mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-28 00:39:04 +01:00
ggml : parallelize FP32 conversion when using BLAS (llama/5045)
* make GGML_TASK_INIT phase can be run in multithread * multithreaded dequantize in mul_mat when using blas library * minor fixes * update outdated comment * fix coding style * simplify code Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
aaeaa43878
commit
0649289f02
198
ggml.c
198
ggml.c
@ -7815,6 +7815,9 @@ static void ggml_compute_forward_acc_f32(
|
||||
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
|
||||
|
||||
if (!inplace && (params->type == GGML_TASK_INIT)) {
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
// memcpy needs to be synchronized across threads to avoid race conditions.
|
||||
// => do it in INIT phase
|
||||
memcpy(
|
||||
@ -9957,11 +9960,30 @@ static void ggml_compute_forward_mul_mat(
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(dst)) {
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
const int64_t ne_plane = ne01*ne00;
|
||||
const int64_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
|
||||
UNUSED(desired_wsize);
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (type != GGML_TYPE_F32) {
|
||||
assert(params->wsize >= desired_wsize);
|
||||
// parallelize by src0 rows
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
// broadcast src0 into src1 across 2nd,3rd dimension
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
|
||||
ggml_to_float_t const to_float = type_traits[type].to_float;
|
||||
|
||||
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
||||
to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
@ -9969,9 +9991,14 @@ static void ggml_compute_forward_mul_mat(
|
||||
return;
|
||||
}
|
||||
|
||||
// perform sgemm, parallelization controlled by blas lib
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t tgemm0 = ggml_perf_time_us();
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
// broadcast src0 into src1 across 2nd,3rd dimension
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
@ -9980,17 +10007,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
|
||||
if (type != GGML_TYPE_F32) {
|
||||
float * const wdata = params->wdata;
|
||||
ggml_to_float_t const to_float = type_traits[type].to_float;
|
||||
|
||||
size_t id = 0;
|
||||
for (int64_t i01 = 0; i01 < ne01; ++i01) {
|
||||
to_float((const char *) x + i01*nb01, wdata + id, ne00);
|
||||
id += ne00;
|
||||
}
|
||||
|
||||
assert(id*sizeof(float) <= params->wsize);
|
||||
x = wdata;
|
||||
x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
|
||||
}
|
||||
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
@ -10000,6 +10017,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
0.0f, d, ne01);
|
||||
}
|
||||
}
|
||||
//printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
|
||||
|
||||
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
||||
|
||||
@ -10008,6 +10026,9 @@ static void ggml_compute_forward_mul_mat(
|
||||
#endif
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
if (src1->type != vec_dot_type) {
|
||||
char * wdata = params->wdata;
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
@ -10172,6 +10193,9 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
char * wdata = params->wdata;
|
||||
if (src1->type != vec_dot_type) {
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
@ -10357,6 +10381,9 @@ static void ggml_compute_forward_out_prod_f32(
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
|
||||
return;
|
||||
}
|
||||
@ -10540,6 +10567,9 @@ static void ggml_compute_forward_out_prod_q_f32(
|
||||
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
|
||||
return;
|
||||
}
|
||||
@ -10724,6 +10754,9 @@ static void ggml_compute_forward_set_f32(
|
||||
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
|
||||
|
||||
if (!inplace && (params->type == GGML_TASK_INIT)) {
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
// memcpy needs to be synchronized across threads to avoid race conditions.
|
||||
// => do it in INIT phase
|
||||
memcpy(
|
||||
@ -11048,6 +11081,9 @@ static void ggml_compute_forward_get_rows_back_f32_f16(
|
||||
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
memset(dst->data, 0, ggml_nbytes(dst));
|
||||
}
|
||||
|
||||
@ -11082,6 +11118,9 @@ static void ggml_compute_forward_get_rows_back_f32(
|
||||
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
memset(dst->data, 0, ggml_nbytes(dst));
|
||||
}
|
||||
|
||||
@ -11219,6 +11258,9 @@ static void ggml_compute_forward_diag_mask_f32(
|
||||
GGML_ASSERT(n_past >= 0);
|
||||
|
||||
if (!inplace && (params->type == GGML_TASK_INIT)) {
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
// memcpy needs to be synchronized across threads to avoid race conditions.
|
||||
// => do it in INIT phase
|
||||
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||||
@ -12189,6 +12231,9 @@ static void ggml_compute_forward_conv_transpose_1d_f16_f32(
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
memset(params->wdata, 0, params->wsize);
|
||||
|
||||
// permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
|
||||
@ -12283,6 +12328,9 @@ static void ggml_compute_forward_conv_transpose_1d_f32(
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
memset(params->wdata, 0, params->wsize);
|
||||
|
||||
// prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
|
||||
@ -12507,6 +12555,9 @@ static void ggml_compute_forward_conv_transpose_2d(
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
memset(params->wdata, 0, params->wsize);
|
||||
|
||||
// permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
|
||||
@ -14121,6 +14172,9 @@ static void ggml_compute_forward_add_rel_pos_f32(
|
||||
|
||||
const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
|
||||
if (!inplace && params->type == GGML_TASK_INIT) {
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
|
||||
return;
|
||||
}
|
||||
@ -16414,8 +16468,9 @@ struct ggml_compute_state_shared {
|
||||
const int n_threads;
|
||||
|
||||
// synchronization primitives
|
||||
atomic_int n_active; // num active threads
|
||||
atomic_int node_n; // active graph node
|
||||
atomic_int n_active; // num active threads
|
||||
atomic_int node_n; // active graph node
|
||||
atomic_int node_task; // active graph node task phase
|
||||
|
||||
bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
|
||||
void * abort_callback_data;
|
||||
@ -16663,6 +16718,34 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
return n_tasks;
|
||||
}
|
||||
|
||||
static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
|
||||
// wait for other threads to finish
|
||||
const int last_node_n = * node_n;
|
||||
|
||||
while (true) {
|
||||
if (do_yield) {
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
* node_n = atomic_load(&state->shared->node_n);
|
||||
if (* node_n != last_node_n) break;
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
|
||||
// wait for other threads to finish
|
||||
const int last_task_phase = * task_phase;
|
||||
|
||||
while (true) {
|
||||
if (do_yield) {
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
* task_phase = atomic_load(&state->shared->node_task);
|
||||
if (* task_phase != last_task_phase) break;
|
||||
}
|
||||
}
|
||||
|
||||
static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
|
||||
|
||||
@ -16673,7 +16756,8 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
|
||||
set_numa_thread_affinity(state->ith, n_threads);
|
||||
|
||||
int node_n = -1;
|
||||
int node_n = -1;
|
||||
int task_phase = GGML_TASK_FINALIZE;
|
||||
|
||||
while (true) {
|
||||
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
@ -16713,13 +16797,13 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
|
||||
params.nth = n_tasks;
|
||||
|
||||
/* INIT */
|
||||
if (GGML_OP_HAS_INIT[node->op]) {
|
||||
params.type = GGML_TASK_INIT;
|
||||
ggml_compute_forward(¶ms, node);
|
||||
}
|
||||
|
||||
if (n_tasks == 1) {
|
||||
/* INIT */
|
||||
if (GGML_OP_HAS_INIT[node->op]) {
|
||||
params.type = GGML_TASK_INIT;
|
||||
ggml_compute_forward(¶ms, node);
|
||||
}
|
||||
|
||||
// TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
|
||||
// they do something more efficient than spinning (?)
|
||||
params.type = GGML_TASK_COMPUTE;
|
||||
@ -16740,38 +16824,24 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
}
|
||||
}
|
||||
|
||||
atomic_store(&state->shared->n_active, n_threads);
|
||||
atomic_store(&state->shared->node_n, node_n);
|
||||
task_phase = GGML_TASK_INIT;
|
||||
atomic_store(&state->shared->n_active, n_threads);
|
||||
atomic_store(&state->shared->node_n, node_n);
|
||||
atomic_store(&state->shared->node_task, task_phase);
|
||||
} else {
|
||||
// wait for other threads to finish
|
||||
const int last = node_n;
|
||||
|
||||
const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT;
|
||||
|
||||
while (true) {
|
||||
// TODO: this sched_yield can have significant impact on the performance - either positive or negative
|
||||
// depending on the workload and the operating system.
|
||||
// since it is not clear what is the best approach, it should potentially become user-configurable
|
||||
// ref: https://github.com/ggerganov/ggml/issues/291
|
||||
// UPD: adding the do_yield flag seems to resolve the issue universally
|
||||
if (do_yield) {
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
node_n = atomic_load(&state->shared->node_n);
|
||||
if (node_n != last) break;
|
||||
};
|
||||
ggml_graph_compute_thread_sync_node(&node_n, state, false);
|
||||
ggml_graph_compute_thread_sync_task(&task_phase, state, false);
|
||||
}
|
||||
|
||||
// check if we should stop
|
||||
if (node_n >= cgraph->n_nodes) break;
|
||||
|
||||
/* COMPUTE */
|
||||
/* INIT & COMPUTE */
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
const int n_tasks = ggml_get_n_tasks(node, n_threads);
|
||||
|
||||
struct ggml_compute_params params = {
|
||||
/*.type =*/ GGML_TASK_COMPUTE,
|
||||
/*.type =*/ GGML_TASK_INIT,
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ n_tasks,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
@ -16779,8 +16849,39 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
};
|
||||
|
||||
if (state->ith < n_tasks) {
|
||||
if (GGML_OP_HAS_INIT[node->op]) {
|
||||
ggml_compute_forward(¶ms, node);
|
||||
}
|
||||
}
|
||||
|
||||
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
|
||||
task_phase = GGML_TASK_COMPUTE;
|
||||
atomic_store(&state->shared->n_active, n_threads);
|
||||
atomic_store(&state->shared->node_task, task_phase);
|
||||
}
|
||||
else {
|
||||
// TODO: this sched_yield can have significant impact on the performance - either positive or negative
|
||||
// depending on the workload and the operating system.
|
||||
// since it is not clear what is the best approach, it should potentially become user-configurable
|
||||
// ref: https://github.com/ggerganov/ggml/issues/291
|
||||
// UPD: adding the do_yield flag seems to resolve the issue universally
|
||||
const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
|
||||
ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
|
||||
}
|
||||
|
||||
if (state->ith < n_tasks) {
|
||||
params.type = GGML_TASK_COMPUTE;
|
||||
ggml_compute_forward(¶ms, node);
|
||||
}
|
||||
|
||||
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
|
||||
task_phase = GGML_TASK_FINALIZE;
|
||||
atomic_store(&state->shared->n_active, n_threads);
|
||||
atomic_store(&state->shared->node_task, task_phase);
|
||||
}
|
||||
else {
|
||||
ggml_graph_compute_thread_sync_task(&task_phase, state, false);
|
||||
}
|
||||
}
|
||||
|
||||
return GGML_EXIT_SUCCESS;
|
||||
@ -16837,8 +16938,8 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node)) {
|
||||
if (node->src[0]->type != GGML_TYPE_F32) {
|
||||
// here we need memory just for single 2D matrix from src0
|
||||
cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
|
||||
// here we need memory for fully dequantized matrix from src0
|
||||
cur = ggml_type_size(GGML_TYPE_F32)*ggml_nelements(node->src[0]);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
@ -16992,6 +17093,7 @@ int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
|
||||
/*.n_threads =*/ n_threads,
|
||||
/*.n_active =*/ n_threads,
|
||||
/*.node_n =*/ -1,
|
||||
/*.node_task =*/ GGML_TASK_FINALIZE,
|
||||
/*.abort_callback =*/ NULL,
|
||||
/*.abort_callback_data =*/ NULL,
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user