mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-26 16:48:50 +01:00
cuda : sync some minor stuff from llama.cpp (#1548)
This commit is contained in:
parent
ffdb5c4735
commit
010c8ec3ab
94
ggml-cuda.cu
94
ggml-cuda.cu
@ -1,4 +1,5 @@
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
@ -235,7 +236,7 @@ typedef float2 dfloat2;
|
||||
#endif //GGML_CUDA_F16
|
||||
|
||||
static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
|
||||
const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
||||
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
||||
|
||||
int x32 = 0;
|
||||
x32 |= x16[0] << 0;
|
||||
@ -245,7 +246,7 @@ static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
|
||||
const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
||||
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
||||
|
||||
int x32 = 0;
|
||||
x32 |= x16[0] << 0;
|
||||
@ -255,11 +256,11 @@ static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, con
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
|
||||
return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
||||
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
|
||||
return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
||||
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
@ -469,7 +470,7 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA
|
||||
#define MUL_MAT_SRC1_COL_STRIDE 128
|
||||
|
||||
#define MAX_STREAMS 8
|
||||
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullptr };
|
||||
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { { nullptr } };
|
||||
|
||||
struct ggml_tensor_extra_gpu {
|
||||
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
||||
@ -2248,6 +2249,7 @@ static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
|
||||
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
|
||||
@ -2259,7 +2261,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
|
||||
(void)x_qh; (void)x_sc;
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
GGML_CUDA_ASSUME(k >= 0);
|
||||
@ -2268,7 +2270,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI4_0;
|
||||
const int kqsx = k % QI4_0;
|
||||
|
||||
const block_q4_0 * bx0 = (block_q4_0 *) vx;
|
||||
const block_q4_0 * bx0 = (const block_q4_0 *) vx;
|
||||
|
||||
float * x_dmf = (float *) x_dm;
|
||||
|
||||
@ -2306,9 +2308,10 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
||||
const float * x_dmf = (float *) x_dm;
|
||||
const float * x_dmf = (const float *) x_dm;
|
||||
|
||||
int u[2*VDR_Q4_0_Q8_1_MMQ];
|
||||
|
||||
@ -2342,6 +2345,7 @@ static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
|
||||
@ -2353,6 +2357,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -2362,7 +2367,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI4_1;
|
||||
const int kqsx = k % QI4_1;
|
||||
|
||||
const block_q4_1 * bx0 = (block_q4_1 *) vx;
|
||||
const block_q4_1 * bx0 = (const block_q4_1 *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2397,6 +2402,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
||||
|
||||
@ -2434,6 +2440,7 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
||||
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
|
||||
@ -2445,6 +2452,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -2454,7 +2462,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI5_0;
|
||||
const int kqsx = k % QI5_0;
|
||||
|
||||
const block_q5_0 * bx0 = (block_q5_0 *) vx;
|
||||
const block_q5_0 * bx0 = (const block_q5_0 *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2509,6 +2517,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
||||
const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
|
||||
@ -2548,6 +2557,7 @@ static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
|
||||
@ -2559,6 +2569,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -2568,7 +2579,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI5_1;
|
||||
const int kqsx = k % QI5_1;
|
||||
|
||||
const block_q5_1 * bx0 = (block_q5_1 *) vx;
|
||||
const block_q5_1 * bx0 = (const block_q5_1 *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2620,6 +2631,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
||||
const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
|
||||
@ -2654,6 +2666,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
|
||||
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
|
||||
@ -2665,6 +2678,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -2675,7 +2689,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kqsx = k % QI8_0;
|
||||
float * x_dmf = (float *) x_dm;
|
||||
|
||||
const block_q8_0 * bx0 = (block_q8_0 *) vx;
|
||||
const block_q8_0 * bx0 = (const block_q8_0 *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2710,6 +2724,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
const float * x_dmf = (const float *) x_dm;
|
||||
const float * y_df = (const float *) y_ds;
|
||||
@ -2743,6 +2758,7 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
|
||||
@ -2756,6 +2772,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -2765,7 +2782,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI2_K;
|
||||
const int kqsx = k % QI2_K;
|
||||
|
||||
const block_q2_K * bx0 = (block_q2_K *) vx;
|
||||
const block_q2_K * bx0 = (const block_q2_K *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2813,6 +2830,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh;
|
||||
|
||||
const int kbx = k / QI2_K;
|
||||
const int ky = (k % QI2_K) * QR2_K;
|
||||
@ -2886,7 +2904,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI3_K;
|
||||
const int kqsx = k % QI3_K;
|
||||
|
||||
const block_q3_K * bx0 = (block_q3_K *) vx;
|
||||
const block_q3_K * bx0 = (const block_q3_K *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2967,7 +2985,7 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
|
||||
const float * x_dmf = (const float *) x_dm;
|
||||
const float * y_df = (const float *) y_ds;
|
||||
|
||||
const int8_t * scales = ((int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
|
||||
const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
|
||||
|
||||
int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
|
||||
|
||||
@ -3082,6 +3100,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
|
||||
@ -3095,6 +3114,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -3104,7 +3124,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI4_K; // == 0 if QK_K == 256
|
||||
const int kqsx = k % QI4_K; // == k if QK_K == 256
|
||||
|
||||
const block_q4_K * bx0 = (block_q4_K *) vx;
|
||||
const block_q4_K * bx0 = (const block_q4_K *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -3149,7 +3169,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
|
||||
const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
|
||||
|
||||
const int * scales = (int *) bxi->scales;
|
||||
const int * scales = (const int *) bxi->scales;
|
||||
|
||||
const int ksc = k % (WARP_SIZE/8);
|
||||
|
||||
@ -3164,6 +3184,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh;
|
||||
|
||||
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
|
||||
|
||||
@ -3263,6 +3284,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
|
||||
@ -3276,6 +3298,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -3285,7 +3308,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI5_K; // == 0 if QK_K == 256
|
||||
const int kqsx = k % QI5_K; // == k if QK_K == 256
|
||||
|
||||
const block_q5_K * bx0 = (block_q5_K *) vx;
|
||||
const block_q5_K * bx0 = (const block_q5_K *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -3341,7 +3364,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
|
||||
const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
|
||||
|
||||
const int * scales = (int *) bxi->scales;
|
||||
const int * scales = (const int *) bxi->scales;
|
||||
|
||||
const int ksc = k % (WARP_SIZE/8);
|
||||
|
||||
@ -3356,6 +3379,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh;
|
||||
|
||||
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
|
||||
|
||||
@ -3392,6 +3416,7 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
|
||||
@ -3405,6 +3430,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -3414,7 +3440,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI6_K; // == 0 if QK_K == 256
|
||||
const int kqsx = k % QI6_K; // == k if QK_K == 256
|
||||
|
||||
const block_q6_K * bx0 = (block_q6_K *) vx;
|
||||
const block_q6_K * bx0 = (const block_q6_K *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -3476,6 +3502,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh;
|
||||
|
||||
const float * x_dmf = (const float *) x_dm;
|
||||
const float * y_df = (const float *) y_ds;
|
||||
@ -3518,7 +3545,7 @@ static __device__ __forceinline__ void mul_mat_q(
|
||||
__shared__ int tile_y_qs[mmq_x * WARP_SIZE];
|
||||
__shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
|
||||
|
||||
float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {0.0f};
|
||||
float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
|
||||
|
||||
for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
|
||||
|
||||
@ -5840,7 +5867,7 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
||||
return ptr;
|
||||
}
|
||||
#ifdef DEBUG_CUDA_MALLOC
|
||||
fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
|
||||
fprintf(stderr, "%s: %d buffers, max_size = %u MiB, tot_size = %u MiB, requested %u MiB\n", __func__, nnz,
|
||||
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
|
||||
#endif
|
||||
void * ptr;
|
||||
@ -5978,7 +6005,7 @@ void * ggml_cuda_host_malloc(size_t size) {
|
||||
// The allocation error can be bypassed. A null ptr will assigned out of this function.
|
||||
// This can fixed the OOM error in WSL.
|
||||
cudaGetLastError();
|
||||
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
||||
fprintf(stderr, "WARNING: failed to allocate %.2f MiB of pinned memory: %s\n",
|
||||
size/1024.0/1024.0, cudaGetErrorString(err));
|
||||
return nullptr;
|
||||
}
|
||||
@ -6359,6 +6386,7 @@ static int64_t get_row_rounding(ggml_type type) {
|
||||
case GGML_TYPE_Q8_0:
|
||||
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
return 1;
|
||||
case GGML_TYPE_Q2_K:
|
||||
return max_compute_capability >= CC_RDNA2 ? 128 : 32;
|
||||
@ -6381,6 +6409,7 @@ static int64_t get_row_rounding(ggml_type type) {
|
||||
case GGML_TYPE_Q8_0:
|
||||
return 64;
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
return 1;
|
||||
case GGML_TYPE_Q2_K:
|
||||
case GGML_TYPE_Q3_K:
|
||||
@ -6990,7 +7019,7 @@ static void ggml_cuda_op_mul_mat(
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
const int64_t nrows0 = ggml_nrows(src0);
|
||||
// const int64_t nrows0 = ggml_nrows(src0);
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
@ -7091,7 +7120,7 @@ static void ggml_cuda_op_mul_mat(
|
||||
if (src0_on_device && src0_is_contiguous) {
|
||||
src0_dd[id] = (char *) src0_extra->data_device[id];
|
||||
} else {
|
||||
const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
|
||||
// const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
|
||||
src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
|
||||
}
|
||||
|
||||
@ -7324,7 +7353,7 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src
|
||||
}
|
||||
|
||||
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
if (!g_cublas_loaded) return false;
|
||||
if (!g_cublas_loaded) { return false; }
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
@ -7402,7 +7431,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
|
||||
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
|
||||
}
|
||||
|
||||
__global__ void k_compute_batched_ptrs(
|
||||
__global__ static void k_compute_batched_ptrs(
|
||||
const half * src0_as_f16, const half * src1_as_f16, half * dst_f16,
|
||||
const void ** ptrs_src, void ** ptrs_dst,
|
||||
int ne12, int ne13,
|
||||
@ -8018,7 +8047,7 @@ void ggml_cuda_free_scratch() {
|
||||
}
|
||||
|
||||
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
|
||||
if (!g_cublas_loaded) return false;
|
||||
if (!g_cublas_loaded) { return false; }
|
||||
|
||||
ggml_cuda_func_t func;
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
||||
@ -8032,7 +8061,7 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||
if (tensor->op == GGML_OP_MUL_MAT) {
|
||||
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %d, src1->ne[3] = %d - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
|
||||
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = " PRId64 ", src1->ne[3] = " PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
@ -8317,14 +8346,14 @@ static ggml_backend_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backen
|
||||
UNUSED(cgraph);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
[[noreturn]] static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
GGML_ASSERT(!"not implemented");
|
||||
|
||||
UNUSED(backend);
|
||||
UNUSED(plan);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
[[noreturn]] static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
GGML_ASSERT(!"not implemented");
|
||||
|
||||
UNUSED(backend);
|
||||
@ -8340,8 +8369,9 @@ static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
|
||||
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE) {
|
||||
continue;
|
||||
}
|
||||
assert(node->backend == GGML_BACKEND_GPU);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
if (node->src[j] != nullptr) {
|
||||
|
Loading…
Reference in New Issue
Block a user