edesc];
}
2023-06-25 14:40:30 +02:00
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
2023-06-25 14:40:30 +02:00
dispatch_async(ctx->d_queue, ^{
2023-06-25 14:40:30 +02:00
size_t offs_src0 = 0;
size_t offs_src1 = 0;
size_t offs_dst = 0;
id<MTLCommandBuffer> command_buffer = ctx->command_buffers[cb_idx];
id<MTLComputeCommandEncoder> encoder = ctx->command_encoders[cb_idx];
2023-06-25 14:40:30 +02:00
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);
for (int ind = node_start; ind < node_end; ++ind) {
const int i = has_concur ? ctx->concur_list[ind] : ind;
if (i == -1) {
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
continue;
}
2023-06-25 14:40:30 +02:00
//GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
2023-06-25 14:40:30 +02:00
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
2023-06-25 14:40:30 +02:00
struct ggml_tensor * dst = gf->nodes[i];
switch (dst->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
{
// noop -> next node
} continue;
default:
{
} break;
}
if (!ggml_metal_supports_op(dst)) {
GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
GGML_ASSERT(!"unsupported op");
}
2023-06-25 14:40:30 +02:00
const int64_t ne00 = src0 ? src0->ne[0] : 0;
const int64_t ne01 = src0 ? src0->ne[1] : 0;
const int64_t ne02 = src0 ? src0->ne[2] : 0;
const int64_t ne03 = src0 ? src0->ne[3] : 0;
const uint64_t nb00 = src0 ? src0->nb[0] : 0;
const uint64_t nb01 = src0 ? src0->nb[1] : 0;
const uint64_t nb02 = src0 ? src0->nb[2] : 0;
const uint64_t nb03 = src0 ? src0->nb[3] : 0;
const int64_t ne10 = src1 ? src1->ne[0] : 0;
const int64_t ne11 = src1 ? src1->ne[1] : 0;
const int64_t ne12 = src1 ? src1->ne[2] : 0;
const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
const uint64_t nb10 = src1 ? src1->nb[0] : 0;
const uint64_t nb11 = src1 ? src1->nb[1] : 0;
const uint64_t nb12 = src1 ? src1->nb[2] : 0;
const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
const int64_t ne0 = dst ? dst->ne[0] : 0;
const int64_t ne1 = dst ? dst->ne[1] : 0;
const int64_t ne2 = dst ? dst->ne[2] : 0;
const int64_t ne3 = dst ? dst->ne[3] : 0;
const uint64_t nb0 = dst ? dst->nb[0] : 0;
const uint64_t nb1 = dst ? dst->nb[1] : 0;
const uint64_t nb2 = dst ? dst->nb[2] : 0;
const uint64_t nb3 = dst ? dst->nb[3] : 0;
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
//GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
2023-06-25 14:40:30 +02:00
//if (src0) {
// GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
2023-06-25 14:40:30 +02:00
// ggml_is_contiguous(src0), src0->name);
//}
//if (src1) {
// GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
2023-06-25 14:40:30 +02:00
// ggml_is_contiguous(src1), src1->name);
//}
//if (dst) {
// GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
2023-06-25 14:40:30 +02:00
// dst->name);
//}
switch (dst->op) {
case GGML_OP_CONCAT:
2023-06-25 14:40:30 +02:00
{
const int64_t nb = ne00;
[encoder setComputePipelineState:ctx->pipeline_concat];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
[encoder setBytes:&nb length:sizeof(nb) atIndex:27];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
2023-06-25 14:40:30 +02:00
} break;
case GGML_OP_ADD:
case GGML_OP_MUL:
case GGML_OP_DIV:
2023-06-25 14:40:30 +02:00
{
const size_t offs = 0;
bool bcast_row = false;
int64_t nb = ne00;
id<MTLComputePipelineState> pipeline = nil;
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
GGML_ASSERT(ggml_is_contiguous(src0));
// src1 is a row
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
GGML_ASSERT(ne11 == 1);
nb = ne00 / 4;
switch (dst->op) {
case GGML_OP_ADD: pipeline = ctx->pipeline_add_row; break;
case GGML_OP_MUL: pipeline = ctx->pipeline_mul_row; break;
case GGML_OP_DIV: pipeline = ctx->pipeline_div_row; break;
default: GGML_ASSERT(false);
}
bcast_row = true;
} else {
switch (dst->op) {
case GGML_OP_ADD: pipeline = ctx->pipeline_add; break;
case GGML_OP_MUL: pipeline = ctx->pipeline_mul; break;
case GGML_OP_DIV: pipeline = ctx->pipeline_div; break;
default: GGML_ASSERT(false);
}
2023-06-25 14:40:30 +02:00
}
[encoder setComputePipelineState:pipeline];
2023-06-25 14:40:30 +02:00
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
[encoder setBytes:&offs length:sizeof(offs) atIndex:27];
[encoder setBytes:&nb length:sizeof(nb) atIndex:28];
if (bcast_row) {
const int64_t n = ggml_nelements(dst)/4;
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} else {
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
2023-06-25 14:40:30 +02:00
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
2023-06-25 14:40:30 +02:00
} break;
case GGML_OP_ACC:
{
GGML_ASSERT(src0t == GGML_TYPE_F32);
GGML_ASSERT(src1t == GGML_TYPE_F32);
GGML_ASSERT(dstt == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
const size_t pnb1 = ((int32_t *) dst->op_params)[0];
const size_t pnb2 = ((int32_t *) dst->op_params)[1];
const size_t pnb3 = ((int32_t *) dst->op_params)[2];
const size_t offs = ((int32_t *) dst->op_params)[3];
const bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace) {
// run a separete kernel to cpy src->dst
// not sure how to avoid this
// TODO: make a simpler cpy_bytes kernel
const int nth = MIN(1024, ne00);
[encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
[encoder setComputePipelineState:ctx->pipeline_add];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
[encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:8];
[encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:9];
[encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:10];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
[encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:24];
[encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:25];
[encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26];
[encoder setBytes:&offs length:sizeof(offs) atIndex:27];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
2023-06-25 14:40:30 +02:00
case GGML_OP_SCALE:
{
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
GGML_ASSERT(ggml_is_contiguous(src0));
const float scale = *(const float *) dst->op_params;
2023-06-25 14:40:30 +02:00
int64_t n = ggml_nelements(dst);
if (n % 4 == 0) {
n /= 4;
[encoder setComputePipelineState:ctx->pipeline_scale_4];
} else {
[encoder setComputePipelineState:ctx->pipeline_scale];
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
2023-06-25 14:40:30 +02:00
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) {
case GGML_UNARY_OP_TANH:
{
[encoder setComputePipelineState:ctx->pipeline_tanh];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_RELU:
{
[encoder setComputePipelineState:ctx->pipeline_relu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_GELU:
{
[encoder setComputePipelineState:ctx->pipeline_gelu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
[encoder setComputePipelineState:ctx->pipeline_gelu_quick];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_SILU:
{
[encoder setComputePipelineState:ctx->pipeline_silu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
}
2023-06-25 14:40:30 +02:00
} break;
case GGML_OP_SQR:
{
GGML_ASSERT(ggml_is_contiguous(src0));
[encoder setComputePipelineState:ctx->pipeline_sqr];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SUM_ROWS:
{
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
[encoder setComputePipelineState:ctx->pipeline_sum_rows];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:19];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:20];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:21];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:22];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:23];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:24];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:25];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
2023-06-25 14:40:30 +02:00
case GGML_OP_SOFT_MAX:
{
int nth = 32; // SIMD width
2023-06-25 14:40:30 +02:00
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
if (ne00%4 == 0) {
while (nth < ne00/4 && nth < 256) {
nth *= 2;
}
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
[encoder setComputePipelineState:ctx->pipeline_soft_max_4];
} else {
while (nth < ne00 && nth < 1024) {
nth *= 2;
}
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
[encoder setComputePipelineState:ctx->pipeline_soft_max];
}
const float scale = ((float *) dst->op_params)[0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
if (id_src1) {
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
} else {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&scale length:sizeof(scale) atIndex:6];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
2023-06-25 14:40:30 +02:00
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
2023-06-25 14:40:30 +02:00
} break;
case GGML_OP_DIAG_MASK_INF:
{
const int n_past = ((int32_t *)(dst->op_params))[0];
2023-06-25 14:40:30 +02:00
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
if (ne00%8 == 0) {
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf_8];
} else {
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
}
2023-06-25 14:40:30 +02:00
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
if (ne00%8 == 0) {
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
}
else {
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
}
2023-06-25 14:40:30 +02:00
} break;
case GGML_OP_MUL_MAT:
{
GGML_ASSERT(ne00 == ne10);
// TODO: assert that dim2 and dim3 are contiguous
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);
const uint r2 = ne12/ne02;
const uint r3 = ne13/ne03;
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel
int ne11_mm_min = 1;
#if 0
// the numbers below are measured on M2 Ultra for 7B and 13B models
// these numbers do not translate to other devices or model sizes
// TODO: need to find a better approach
if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
switch (src0t) {
case GGML_TYPE_F16: ne11_mm_min = 2; break;
case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
case GGML_TYPE_Q5_0: // not tested yet
case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
default: ne11_mm_min = 1; break;
}
}
#endif
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
!ggml_is_transposed(src0) &&
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
!ggml_is_transposed(src1) &&
src1t == GGML_TYPE_F32 &&
ne00 % 32 == 0 && ne00 >= 64 &&
(ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
switch (src0->type) {
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_0_f32]; break;
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_1_f32]; break;
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
2023-06-25 14:40:30 +02:00
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:13];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:14];
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
2023-06-25 14:40:30 +02:00
} else {
int nth0 = 32;
int nth1 = 1;
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
int nrows = 1;
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
2023-06-25 14:40:30 +02:00
// use custom matrix x vector kernel
switch (src0t) {
case GGML_TYPE_F32:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32];
nrows = 4;
} break;
2023-06-25 14:40:30 +02:00
case GGML_TYPE_F16:
{
nth0 = 32;
2023-06-25 14:40:30 +02:00
nth1 = 1;
if (src1t == GGML_TYPE_F32) {
if (ne11 * ne12 < 4) {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
nrows = ne11;
} else {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
nrows = 4;
}
} else {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f16];
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
nrows = 4;
}
2023-06-25 14:40:30 +02:00
} break;
case GGML_TYPE_Q4_0:
{
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_0_f32];
2023-06-25 14:40:30 +02:00
} break;
case GGML_TYPE_Q4_1:
{
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
} break;
case GGML_TYPE_Q5_0:
{
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_0_f32];
} break;
case GGML_TYPE_Q5_1:
{
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_1_f32];
2023-06-25 14:40:30 +02:00
} break;
case GGML_TYPE_Q8_0:
{
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q8_0_f32];
} break;
2023-06-25 14:40:30 +02:00
case GGML_TYPE_Q2_K:
{
nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q2_K_f32];
2023-06-25 14:40:30 +02:00
} break;
case GGML_TYPE_Q3_K:
{
nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q3_K_f32];
2023-06-25 14:40:30 +02:00
} break;
case GGML_TYPE_Q4_K:
{
nth0 = 4; //1;
nth1 = 8; //32;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_K_f32];
2023-06-25 14:40:30 +02:00
} break;
case GGML_TYPE_Q5_K:
{
nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_K_f32];
2023-06-25 14:40:30 +02:00
} break;
case GGML_TYPE_Q6_K:
{
nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q6_K_f32];
2023-06-25 14:40:30 +02:00
} break;
default:
{
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
2023-06-25 14:40:30 +02:00
GGML_ASSERT(false && "not implemented");
}
};
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:17];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:18];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
2023-06-25 14:40:30 +02:00
}
else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
2023-06-25 14:40:30 +02:00
} else {
const int64_t ny = (ne11 + nrows - 1)/nrows;
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
}
} break;
case GGML_OP_MUL_MAT_ID:
{
//GGML_ASSERT(ne00 == ne10);
//GGML_ASSERT(ne03 == ne13);
GGML_ASSERT(src0t == GGML_TYPE_I32);
const int n_as = ((int32_t *) dst->op_params)[1];
// TODO: make this more general
GGML_ASSERT(n_as <= 8);
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
const int64_t ne20 = src2 ? src2->ne[0] : 0;
const int64_t ne21 = src2 ? src2->ne[1] : 0;
const int64_t ne22 = src2 ? src2->ne[2] : 0;
const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
const uint64_t nb21 = src2 ? src2->nb[1] : 0;
const uint64_t nb22 = src2 ? src2->nb[2] : 0;
const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23);
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
GGML_ASSERT(!ggml_is_transposed(src2));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(ne20 % 32 == 0);
// !!!!!!!!! TODO: this assert is probably required but not sure!
//GGML_ASSERT(ne20 >= 64);
GGML_ASSERT(src1t == GGML_TYPE_F32);
const uint r2 = ne12/ne22;
const uint r3 = ne13/ne23;
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel
int ne11_mm_min = 1;
const int idx = ((int32_t *) dst->op_params)[0];
// batch size
GGML_ASSERT(ne01 == ne11);
const int64_t _ne1 = 1; // kernel_mul_mm_impl needs a reference in constant memory
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
// !!!
// TODO: for now, always use mat-vec kernels until we figure out how to improve the
// indirect matrix multiplication
// !!!
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && _ne1 > ne11_mm_min) {
switch (src2->type) {
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_f32_f32]; break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_f16_f32]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q4_0_f32]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q4_1_f32]; break;
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q5_0_f32]; break;
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q5_1_f32]; break;
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q8_0_f32]; break;
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q2_K_f32]; break;
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q3_K_f32]; break;
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q4_K_f32]; break;
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q5_K_f32]; break;
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_q6_K_f32]; break;
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:5];
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:7];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:8];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:9];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:16];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:17];
[encoder setBytes:&idx length:sizeof(idx) atIndex:18];
// TODO: how to make this an array? read Metal docs
for (int j = 0; j < n_as; ++j) {
struct ggml_tensor * src_cur = dst->src[2 + j];
size_t offs_src_cur = 0;
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:19 + j];
2023-06-25 14:40:30 +02:00
}
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
// TODO: processing one row at a time (ne11 -> 1) is not efficient
[encoder dispatchThreadgroups:MTLSizeMake( (_ne1 + 31)/32, (ne21 + 63)/64, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else {
int nth0 = 32;
int nth1 = 1;
int nrows = 1;
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
// use custom matrix x vector kernel
switch (src2t) {
case GGML_TYPE_F32:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_f32_f32];
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
nth0 = 32;
nth1 = 1;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_f16_f32];
} break;
case GGML_TYPE_Q4_0:
{
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q4_0_f32];
} break;
case GGML_TYPE_Q4_1:
{
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q4_1_f32];
} break;
case GGML_TYPE_Q5_0:
{
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q5_0_f32];
} break;
case GGML_TYPE_Q5_1:
{
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q5_1_f32];
} break;
case GGML_TYPE_Q8_0:
{
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q8_0_f32];
} break;
case GGML_TYPE_Q2_K:
{
nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q2_K_f32];
} break;
case GGML_TYPE_Q3_K:
{
nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q3_K_f32];
} break;
case GGML_TYPE_Q4_K:
{
nth0 = 4; //1;
nth1 = 8; //32;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q4_K_f32];
} break;
case GGML_TYPE_Q5_K:
{
nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q5_K_f32];
} break;
case GGML_TYPE_Q6_K:
{
nth0 = 2;
nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q6_K_f32];
} break;
default:
{
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
GGML_ASSERT(false && "not implemented");
}
};
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
[encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:6];
[encoder setBytes:&nb20 length:sizeof(nb20) atIndex:7];
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:8];
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:9];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:11];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17];
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:18];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19];
[encoder setBytes:&r2 length:sizeof(r2) atIndex:20];
[encoder setBytes:&r3 length:sizeof(r3) atIndex:21];
[encoder setBytes:&idx length:sizeof(idx) atIndex:22];
// TODO: how to make this an array? read Metal docs
for (int j = 0; j < n_as; ++j) {
struct ggml_tensor * src_cur = dst->src[2 + j];
size_t offs_src_cur = 0;
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j];
}
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 ||
src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 ||
src2t == GGML_TYPE_Q2_K) { // || src2t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src2t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src2t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
}
else if (src2t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src2t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
const int64_t ny = (_ne1 + nrows - 1)/nrows;
[encoder dispatchThreadgroups:MTLSizeMake(ne21, ny, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
2023-06-25 14:40:30 +02:00
}
} break;
case GGML_OP_GET_ROWS:
{
switch (src0->type) {
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_get_rows_f32]; break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
2023-06-25 14:40:30 +02:00
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_0]; break;
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_1]; break;
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break;
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break;
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break;
2023-06-25 14:40:30 +02:00
default: GGML_ASSERT(false && "not implemented");
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
whisper : Metal and ggml-alloc support (#1270) * metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
2023-09-15 11:18:18 +02:00
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5];
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7];
[encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10];
[encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
2023-06-25 14:40:30 +02:00
} break;
case GGML_OP_RMS_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
2023-06-25 14:40:30 +02:00
int nth = 32; // SIMD width
while (nth < ne00/4 && nth < 1024) {
nth *= 2;
}
2023-06-25 14:40:30 +02:00
[encoder setComputePipelineState:ctx->pipeline_rms_norm];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
2023-06-25 14:40:30 +02:00
const int64_t nrows = ggml_nrows(src0);
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_GROUP_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
//float eps;
//memcpy(&eps, dst->op_params, sizeof(float));
const float eps = 1e-6f; // TODO: temporarily hardcoded
const int32_t n_groups = ((int32_t *) dst->op_params)[0];
int nth = 32; // SIMD width
//while (nth < ne00/4 && nth < 1024) {
// nth *= 2;
//}
[encoder setComputePipelineState:ctx->pipeline_group_norm];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:5];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8];
[encoder setBytes:&eps length:sizeof( float) atIndex:9];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
2023-06-25 14:40:30 +02:00
case GGML_OP_NORM:
{
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
2023-06-25 14:40:30 +02:00
const int nth = MIN(256, ne00);
2023-06-25 14:40:30 +02:00
[encoder setComputePipelineState:ctx->pipeline_norm];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0];
2023-06-25 14:40:30 +02:00
const int64_t nrows = ggml_nrows(src0);
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ALIBI:
{
GGML_ASSERT((src0t == GGML_TYPE_F32));
const int nth = MIN(1024, ne00);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
2023-06-25 14:40:30 +02:00
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
2023-06-25 14:40:30 +02:00
[encoder setComputePipelineState:ctx->pipeline_alibi_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
[encoder setBytes:&m1 length:sizeof( float) atIndex:19];
[encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20];
2023-06-25 14:40:30 +02:00
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ROPE:
{
GGML_ASSERT(ne10 == ne02);
2023-06-25 14:40:30 +02:00
const int nth = MIN(1024, ne00);
2023-06-25 14:40:30 +02:00
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
switch (src0->type) {
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_rope_f32]; break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_rope_f16]; break;
default: GGML_ASSERT(false);
};
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&n_past length:sizeof( int) atIndex:19];
[encoder setBytes:&n_dims length:sizeof( int) atIndex:20];
[encoder setBytes:&mode length:sizeof( int) atIndex:21];
[encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22];
[encoder setBytes:&freq_base length:sizeof( float) atIndex:23];
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:24];
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:25];
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:26];
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:27];
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:28];
2023-06-25 14:40:30 +02:00
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
2023-06-25 14:40:30 +02:00
} break;
case GGML_OP_IM2COL:
{
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int32_t N = src1->ne[is_2D ? 3 : 2];
const int32_t IC = src1->ne[is_2D ? 2 : 1];
const int32_t IH = is_2D ? src1->ne[1] : 1;
const int32_t IW = src1->ne[0];
const int32_t KH = is_2D ? src0->ne[1] : 1;
const int32_t KW = src0->ne[0];
const int32_t OH = is_2D ? dst->ne[2] : 1;
const int32_t OW = dst->ne[1];
const int32_t CHW = IC * KH * KW;
const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
switch (src0->type) {
case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_im2col_f16]; break;
default: GGML_ASSERT(false);
};
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2];
[encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3];
[encoder setBytes:&IW length:sizeof( int32_t) atIndex:4];
[encoder setBytes:&IH length:sizeof( int32_t) atIndex:5];
[encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6];
[encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7];
[encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8];
[encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9];
[encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10];
[encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11];
[encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12];
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
} break;
case GGML_OP_UPSCALE:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
const int sf = dst->op_params[0];
[encoder setComputePipelineState:ctx->pipeline_upscale_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
[encoder setBytes:&sf length:sizeof(sf) atIndex:18];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_PAD:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
[encoder setComputePipelineState:ctx->pipeline_pad_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ARGSORT:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_I32);
const int nrows = ggml_nrows(src0);
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
switch (order) {
case GGML_SORT_ASC: [encoder setComputePipelineState:ctx->pipeline_argsort_f32_i32_asc]; break;
case GGML_SORT_DESC: [encoder setComputePipelineState:ctx->pipeline_argsort_f32_i32_desc]; break;
default: GGML_ASSERT(false);
};
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00, 1, 1)];
} break;
case GGML_OP_LEAKY_RELU:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
float slope;
memcpy(&slope, dst->op_params, sizeof(float));
[encoder setComputePipelineState:ctx->pipeline_leaky_relu_f32];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&slope length:sizeof(slope) atIndex:2];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_DUP:
2023-06-25 14:40:30 +02:00
case GGML_OP_CPY:
case GGML_OP_CONT:
2023-06-25 14:40:30 +02:00
{
GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0);
int nth = MIN(1024, ne00/ggml_blck_size(src0->type));
2023-06-25 14:40:30 +02:00
switch (src0t) {
case GGML_TYPE_F32:
{
GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
2023-06-25 14:40:30 +02:00
switch (dstt) {
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_q8_0]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_q4_0]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_q4_1]; break;
//case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_q5_0]; break;
//case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_q5_1]; break;
2023-06-25 14:40:30 +02:00
default: GGML_ASSERT(false && "not implemented");
};
} break;
case GGML_TYPE_F16:
{
switch (dstt) {
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f32]; break;
2023-06-25 14:40:30 +02:00
default: GGML_ASSERT(false && "not implemented");
};
} break;
default: GGML_ASSERT(false && "not implemented");
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
2023-06-25 14:40:30 +02:00
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
default:
{
GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
}
2023-06-25 14:40:30 +02:00
}
}
if (encoder != nil) {
[encoder endEncoding];
encoder = nil;
}
[command_buffer commit];
});
}
// wait for all threads to finish
dispatch_barrier_sync(ctx->d_queue, ^{});
2023-06-25 14:40:30 +02:00
// check status of command buffers
// needed to detect if the device ran out-of-memory for example (#1881)
for (int i = 0; i < n_cb; i++) {
[ctx->command_buffers[i] waitUntilCompleted];
MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status];
2023-06-25 14:40:30 +02:00
if (status != MTLCommandBufferStatusCompleted) {
GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
2023-06-25 14:40:30 +02:00
GGML_ASSERT(false);
}
}
}
2023-06-25 14:40:30 +02:00
}
////////////////////////////////////////////////////////////////////////////////
// backend interface
// default buffer
static id<MTLDevice> g_backend_device = nil;
static int g_backend_device_ref_count = 0;
static id<MTLDevice> ggml_backend_metal_get_device(void) {
if (g_backend_device == nil) {
g_backend_device = MTLCreateSystemDefaultDevice();
}
g_backend_device_ref_count++;
return g_backend_device;
}
static void ggml_backend_metal_free_device(void) {
assert(g_backend_device_ref_count > 0);
g_backend_device_ref_count--;
if (g_backend_device_ref_count == 0) {
[g_backend_device release];
g_backend_device = nil;
}
}
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
return ctx->all_data;
}
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
for (int i = 0; i < ctx->n_buffers; i++) {
[ctx->buffers[i].metal release];
}
ggml_backend_metal_free_device();
if (ctx->owned) {
free(ctx->all_data);
}
free(ctx);
}
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size);
UNUSED(buffer);
}
static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
memcpy(data, (const char *)tensor->data + offset, size);
UNUSED(buffer);
}
static void ggml_backend_metal_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
UNUSED(buffer);
}
static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
UNUSED(buffer);
}
static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
memset(ctx->all_data, value, ctx->all_size);
}
static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
/* .get_base = */ ggml_backend_metal_buffer_get_base,
/* .init_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_metal_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_metal_buffer_get_tensor,
/* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_metal_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_metal_buffer_clear,
};
// default buffer type
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
const size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
}
id<MTLDevice> device = ggml_backend_metal_get_device();
ctx->all_data = ggml_metal_host_malloc(size_aligned);
ctx->all_size = size_aligned;
ctx->owned = true;
ctx->n_buffers = 1;
ctx->buffers[0].data = ctx->all_data;
ctx->buffers[0].size = size;
ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
length:size_aligned
options:MTLResourceStorageModeShared
deallocator:nil];
if (ctx->buffers[0].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
free(ctx);
ggml_backend_metal_free_device();
return NULL;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0);
#if TARGET_OS_OSX
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
device.currentAllocatedSize / 1024.0 / 1024.0,
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else {
GGML_METAL_LOG_INFO("\n");
}
#else
GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0);
#endif
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
}
static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 32;
UNUSED(buft);
}
static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend);
UNUSED(buft);
}
static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
UNUSED(buft);
}
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
/* .iface = */ {
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
},
/* .context = */ NULL,
};
return &ggml_backend_buffer_type_metal;
}
// buffer from ptr
ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
ctx->all_data = data;
ctx->all_size = size;
ctx->owned = false;
ctx->n_buffers = 0;
const size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
}
id<MTLDevice> device = ggml_backend_metal_get_device();
// the buffer fits into the max buffer size allowed by the device
if (size_aligned <= device.maxBufferLength) {
ctx->buffers[ctx->n_buffers].data = data;
ctx->buffers[ctx->n_buffers].size = size;
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
} else {
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
// one of the views
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
const size_t size_step = device.maxBufferLength - size_ovlp;
const size_t size_view = device.maxBufferLength;
for (size_t i = 0; i < size; i += size_step) {
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, offs = %12ld", __func__, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n");
}
++ctx->n_buffers;
}
}
#if TARGET_OS_OSX
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
device.currentAllocatedSize / 1024.0 / 1024.0,
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else {
GGML_METAL_LOG_INFO("\n");
}
#else
GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0);
#endif
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size);
}
// backend
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
return "Metal";
UNUSED(backend);
}
static void ggml_backend_metal_free(ggml_backend_t backend) {
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
ggml_metal_free(ctx);
free(backend);
}
static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_metal_buffer_type();
UNUSED(backend);
}
static void ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
ggml_metal_graph_compute(metal_ctx, cgraph);
}
static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
return ggml_metal_supports_op(op);
UNUSED(backend);
}
static struct ggml_backend_i metal_backend_i = {
/* .get_name = */ ggml_backend_metal_name,
/* .free = */ ggml_backend_metal_free,
/* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_from_async = */ NULL,
/* .cpy_tensor_to_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_metal_graph_compute,
/* .supports_op = */ ggml_backend_metal_supports_op,
};
ggml_backend_t ggml_backend_metal_init(void) {
struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
if (ctx == NULL) {
return NULL;
}
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
*metal_backend = (struct ggml_backend) {
/* .interface = */ metal_backend_i,
/* .context = */ ctx,
};
return metal_backend;
}
bool ggml_backend_is_metal(ggml_backend_t backend) {
return backend->iface.get_name == ggml_backend_metal_name;
}
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
GGML_ASSERT(ggml_backend_is_metal(backend));
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
ggml_metal_set_n_cb(ctx, n_cb);
}
bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
GGML_ASSERT(ggml_backend_is_metal(backend));
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
}
ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
return ggml_backend_metal_init();
GGML_UNUSED(params);
GGML_UNUSED(user_data);
}