SYCL: Refactor and enable FP16 in binary broadcast OPs (llama/12975)

* SYCL: refactor move to a separate file

* Fix binbcast

* Remove duplicates

* fix include formatting

* fix typo
This commit is contained in:
Akarshan Biswas 2025-04-18 19:27:56 +05:30 committed by Georgi Gerganov
parent 24d29c55df
commit 0287a5c51b
7 changed files with 393 additions and 372 deletions

View File

@ -13,6 +13,7 @@
#ifndef GGML_SYCL_BACKEND_HPP
#define GGML_SYCL_BACKEND_HPP
#include "binbcast.hpp"
#include "concat.hpp"
#include "common.hpp"
#include "conv.hpp"

View File

@ -0,0 +1,350 @@
#include "binbcast.hpp"
#include <cstddef>
#include <cstdint>
#include <sycl/sycl.hpp>
#include "ggml.h"
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) /
ne3;
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) %
ne3;
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0;
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i3 = i/(ne2*ne1*ne0);
const int i2 = (i/(ne1*ne0)) % ne2;
const int i1 = (i/ne0) % ne1;
const int i0 = i % ne0;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
template<float (*bin_op)(const float, const float)>
struct bin_bcast_sycl {
template <typename src0_t, typename src1_t, typename dst_t>
void operator()(const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, const int64_t ne00,
const int64_t ne01, const int64_t ne02, const int64_t ne03, const int64_t ne10, const int64_t ne11,
const int64_t ne12, const int64_t ne13, const int64_t ne0, const int64_t ne1, const int64_t ne2,
const int64_t ne3, const size_t nb00, const size_t nb01, const size_t nb02, const size_t nb03,
const size_t nb10, const size_t nb11, const size_t nb12, const size_t nb13, const size_t nb0,
const size_t nb1, const size_t nb2, const size_t nb3, const bool src0_is_contiguous,
const bool src1_is_contiguous, const bool dst_is_contiguous, queue_ptr stream) {
int nr0 = ne10 / ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
int nr3 = ne13/ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension
int64_t cne[] = {ne0, ne1, ne2, ne3};
int64_t cne0[] = {ne00, ne01, ne02, ne03};
int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb[] = {nb0, nb1, nb2, nb3};
size_t cnb0[] = {nb00, nb01, nb02, nb03};
size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
if (src0_is_contiguous && src1_is_contiguous && dst_is_contiguous) {
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb, cne);
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne);
collapse(cne0);
collapse(cne1);
}
}
}
{
int64_t ne0 = cne[0];
int64_t ne1 = cne[1];
int64_t ne2 = cne[2];
int64_t ne3 = cne[3];
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
size_t nb0 = cnb[0];
size_t nb1 = cnb[1];
size_t nb2 = cnb[2];
size_t nb3 = cnb[3];
size_t nb00 = cnb0[0];
size_t nb01 = cnb0[1];
size_t nb02 = cnb0[2];
size_t nb03 = cnb0[3];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
GGML_UNUSED(s00);
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0/2LL, 1LL);
sycl::range<3> block_dims(1, 1, 1);
block_dims[2] = std::min<unsigned int>(hne0, block_size);
block_dims[1] = std::min<unsigned int>(
ne1, block_size / (unsigned int)block_dims[2]);
block_dims[0] = std::min(
std::min<unsigned int>(
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
(unsigned int)block_dims[1]),
64U);
sycl::range<3> block_nums(
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
(ne1 + block_dims[1] - 1) / block_dims[1],
(hne0 + block_dims[2] - 1) / block_dims[2]);
if (block_nums[0] > 65535) {
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
sycl::range<3>(1, 1, block_size),
sycl::range<3>(1, 1, block_size)),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast_unravel<bin_op>(
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13, s1, s2, s3, s01, s02,
s03, s11, s12, s13, item_ct1);
});
}
} else {
/*
DPCT1049:16: The work-group size passed to the SYCL kernel may
exceed the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if
needed.
*/
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
ne2, ne3, ne10, ne11, ne12, ne13,
s1, s2, s3, s01, s02, s03, s11, s12, s13,
item_ct1);
});
}
}
}
};
template <class op>
inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
dpct::queue_ptr main_stream = ctx.stream();
GGML_TENSOR_BINARY_OP_LOCALS
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
op()((const float *) src0->data, (const float *) src1->data, (float *) dst->data, ne00, ne01, ne02, ne03, ne10,
ne11, ne12, ne13, ne0, ne1, ne2, ne3, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb0, nb1, nb2, nb3,
ggml_is_contiguous(src0), ggml_is_contiguous(src1), ggml_is_contiguous(dst), main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
op()((const sycl::half *) src0->data, (const sycl::half *) src1->data, (sycl::half *) dst->data, ne00, ne01,
ne02, ne03, ne10, ne11, ne12, ne13, ne0, ne1, ne2, ne3, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13,
nb0, nb1, nb2, nb3, ggml_is_contiguous(src0), ggml_is_contiguous(src1), ggml_is_contiguous(dst),
main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
op()((const sycl::half *) src0->data, (const float *) src1->data, (sycl::half *) dst->data, ne00, ne01, ne02,
ne03, ne10, ne11, ne12, ne13, ne0, ne1, ne2, ne3, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb0, nb1,
nb2, nb3, ggml_is_contiguous(src0), ggml_is_contiguous(src1), ggml_is_contiguous(dst), main_stream);
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
op()((const int32_t *) src0->data, (const int32_t *) src1->data, (int32_t *) dst->data, ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13, ne0, ne1, ne2, ne3, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb0, nb1, nb2,
nb3, ggml_is_contiguous(src0), ggml_is_contiguous(src1), ggml_is_contiguous(dst), main_stream);
} else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
op()((const int16_t *) src0->data, (const int16_t *) src1->data, (int16_t *) dst->data, ne00, ne01, ne02, ne03,
ne10, ne11, ne12, ne13, ne0, ne1, ne2, ne3, nb00, nb01, nb02, nb03, nb10, nb11, nb12, nb13, nb0, nb1, nb2,
nb3, ggml_is_contiguous(src0), ggml_is_contiguous(src1), ggml_is_contiguous(dst), main_stream);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__, ggml_type_name(dst->type),
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}
inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_sub(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_sub>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, dst->src[0], dst);
}
void ggml_sycl_add(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_add(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_sub(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_mul(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_div(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_div(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_repeat(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}

View File

@ -0,0 +1,39 @@
#ifndef GGML_SYCL_BINBCAST_HPP
#define GGML_SYCL_BINBCAST_HPP
#include "common.hpp"
static __dpct_inline__ float op_repeat(const float a, const float b) {
return b;
GGML_UNUSED(a);
}
static __dpct_inline__ float op_add(const float a, const float b) {
return a + b;
}
static __dpct_inline__ float op_sub(const float a, const float b) {
return a - b;
}
static __dpct_inline__ float op_mul(const float a, const float b) {
return a * b;
}
static __dpct_inline__ float op_div(const float a, const float b) {
return a / b;
}
void ggml_sycl_add(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_div(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif //GGML_SYCL_BINBCAST_HPP

View File

@ -494,286 +494,5 @@ static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) /
ne3;
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) %
ne3;
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0;
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i3 = i/(ne2*ne1*ne0);
const int i2 = (i/(ne1*ne0)) % ne2;
const int i1 = (i/ne0) % ne1;
const int i0 = i % ne0;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
template<float (*bin_op)(const float, const float)>
struct bin_bcast_sycl {
template <typename src0_t, typename src1_t, typename dst_t>
void operator()(ggml_backend_sycl_context & ctx,
const struct ggml_tensor *src0,
const struct ggml_tensor *src1, struct ggml_tensor *dst,
const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
queue_ptr stream) {
GGML_TENSOR_BINARY_OP_LOCALS
int nr0 = ne10/ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
int nr3 = ne13/ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension
int64_t cne[] = {ne0, ne1, ne2, ne3};
int64_t cne0[] = {ne00, ne01, ne02, ne03};
int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb[] = {nb0, nb1, nb2, nb3};
size_t cnb0[] = {nb00, nb01, nb02, nb03};
size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb, cne);
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne);
collapse(cne0);
collapse(cne1);
}
}
}
{
int64_t ne0 = cne[0];
int64_t ne1 = cne[1];
int64_t ne2 = cne[2];
int64_t ne3 = cne[3];
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
size_t nb0 = cnb[0];
size_t nb1 = cnb[1];
size_t nb2 = cnb[2];
size_t nb3 = cnb[3];
size_t nb00 = cnb0[0];
size_t nb01 = cnb0[1];
size_t nb02 = cnb0[2];
size_t nb03 = cnb0[3];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
GGML_UNUSED(s00);
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0/2LL, 1LL);
sycl::range<3> block_dims(1, 1, 1);
block_dims[2] = std::min<unsigned int>(hne0, block_size);
block_dims[1] = std::min<unsigned int>(
ne1, block_size / (unsigned int)block_dims[2]);
block_dims[0] = std::min(
std::min<unsigned int>(
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
(unsigned int)block_dims[1]),
64U);
sycl::range<3> block_nums(
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
(ne1 + block_dims[1] - 1) / block_dims[1],
(hne0 + block_dims[2] - 1) / block_dims[2]);
if (block_nums[0] > 65535) {
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
sycl::range<3>(1, 1, block_size),
sycl::range<3>(1, 1, block_size)),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast_unravel<bin_op>(
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13, s1, s2, s3, s01, s02,
s03, s11, s12, s13, item_ct1);
});
}
} else {
/*
DPCT1049:16: The work-group size passed to the SYCL kernel may
exceed the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if
needed.
*/
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
ne2, ne3, ne10, ne11, ne12, ne13,
s1, s2, s3, s01, s02, s03, s11, s12, s13,
item_ct1);
});
}
}
GGML_UNUSED(ctx);
}
};
template <class op>
inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst) {
dpct::queue_ptr main_stream = ctx.stream();
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, (const float *)src0->data, (const float *)src1->data, (float *)dst->data, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0->data, (const float *)src1->data,
(sycl::half *)dst->data, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0->data, (const float *)src1->data, (float *)dst->data,
main_stream);
} else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
op()(ctx, src0, src1, dst, (const int32_t *)src0->data, (const int32_t *)src1->data, (int32_t *)dst->data,
main_stream);
} else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
op()(ctx, src0, src1, dst, (const int16_t *)src0->data, (const int16_t *)src1->data, (int16_t *)dst->data,
main_stream);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}
bool gpu_has_xmx(sycl::device &dev);
#endif // GGML_SYCL_COMMON_HPP

View File

@ -1261,27 +1261,6 @@ inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
}
inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_sub(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_sub>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, dst->src[0], dst->src[1], dst);
}
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s: DST Tensor type: %s\n", __func__, ggml_type_name(dst->type));
ggml_sycl_op_sqrt(ctx, dst);
@ -1409,29 +1388,3 @@ void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_add(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_add(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_sub(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_mul(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_div(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_div(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}

View File

@ -10,27 +10,6 @@ T neg_infinity() {
return -std::numeric_limits<T>::infinity();
}
static __dpct_inline__ float op_repeat(const float a, const float b) {
return b;
GGML_UNUSED(a);
}
static __dpct_inline__ float op_add(const float a, const float b) {
return a + b;
}
static __dpct_inline__ float op_sub(const float a, const float b) {
return a - b;
}
static __dpct_inline__ float op_mul(const float a, const float b) {
return a * b;
}
static __dpct_inline__ float op_div(const float a, const float b) {
return a / b;
}
template<typename T>
struct typed_data {
const T * src;
@ -87,14 +66,5 @@ void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
// ---------
void ggml_sycl_add(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_div(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_ELEMENTWISE_HPP

View File

@ -1967,11 +1967,6 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, dst->src[0], dst);
}
inline void ggml_sycl_op_mul_mat_sycl(
ggml_backend_sycl_context & ctx,
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
@ -2600,12 +2595,6 @@ catch (sycl::exception const &exc) {
}
static void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_repeat(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_get_rows(ctx, dst);
@ -3972,7 +3961,6 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_ARGMAX:
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_REPEAT:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
@ -3982,7 +3970,8 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
return (op->src[0]->type == GGML_TYPE_F32);
case GGML_OP_REPEAT:
return true;
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_SIN: